Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Neurosci ; 43(27): 5076-5091, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290938

RESUMO

The epileptic brain is distinguished by spontaneous seizures and interictal epileptiform discharges (IEDs). Basic patterns of mesoscale brain activity outside of seizures and IEDs are also frequently disrupted in the epileptic brain and likely influence disease symptoms, but are poorly understood. We aimed to quantify how interictal brain activity differs from that in healthy individuals, and identify what features of interictal activity influence seizure occurrence in a genetic mouse model of childhood epilepsy. Neural activity across the majority of the dorsal cortex was monitored with widefield Ca2+ imaging in mice of both sexes expressing a human Kcnt1 variant (Kcnt1m/m ) and wild-type controls (WT). Ca2+ signals during seizures and interictal periods were classified according to their spatiotemporal features. We identified 52 spontaneous seizures, which emerged and propagated within a consistent set of susceptible cortical areas, and were predicted by a concentration of total cortical activity within the emergence zone. Outside of seizures and IEDs, similar events were detected in Kcnt1m/m and WT mice, suggesting that the spatial structure of interictal activity is similar. However, the rate of events whose spatial profile overlapped with where seizures and IEDs emerged was increased, and the characteristic global intensity of cortical activity in individual Kcnt1m/m mice predicted their epileptic activity burden. This suggests that cortical areas with excessive interictal activity are vulnerable to seizures, but epilepsy is not an inevitable outcome. Global scaling of the intensity of cortical activity below levels found in the healthy brain may provide a natural mechanism of seizure protection.SIGNIFICANCE STATEMENT Defining the scope and structure of an epilepsy-causing gene variant's effects on mesoscale brain activity constitutes a major contribution to our understanding of how epileptic brains differ from healthy brains, and informs the development of precision epilepsy therapies. We provide a clear roadmap for measuring how severely brain activity deviates from normal, not only in pathologically active areas, but across large portions of the brain and outside of epileptic activity. This will indicate where and how activity needs to be modulated to holistically restore normal function. It also has the potential to reveal unintended off-target treatment effects and facilitate therapy optimization to deliver maximal benefit with minimal side-effect potential.


Assuntos
Epilepsia , Convulsões , Masculino , Feminino , Humanos , Animais , Camundongos , Convulsões/genética , Epilepsia/genética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos
2.
J Neurosci ; 43(15): 2665-2681, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36898835

RESUMO

The Slack channel (KCNT1, Slo2.2) is a sodium-activated and chloride-activated potassium channel that regulates heart rate and maintains the normal excitability of the nervous system. Despite intense interest in the sodium gating mechanism, a comprehensive investigation to identify the sodium-sensitive and chloride-sensitive sites has been missing. In the present study, we identified two potential sodium-binding sites in the C-terminal domain of the rat Slack channel by conducting electrophysical recordings and systematic mutagenesis of cytosolic acidic residues in the rat Slack channel C terminus. In particular, by taking advantage of the M335A mutant, which results in the opening of the Slack channel in the absence of cytosolic sodium, we found that among the 92 screened negatively charged amino acids, E373 mutants could completely remove sodium sensitivity of the Slack channel. In contrast, several other mutants showed dramatic decreases in sodium sensitivity but did not abolish it altogether. Furthermore, molecular dynamics (MD) simulations performed at the hundreds of nanoseconds timescale revealed one or two sodium ions at the E373 position or an acidic pocket composed of several negatively charged residues. Moreover, the MD simulations predicted possible chloride interaction sites. By screening predicted positively charged residues, we identified R379 as a chloride interaction site. Thus, we conclude that the E373 site and the D863/E865 pocket are two potential sodium-sensitive sites, while R379 is a chloride interaction site in the Slack channel.SIGNIFICANCE STATEMENT The research presented here identified two distinct sodium and one chloride interaction sites located in the intracellular C-terminal domain of the Slack (Slo2.2, KCNT1) channel. Identification of the sites responsible for the sodium and chloride activation of the Slack channel sets its gating property apart from other potassium channels in the BK channel family. This finding sets the stage for future functional and pharmacological studies of this channel.


Assuntos
Canais de Potássio Ativados por Sódio , Animais , Ratos , Cloretos/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo , Sódio/metabolismo
3.
Cardiol Young ; 34(3): 701-703, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38229505

RESUMO

KCNT1 mutations are associated with childhood epilepsy, developmental delay, and vascular malformations. We report a child with a likely pathogenic KCNT1 mutation (c.1885A>C, p.Lys629Glu) with recurrent pulmonary haemorrhage due to aortopulmonary collaterals successfully managed with coil embolisation followed by right upper lobectomy.


