Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658360

RESUMO

Located in the forelegs, katydid ears are unique among arthropods in having outer, middle, and inner components, analogous to the mammalian ear. Unlike mammals, sound is received externally via two tympanic membranes in each ear and internally via a narrow ear canal (EC) derived from the respiratory tracheal system. Inside the EC, sound travels slower than in free air, causing temporal and pressure differences between external and internal inputs. The delay was suspected to arise as a consequence of the narrowing EC geometry. If true, a reduction in sound velocity should persist independently of the gas composition in the EC (e.g., air, [Formula: see text]). Integrating laser Doppler vibrometry, microcomputed tomography, and numerical analysis on precise three-dimensional geometries of each experimental animal EC, we demonstrate that the narrowing radius of the EC is the main factor reducing sound velocity. Both experimental and numerical data also show that sound velocity is reduced further when excess [Formula: see text] fills the EC. Likewise, the EC bifurcates at the tympanal level (one branch for each tympanic membrane), creating two additional narrow internal sound paths and imposing different sound velocities for each tympanic membrane. Therefore, external and internal inputs total to four sound paths for each ear (only one for the human ear). Research paths and implication of findings in avian directional hearing are discussed.


Assuntos
Estruturas Animais , Meato Acústico Externo , Gryllidae , Audição/fisiologia , Membrana Timpânica , Estruturas Animais/anatomia & histologia , Estruturas Animais/fisiologia , Animais , Meato Acústico Externo/anatomia & histologia , Meato Acústico Externo/fisiologia , Gryllidae/anatomia & histologia , Gryllidae/fisiologia , Membrana Timpânica/anatomia & histologia , Membrana Timpânica/fisiologia
2.
J Therm Biol ; 110: 103356, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462862

RESUMO

Thermal performance curves for development are an essential tool for population modeling and pest management. More broadly, they characterize how selection on thermal limits or maximum rates change with life stage. The effects of temperature on development of Mormon cricket embryos, and hatching and development of nymphs were measured on a population from the Bighorn Mountains of Wyoming and modeled with four non-linear equations. Taylor's Gaussian curve characterized embryonic development, which was most rapid at 26.9 °C. However, half-grown embryos aestivated at high temperatures, resulting in a significant shift in the optimum temperature to complete embryonic development to 24.1 °C and a reduction in the breadth of the performance curve (thermal breadth). Fully grown embryos hatched fastest at relatively low temperatures (21.8 °C), whereas nymphal development was maximized at relatively high temperatures (35.7 °C). Thermal breadths for nymphal hatching and development were also significantly broader than that for embryonic development. Differences in optimum temperature and thermal breadth of each life stage should be taken into consideration in population modeling, comparisons among populations, and epigenetic studies of acclimation.


Assuntos
Gryllidae , Feminino , Animais , Temperatura , Ninfa , Desenvolvimento Embrionário , Aclimatação
3.
J Exp Biol ; 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785502

RESUMO

The ability to entrain to auditory stimuli has been a powerful method to investigate the comparative rhythm abilities of different animals. While synchrony to regular simple rhythms is well documented, synchrony to complex stimuli, with multiple components at unequal time intervals, is rarer. Several katydid species with simple calls have been shown to achieve synchrony as part of their natural calling interactions in multi-individual choruses. Yet no study so far has demonstrated synchrony in any insect with a complex call. Using natural calling behaviour and playback experiments, we investigated acoustic synchrony and the mechanisms underlying it in the katydid species Mecopoda 'Two Part Caller'. This species has a complex call consisting of a long trill followed by two or more chirps. We found that individual males synchronized trills and, to a lesser extent, chirps. Further investigation of trill synchrony showed that the timing of trills is modified by external trills but not chirps. Chirp synchrony is modified by external chirps, but also by trills. We suggest a qualitative two-oscillator model underlying synchrony in this species and discuss the implications for the evolution of acoustic synchrony.

4.
J Exp Biol ; 224(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34047777

RESUMO

Prey that are signalling in aggregation become more conspicuous with increasing numbers and tend to attract more predators. Such grouping may, however, benefit prey by lowering the risk of being captured because of the predator's difficulty in targeting individuals. Previous studies have investigated anti-predatory benefits of prey aggregation using visual predators, but it is unclear whether such benefits are gained in an auditory context. We investigated whether katydids of the genus Mecopoda gain protection from their acoustically eavesdropping bat predator Megaderma spasma when calling in aggregation. In a choice experiment, bats approached calls of prey aggregations more often than those of prey calling alone, indicating that prey calling in aggregation are at higher risk. In prey capture tasks, however, the average time taken and the number of flight passes made by bats before capturing a katydid were significantly higher for prey calling in aggregation than when calling alone, indicating that prey face lower predation risk when calling in aggregation. Another common anti-predatory strategy, calling from within vegetation, increased the time taken by bats to capture katydids calling alone but did not increase the time taken to capture prey calling from aggregations. The increased time taken to capture prey calling in aggregation compared with solitary calling prey offers an escape opportunity, thus providing prey that signal acoustically in aggregations with anti-predatory benefits. For bats, greater detectability of calling prey aggregations is offset by lower foraging efficiency, and this trade-off may shape predator foraging strategies in natural environments.


Assuntos
Quirópteros , Ortópteros , Animais , Humanos , Comportamento Predatório
5.
J Anim Ecol ; 89(5): 1286-1294, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32115723

RESUMO

We investigate where bottom-up and top-down control regulates ecological communities as a mechanism linking ecological gradients to the geography of consumer abundance and biomass. We use standardized surveys of 54 North American grasslands to test alternate hypotheses predicting 100-fold shifts in the biomass of four common grassland arthropod taxa-Auchenorrhyncha, sucking herbivores, Acrididae, chewing herbivores, Tettigoniidae, omnivores, and Araneae, predators. Bottom-up models predict that consumer biomass tracks plant quantity (e.g. productivity and standing biomass) and quality (nutrient content) and that ectotherm access to food increases with temperature. Each of the focal trophic groups responded differently to these drivers: the biomass of sucking herbivores and omnivores increased with plant biomass; that of chewing herbivores tracked plant quality; and predator biomass did not depend on plant quality, plant quantity or temperature. The Exploitation Ecosystem Hypothesis is a top-down hypothesis that predicts a shift from resource limitation of herbivores when plant production is low, to predator limitation when plant production is high. In grasslands where spider biomass was low, herbivore biomass increased with plant biomass, whereas bottom-up structuring was not evident when spiders were abundant. Furthermore, neither predator biomass nor trophic position (via stable isotope analysis) increased with plant biomass, suggesting predators themselves are top-down limited. Stable isotope analysis revealed that trophic position of the chewing herbivore and omnivore increased significantly with plant biomass, suggesting these groups increased scavenging and meat consumption in grasslands with higher carbohydrate availability. Taken together, our snapshot sampling documents gradients of food web structure across 54 grasslands, consistent with multiple hypotheses of bottom-up and top-down regulation.


Assuntos
Artrópodes , Animais , Biomassa , Ecossistema , Cadeia Alimentar , Pradaria , Herbivoria
6.
Artigo em Inglês | MEDLINE | ID: mdl-29441409

RESUMO

Males of the katydid Sphagniana sphagnorum form calling aggregations in boreal sphagnum bogs to attract mates. They broadcast frequency-modulated (FM) songs in steady series, each song comprised of two wing-stroking modes that alternate audio and ultrasonic spectra. NN analysis of three populations found mean distances between 5.1 and 8.4 m, but failed to find spacing regularity: in one males spaced randomly, in another they were clumped, but within the clumps spaced at random. We tested a mechanism for maintaining inter-male distances by playback of conspecific song to resident males and analysing song interactions between neighbouring males in the field. The results indicate that the song rate is an important cue for males. Information coded in song rates is confounded by variation in bog temperatures and by the linear correlation of song rates with temperature. The ultrasonic and audio spectral modes suffer different excess attenuation: the ultrasonic mode is favoured at shorter distances (< 6 m), the audio mode at longer distances (> 6 m), supporting a hypothesized function in distance estimation. Another katydid, Conocephalus fasciatus, shares habitat with S. sphagnorum and could mask its ultrasonic mode; however, mapping of both species indicate the spacing of S. sphagnorum is unaffected by the sympatric species.