Assuntos
Prótese Vascular , Malformações Vasculares , Criança , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética
4.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931004

RESUMO

Potassium channels have recently emerged as suitable target for the treatment of epileptic diseases. Among potassium channels, KCNT1 channels are the most widely characterized as responsible for several epileptic and developmental encephalopathies. Nevertheless, the medicinal chemistry of KCNT1 blockers is underdeveloped so far. In the present review, we describe and analyse the papers addressing the issue of KCNT1 blockers' development and identification, also evidencing the pros and the cons of the scientific approaches therein described. After a short introduction describing the epileptic diseases and the structure-function of potassium channels, we provide an extensive overview of the chemotypes described so far as KCNT1 blockers, and the scientific approaches used for their identification.


Assuntos
Química Farmacêutica , Epilepsia , Bloqueadores dos Canais de Potássio , Humanos , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Química Farmacêutica/métodos , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Relação Estrutura-Atividade , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio Ativados por Sódio
5.
Molecules ; 29(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893312

RESUMO

Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.


Assuntos
Bloqueadores dos Canais de Potássio , Relação Estrutura-Atividade , Humanos , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Sódio , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Xantina/química , Xantina/farmacologia , Técnicas de Patch-Clamp , Células HEK293 , Estrutura Molecular , Xantinas/química , Xantinas/farmacologia
6.
Bioorg Med Chem ; 95: 117487, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37812884

RESUMO

Malignant migrating partial seizure of infancy (MMPSI) is a devastating and pharmacoresistant form of infantile epilepsy. MMPSI has been linked to multiple gain-of-function (GOF) mutations in the KCNT1 gene, which encodes for a potassium channel often referred to as SLACK. SLACK channels are sodium-activated potassium channels distributed throughout the central nervous system (CNS) and the periphery. The investigation described here aims to discover SLACK channel inhibitor tool compounds and profile their pharmacokinetic and pharmacodynamic properties. A SLACK channel inhibitor VU0531245 (VU245) was identified via a high-throughput screen (HTS) campaign. Structure-activity relationship (SAR) studies were conducted in five distinct regions of the hit VU245. VU245 analogs were evaluated for their ability to affect SLACK channel activity using a thallium flux assay in HEK-293 cells stably expressing wild-type (WT) human SLACK. Selected analogs were tested for metabolic stability in mouse liver microsomes and plasma-protein binding in mouse plasma. The same set of analogs was tested via thallium flux for activity versus human A934T SLACK and other structurally related potassium channels, including SLICK and Maxi-K. In addition, potencies for selected VU245 analogs were obtained using whole-cell electrophysiology (EP) assays in CHO cells stably expressing WT human SLACK through an automated patch clamp system. Results revealed that this scaffold tolerates structural changes in some regions, with some analogs demonstrating improved SLACK inhibitory activity, good selectivity against the other channels tested, and modest improvements in metabolic clearance. Analog VU0935685 represents a new, structurally distinct small-molecule inhibitor of SLACK channels that can serve as an in vitro tool for studying this target.


Assuntos
Canais de Potássio , Tálio , Animais , Cricetinae , Humanos , Camundongos , Cricetulus , Células HEK293 , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Ativados por Sódio/genética , Canais de Potássio Ativados por Sódio/metabolismo , Convulsões , Tálio/metabolismo , Oxidiazóis/química , Oxidiazóis/metabolismo
7.
Neurol Sci ; 44(4): 1201-1206, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36437393

RESUMO

KCNT1 has been known to encode a subunit of the tetrameric sodium activated potassium channel (KNa1.1). Pathogenic variants of KCNT1, especially gain-of-function (GOF) variants, are associated with multiple epileptic disorders which are often refractory to conventional anti-seizure medications and summarized as KCNT1-related epilepsy. Although the detailed pathogenic mechanisms of KCNT1-related epilepsy remain unknown, increasing studies attempt to find effective medications for those patients by utilizing quinidine to inhibit hyperexcitable KNa1.1. However, it has been shown that controversial outcomes among studies and partial success in some individuals may be due to multiple factors, such as poor blood-brain barrier (BBB) penetration, mutation-dependent manner, phenotype-genotype associations, and rational therapeutic schedule. In recent years, with higher resolution of KNa1.1 structure in different activation states and advanced synthetic techniques, it improves the process performance of therapy targeting at KNa1.1 channel to achieve more effective outcomes. Here, we systematically reviewed the study history of quinidine on KCNT1-related epilepsy and its corresponding therapeutic effects. Then, we analyzed and summarized the possible causes behind the different outcomes of the application of quinidine. Finally, we outlooked the recent advances in precision medicine treatment for KCNT1-related epilepsy.