Assuntos
Comunicação Animal , Ortópteros , Acústica , Animais , Periodicidade , Comportamento Sexual Animal , Espectrografia do Som , Áreas Alagadas
7.
Proc Biol Sci ; 284(1865)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29046376

RESUMO

From mammals to insects, acoustic communication is in many species crucial for successful reproduction. In the duetting bushcricket Ancylecha fenestrata, the mutual acoustic communication between males and females is asymmetrical. We investigated how those signalling disparities are reflected by sexual dimorphism of their ears. Both sexes have tympanic ears in their forelegs, but male ears possess a significantly longer crista acustica containing 35% more scolopidia. With more sensory cells to cover a similar hearing range, the male hearing organ shows a significantly expanded auditory fovea that is tuned to the dominant frequency of the female reply to facilitate phonotactic mate finding. This sex-specific auditory fovea is demonstrated in the mechanical and neuronal responses along the tonotopically organized crista acustica by laservibrometric and electrophysiological frequency mapping, respectively. Morphometric analysis of the crista acustica revealed an interrupted gradient in organ height solely within this auditory fovea region, whereas all other anatomical parameters decrease continuously from proximal to distal. Combining behavioural, anatomical, biomechanical and neurophysiological information, we demonstrate evidence of a pronounced auditory fovea as a sex-specific adaptation of an insect hearing organ for intraspecific acoustic communication.


Assuntos
Comunicação Animal , Percepção Auditiva , Ortópteros/anatomia & histologia , Ortópteros/fisiologia , Animais , Orelha Média/anatomia & histologia , Feminino , Masculino , Caracteres Sexuais
8.
J Exp Biol ; 220(Pt 16): 2900-2907, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28596213

RESUMO

Animals use sound for communication, with high-amplitude signals being selected for attracting mates or deterring rivals. High amplitudes are attained by employing primary resonators in sound-producing structures to amplify the signal (e.g. avian syrinx). Some species actively exploit acoustic properties of natural structures to enhance signal transmission by using these as secondary resonators (e.g. tree-hole frogs). Male bush-crickets produce sound by tegminal stridulation and often use specialised wing areas as primary resonators. Interestingly, Acanthacara acuta, a Neotropical bush-cricket, exhibits an unusual pronotal inflation, forming a chamber covering the wings. It has been suggested that such pronotal chambers enhance amplitude and tuning of the signal by constituting a (secondary) Helmholtz resonator. If true, the intact system - when stimulated sympathetically with broadband sound - should show clear resonance around the song carrier frequency which should be largely independent of pronotum material, and change when the system is destroyed. Using laser Doppler vibrometry on living and preserved specimens, microcomputed tomography, 3D-printed models and finite element modelling, we show that the pronotal chamber not only functions as a Helmholtz resonator owing to its intact morphology but also resonates at frequencies of the calling song on itself, making song production a three-resonator system.


Assuntos
Comunicação Animal , Ortópteros/anatomia & histologia , Ortópteros/fisiologia , Asas de Animais/anatomia & histologia , Animais , Equador , Análise de Elementos Finitos , Masculino , Impressão Tridimensional , Vibração , Asas de Animais/fisiologia , Microtomografia por Raio-X
9.
J Exp Biol ; 218(Pt 19): 3042-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254322

RESUMO

The communication strategy of most crickets and bushcrickets typically consists of males broadcasting loud acoustic calling songs, while females perform phonotaxis, moving towards the source of the call. Males of the pseudophylline bushcricket species Onomarchus uninotatus produce an unusually low-pitched call, and we found that the immediate and most robust response of females to the male acoustic call was a bodily vibration, or tremulation, following each syllable of the call. We hypothesized that these bodily oscillations might send out a vibrational signal along the substrate on which the female stands, which males could use to localize her position. We quantified these vibrational signals using a laser vibrometer and found a clear phase relationship of alternation between the chirps of the male acoustic call and the female vibrational response. This system therefore constitutes a novel multimodal duet with a reliable temporal structure. We also found that males could localize the source of vibration but only if both the acoustic and vibratory components of the duet were played back. This unique multimodal duetting system may have evolved in response to higher levels of bat predation on searching bushcricket females than calling males, shifting part of the risk associated with partner localization onto the male. This is the first known example of bushcricket female tremulation in response to a long-range male acoustic signal and the first known example of a multimodal duet among animals.


Assuntos
Gryllidae/fisiologia , Comunicação Animal , Animais , Comportamento Apetitivo , Feminino , Masculino , Comportamento Sexual Animal , Vibração
10.
J Insect Physiol ; 154: 104633, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38554814

RESUMO

In many katydids, the male feeds his mate with a large gelatinous spermatophore. While providing large spermatophores can increase female fecundity and lifespan, it may also decrease their sexual receptivity, benefiting male fitness. Allocating resources to these edible gifts may entail a lower apportionment of them to other functions, generating a trade-off between somatic and reproductive functions. Despite their effect on male and female fitness, little is known of the compounds associated with katydid spermatophores. Our study found 177 different putative proteins in the spermatophore of Conocephalus ictus, with no correlation between male body size with spermatophore mass, number, concentration and mass of proteins. However, we did observe a negative relationship between male forewing length and protein concentration, and a negative relationship between the mass of the spermatophore transferred to the females and their body size, suggesting a resource allocation trade-off in males, but also strategic transference of resources based on female quality.


Assuntos
Ortópteros , Feminino , Masculino , Animais , Reprodução , Espermatogônias , Tamanho Corporal , Longevidade , Comportamento Sexual Animal
11.
Curr Res Insect Sci ; 6: 100092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224195

RESUMO

Standard metabolic rates (SMR) of ectotherms reflect the energetic cost of self-maintenance and thus provide important information about life-history strategies of organisms. We examined variation in SMR among fifteen species of New Zealand orthopteran. These species represent a heterogeneous group with a wide geographic distribution, differing morphologies and life histories. Gathering original data on morphological and physiological traits of individual species is a first step towards understanding existing variability. Individual metabolic rates of ectotherms are one of the first traits to respond to climate change. Baseline SMR datasets are valuable for modeling current species distributions and their responses to a changing climate. At higher latitudes, the average environmental temperature decreases. The pattern that cold-adapted ectotherms display higher SMR at colder temperatures and greater thermal sensitivity to compensate for lower temperatures and the shorter growing and reproductive seasons is predicted from the metabolic cold adaptation (MCA) hypothesis. We predict higher SMR for the orthopteran species found at higher latitudes. We further compared the index of thermal sensitivity Q10 per species. We used closed-system respirometry to measure SMR, at two test temperatures (4 °C and 14 °C), for the fifteen species acclimated to the same conditions. As expected, we found significant differences in SMR among species. The rate of oxygen consumption was positively correlated with body mass. Our findings do not support the MCA hypothesis. In fact, we found evidence of co-gradient variation in SMR, whereby insects from higher elevations and latitudes presented lower SMR. We discuss our findings in relation to life histories and ecology of each species. The novel physiological data presented will aid in understanding potential responses of these unusual species to changing climatic conditions in Aotearoa/New Zealand.