Assuntos
Epilepsia , Quinidina , Humanos , Quinidina/uso terapêutico , Anticonvulsivantes/uso terapêutico , Canais de Potássio Ativados por Sódio/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Canais de Potássio/genética , Canais de Potássio/uso terapêutico , Mutação , Proteínas do Tecido Nervoso/genética
8.
J Pak Med Assoc ; 73(8): 1720-1722, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37697770

RESUMO

Pathological mutation of potassium channel subfamily T member 1 (KCNT1) gene causes an autosomal dominant disorder characterised by secondarily generalised seizures/migratory focal seizure, cyanosis, and dysmorphic features. We report the case of a five-month old male with pathological KCNT1 variant who presented with focal clonic seizures, Mongol spots, and grade two systolic murmur at the left lower sternal border and loud P2. The seizures were refractory to most anti-epileptic drugs but showed some response to Valproic acid. This case demonstrated that EIMFS is a grave infantile epileptic encephalopathy which is refractory to anti epileptic drugs and can present with a wide spectrum of neurogenic and cardiogenic symptoms.


Assuntos
Epilepsia , Convulsões , Lactente , Masculino , Humanos , Convulsões/etiologia , Ácido Valproico/uso terapêutico , Cianose , Canais de Potássio , Canais de Potássio Ativados por Sódio/genética , Proteínas do Tecido Nervoso
9.
Neurobiol Dis ; 168: 105713, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35346832

RESUMO

KCNT1 encodes the sodium-activated potassium channel KNa1.1, expressed preferentially in the frontal cortex, hippocampus, cerebellum, and brainstem. Pathogenic missense variants in KCNT1 are associated with intractable epilepsy, namely epilepsy of infancy with migrating focal seizures (EIMFS), and sleep-related hypermotor epilepsy (SHE). In vitro studies of pathogenic KCNT1 variants support predominantly a gain-of-function molecular mechanism, but how these variants behave in a neuron or ultimately drive formation of an epileptogenic circuit is an important and timely question. Using CRISPR/Cas9 gene editing, we introduced a gain-of-function variant into the endogenous mouse Kcnt1 gene. Compared to wild-type (WT) littermates, heterozygous and homozygous knock-in mice displayed greater seizure susceptibility to the chemoconvulsants kainate and pentylenetetrazole (PTZ), but not to flurothyl. Using acute slice electrophysiology in heterozygous and homozygous Kcnt1 knock-in and WT littermates, we demonstrated that CA1 hippocampal pyramidal neurons exhibit greater amplitude of miniature inhibitory postsynaptic currents in mutant mice with no difference in frequency, suggesting greater inhibitory tone associated with the Kcnt1 mutation. To address alterations in GABAergic signaling, we bred Kcnt1 knock-in mice to a parvalbumin-tdTomato reporter line, and found that parvalbumin-expressing (PV+) interneurons failed to fire repetitively with large amplitude current injections and were more prone to depolarization block. These alterations in firing can be recapitulated by direct application of the KNa1.1 channel activator loxapine in WT but are occluded in knock-in littermates, supporting a direct channel gain-of-function mechanism. Taken together, these results suggest that KNa1.1 gain-of-function dampens interneuron excitability to a greater extent than it impacts pyramidal neuron excitability, driving seizure susceptibility in a mouse model of KCNT1-associated epilepsy.