12.
J Insect Physiol ; 155: 104634, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599545

RESUMO

Mormon cricket eggs can remain diapausing in soil for multiple years without forming an embryo. I investigated whether embryonic development was dependent on the number of annual cycles since the egg was laid, duration of the summer period (forcing), or duration of the winter period (chilling). Male and female Mormon crickets collected in Arizona and Wyoming were paired in the lab. For each mating pair, sibling eggs were incubated 12 weeks, eggs with fully developed embryos removed, and the remaining eggs were split evenly among three treatments: a long cold period and a long warm period; a short cold period and a long warm period; and a short cold period and a short warm period, which respectively completed 2 annual cycles, 3 cycles, and 4 cycles in 60 calendar weeks. In each cycle over nine years, developed eggs and eggs that appeared inviable were counted and removed. For each mating pair, I used survival analyses to test for differences in 1) the number of annual cycles, 2) the warm period duration, and 3) the cold period duration required for the embryos to develop. For eight of 11 mating pairs, one of the three factors was not excluded as a determinant of the phenology of embryonic development. Duration of the warm period was not rejected in seven of 11 cases. Duration of the warm period required for 50 % of the eggs to develop ranged from 84 to 144 weeks. In one case from Arizona, the duration of the cold period was the only factor not rejected. Median chill time was 60 weeks, which is also more than one year. Despite this exception, I conclude that duration of the warm period is typically the factor that determines timing of embryonic development for Mormon crickets. For these two high elevation populations, median forcing or chilling exceeded one year.


Assuntos
Diapausa de Inseto , Gryllidae , Animais , Gryllidae/fisiologia , Gryllidae/embriologia , Feminino , Masculino , Arizona , Diapausa de Inseto/fisiologia , Estações do Ano , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Wyoming , Fatores de Tempo
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230444, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705172

RESUMO

Passive acoustic monitoring (PAM) is a powerful tool for studying ecosystems. However, its effective application in tropical environments, particularly for insects, poses distinct challenges. Neotropical katydids produce complex species-specific calls, spanning mere milliseconds to seconds and spread across broad audible and ultrasonic frequencies. However, subtle differences in inter-pulse intervals or central frequencies are often the only discriminatory traits. These extremities, coupled with low source levels and susceptibility to masking by ambient noise, challenge species identification in PAM recordings. This study aimed to develop a deep learning-based solution to automate the recognition of 31 katydid species of interest in a biodiverse Panamanian forest with over 80 katydid species. Besides the innate challenges, our efforts were also encumbered by a limited and imbalanced initial training dataset comprising domain-mismatched recordings. To overcome these, we applied rigorous data engineering, improving input variance through controlled playback re-recordings and by employing physics-based data augmentation techniques, and tuning signal-processing, model and training parameters to produce a custom well-fit solution. Methods developed here are incorporated into Koogu, an open-source Python-based toolbox for developing deep learning-based bioacoustic analysis solutions. The parametric implementations offer a valuable resource, enhancing the capabilities of PAM for studying insects in tropical ecosystems. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Acústica , Vocalização Animal , Animais , Panamá , Aprendizado Profundo , Especificidade da Espécie
14.
Mol Phylogenet Evol ; 69(3): 1120-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23891949

RESUMO

The phylogenetic relationships of Tettigoniidae (katydids and bush-crickets) were inferred using molecular sequence data. Six genes (18S rDNA, 28S rDNA, Cytochrome Oxidase II, Histone 3, Tubulin Alpha I, and Wingless) were sequenced for 135 ingroup taxa representing 16 of the 19 extant katydid subfamilies. Five subfamilies (Tettigoniinae, Pseudophyllinae, Mecopodinae, Meconematinae, and Listroscelidinae) were found to be paraphyletic under various tree reconstruction methods (Maximum Likelihood, Bayesisan Inference and Maximum Parsimony). Seven subfamilies - Conocephalinae, Hetrodinae, Hexacentrinae, Saginae, Phaneropterinae, Phyllophorinae, and Lipotactinae - were each recovered as well-supported monophyletic groups. We mapped the small and exposed thoracic auditory spiracle (a defining character of the subfamily Pseudophyllinae) and found it to be homoplasious. We also found the leaf-like wings of katydids have been derived independently in at least six lineages.


Assuntos
Evolução Biológica , Ortópteros/classificação , Filogenia , Asas de Animais/anatomia & histologia , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Marcadores Genéticos , Funções Verossimilhança , Modelos Genéticos , Ortópteros/anatomia & histologia , Ortópteros/genética , Análise de Sequência de DNA
15.
J Exp Biol ; 216(Pt 24): 4655-65, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24307713

RESUMO

We examined acoustic masking in a chirping katydid species of the Mecopoda elongata complex due to interference with a sympatric Mecopoda species where males produce continuous trills at high amplitudes. Frequency spectra of both calling songs range from 1 to 80 kHz; the chirper species has more energy in a narrow frequency band at 2 kHz and above 40 kHz. Behaviourally, chirper males successfully phase-locked their chirps to playbacks of conspecific chirps under masking conditions at signal-to-noise ratios (SNRs) of -8 dB. After the 2 kHz band in the chirp had been equalised to the level in the masking trill, the breakdown of phase-locked synchrony occurred at a SNR of +7 dB. The remarkable receiver performance is partially mirrored in the selective response of a first-order auditory interneuron (TN1) to conspecific chirps under these masking conditions. However, the selective response is only maintained for a stimulus including the 2 kHz component, although this frequency band has no influence on the unmasked TN1 response. Remarkably, the addition of masking noise at 65 dB sound pressure level (SPL) to threshold response levels of TN1 for pure tones of 2 kHz enhanced the sensitivity of the response by 10 dB. Thus, the spectral dissimilarity between masker and signal at a rather low frequency appears to be of crucial importance for the ability of the chirping species to communicate under strong masking by the trilling species. We discuss the possible properties underlying the cellular/synaptic mechanisms of the 'novelty detector'.


Assuntos
Gryllidae/fisiologia , Vocalização Animal , Acústica , Animais , Percepção Auditiva , Limiar Auditivo , Feminino , Masculino , Ruído , Razão Sinal-Ruído
16.
Insects ; 14(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37754712

RESUMO

Antagonistic species relationships such as parasitoid/host interactions lead to evolutionary arms races between species. Many parasitoids use more than one host species, requiring the parasitoid to adapt to multiple hosts, sometimes being the leader or the follower in the evolutionary back-and-forth between species. Thus, multi-species interactions are dynamic and show temporary evolutionary outcomes at a given point in time. We investigated the interactions of the multivoltine parasitoid fly Ormia lineifrons that uses different katydid hosts for each of its fly generations sequentially over time. We hypothesized that this fly is adapted to utilizing all hosts equally well for the population to persist. We quantified and compared the fly's development in each of the four Neoconocephalus hosts. Cumulative parasitism rates ranged between ~14% and 73%, but parasitoid load and development time did not differ across host species. Yet, pupal size was lowest for flies using N. velox as a host compared to N. triops and other host species. Successful development from pupa to adult fly differed across host species, with flies emerging from N. triops displaying a significantly lower development success rate than those emerging from N. velox and the other two hosts. Interestingly, N. triops and N. velox did not differ in size and were smaller than N. robustus and N. nebrascensis hosts. Thus, O. lineifrons utilized all hosts but displayed especially low ability to develop in N. triops, potentially due to differences in the nutritional status of the host. In the multi-species interactions between the fly and its hosts, the poor use of N. triops may currently affect the fly's evolution the most. Similarities and differences across host utilization and their evolutionary background are discussed.