Assuntos
Epilepsia , Parvalbuminas , Animais , Mutação com Ganho de Função , Interneurônios/metabolismo , Camundongos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/genética , Canais de Potássio Ativados por Sódio , Convulsões/genética , Canais de Sódio/genética
10.
FASEB J ; 35(5): e21568, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817875

RESUMO

The neuronal Na+ -activated K+ channel Slack (aka Slo2.2, KNa 1.1, or Kcnt1) has been implicated in setting and maintaining the resting membrane potential and defining excitability and firing patterns, as well as in the generation of the slow afterhyperpolarization following bursts of action potentials. Slack activity increases significantly under conditions of high intracellular Na+ levels, suggesting this channel may exert important pathophysiological functions. To address these putative roles, we studied whether Slack K+ channels contribute to pathological changes and excitotoxic cell death caused by glutamatergic overstimulation of Ca2+ - and Na+ -permeable N-methyl-D-aspartic acid receptors (NMDAR). Slack-deficient (Slack KO) and wild-type (WT) mice were subjected to intrastriatal microinjections of the NMDAR agonist NMDA. NMDA-induced brain lesions were significantly increased in Slack KO vs WT mice, suggesting that the lack of Slack renders neurons particularly susceptible to excitotoxicity. Accordingly, excessive neuronal cell death was seen in Slack-deficient primary cerebellar granule cell (CGC) cultures exposed to glutamate and NMDA. Differences in neuronal survival between WT and Slack KO CGCs were largely abolished by the NMDAR antagonist MK-801, but not by NBQX, a potent and highly selective competitive antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors. Interestingly, NMDAR-evoked Ca2+ signals did not differ with regard to Slack genotype in CGCs. However, real-time monitoring of K+ following NMDAR activation revealed a significant contribution of this channel to the intracellular drop in K+ . Finally, TrkB and TrkC neurotrophin receptor transcript levels were elevated in NMDA-exposed Slack-proficient CGCs, suggesting a mechanism by which this K+ channel contributes to the activation of the extracellular-signal-regulated kinase (Erk) pathway and thereby to neuroprotection. Combined, our findings suggest that Slack-dependent K+ signals oppose the NMDAR-mediated excitotoxic neuronal injury by promoting pro-survival signaling via the BDNF/TrkB and Erk axis.


Assuntos
Potenciais de Ação , Encefalopatias/prevenção & controle , Morte Celular , N-Metilaspartato/toxicidade , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Canais de Potássio Ativados por Sódio/fisiologia , Animais , Encefalopatias/induzido quimicamente , Encefalopatias/metabolismo , Encefalopatias/patologia , Células Cultivadas , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Glutâmico/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais
11.
Br J Clin Pharmacol ; 88(12): 5096-5112, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35940594

RESUMO

AIMS: Despite numerous studies on quinidine therapies for epilepsies associated with KCNT1 gene mutations, there is no consensus on its clinical utility. Thus, we reviewed studies evaluating the efficacy and safety of quinidine in KCNT1-related epileptic disorders. METHODS: Electronic databases were queried for in vivo and in vitro studies on quinidine therapy in KCNT1-related epilepsies published on or before 1 May 2022. The evaluation of evidence was done as per the American Academy of Neurology's classification scheme. Identification of significant factors that possibly influenced therapeutic effects of quinidine were performed using χ2 tests. RESULTS: Twenty-seven studies containing 82 patient records were reviewed. Records of 80 patients with 33 KCNT1 mutations were analysed, of which 20 patients had gained ≥50% seizure reduction due to quinidine therapy. However, quinidine therapy often had different effects on patients with the same KCNT1 mutation. Age, genotypes of KCNT1 mutations, seizure types and brain MRI did not significantly influence the therapeutic effect of quinidine. Prolonged QTc was the most common among all adverse events with quinidine. Notably, results of in vitro quinidine tests did not correspond with in vivo tests. CONCLUSIONS: Therapeutic effects of quinidine on KCNT1-related epilepsies remained indefinite as contradictory results were detected in similar patients. Age, seizure types, genotypes of KCNT1 mutations and brain MRI did not influence the therapeutic effects of quinidine. Insensitivity to quinidine by a certain Kcnt1 genotype in molecular tests is predictive of its inefficacy in human populations of the respective mutation.


Assuntos
Epilepsia , Quinidina , Humanos , Quinidina/efeitos adversos , Canais de Potássio Ativados por Sódio/genética , Anticonvulsivantes/efeitos adversos , Proteínas do Tecido Nervoso , Epilepsia/tratamento farmacológico , Epilepsia/genética , Convulsões/tratamento farmacológico , Mutação
12.
Bioorg Med Chem Lett ; 76: 129013, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36184030

RESUMO

In this Letter we describe structure-activity relationship (SAR) studies conducted in five distinct regions of a new 2-amino-N-phenylacetamides series of Slack potassium channel inhibitors exemplified