17.
Insects ; 14(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999067

RESUMO

In addition to feeding on plants, Mormon crickets Anabrus simplex Haldeman, 1852 predate on invertebrates, including one another, which effectively drives their migration. Carnivory derives from lack of dietary protein, with Mormon crickets deprived of protein having less phenoloxidase (PO) available to combat foreign invaders, such as fungal pathogens. Because Mormon crickets commonly occur with grasshoppers that feed on the same plants, we investigated interactions between grasshoppers and Mormon crickets, and hypothesized that if Mormon crickets are predatory on grasshoppers, grasshopper abundance would influence the protein available to Mormon crickets and their immunity. In a field setting, we varied densities of Mormon crickets (0, 10, or 20 per cage) and grasshoppers Melanoplus borealis (0, 15, 30, or 45) in 68 1-m2 cages. After one month, we measured Mormon cricket dietary preferences and PO activity. As predicted, artificial diet consumption shifted away from protein as grasshopper density increased, and immunocompetence, as measured by PO activity, also increased with grasshopper availability. Although nitrogen availability in the vegetation decreased with increasing insect density, predation became an important source of protein for Mormon crickets that enhanced immunity. Grasshoppers can be an important source of dietary protein for Mormon crickets, with prey availability affecting Mormon cricket immunity to diseases.

18.
Insects ; 14(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132619

RESUMO

Habitat destruction and fragmentation are among the major current threats to global biodiversity. Fragmentation may also affect species with good dispersal abilities. We study the heath bushcricket Gampsocleis glabra, a specialist of steppe-like habitats across Europe that are highly fragmented, investigating if these isolated populations can be distinguished using population genomics and if there are any traces of admixture or dispersal among them. We try to answer these questions using genome-wide SNP data generated with ddRAD sequencing. We calculated F-statistics and visualized differentiation using STRUCTURE plots. While limited by the difficulty of sampling this threatened species, our results show that all populations except one that was represented by a singleton were clearly distinct, with pairwise FST values between 0.010 and 0.181. STRUCTURE indicated limited but visible admixture across most populations and probably also an exchange of individuals between populations of Germany and The Netherlands. We conclude that in G. glabra, a certain amount of gene flow has persisted, at least in the past, also among populations that are isolated today. We also detect a possibly more recent dispersal event between a population in The Netherlands and one in Germany, which may be human aided. We suggest that the conservation of larger populations should be maintained, that efforts should be taken to restore abandoned habitat, that the preservation even of small habitat fragments may be beneficial for the conservation of this species, and that these habitats should be regularly monitored for possible (re-)colonization.

19.
Mitochondrial DNA B Resour ; 7(3): 533-534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356790

RESUMO

The complete mitochondrial genome of a conehead katydid Euconocephalus pallidus was determined. The mitochondrial genome is 15,888 bp in size with an A + T content of 71.67%. It contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region. The order and orientation of these genes conform to the ancestral form of insects. Phylogenetic analysis supports a close relationship between E. pallidus and E. nasutus.

20.
Diversity (Basel) ; 14(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35369669

RESUMO

Many well-studied animal species use conspicuous, repetitive signals that attract both mates and predators. Orthopterans (crickets, katydids, and grasshoppers) are renowned for their acoustic signals. In Neotropical forests, however, many katydid species produce extremely short signals, totaling only a few seconds of sound per night, likely in response to predation by acoustically orienting predators. The rare signals of these katydid species raises the question of how they find conspecific mates in a structurally complex rainforest. While acoustic mechanisms, such as duetting, likely facilitate mate finding, we test the hypothesis that mate finding is further facilitated by colocalization on particular host plant species. DNA barcoding allows us to identify recently consumed plants from katydid stomach contents. We use DNA barcoding to test the prediction that katydids of the same species will have closely related plant species in their stomach. We do not find evidence for dietary specialization. Instead, katydids consumed a wide mix of plants within and across the flowering plants (27 species in 22 genera, 16 families, and 12 orders) with particular representation in the orders Fabales and Laurales. Some evidence indicates that katydids may gather on plants during a narrow window of rapid leaf out, but additional investigations are required to determine whether katydid mate finding is facilitated by gathering at transient food resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA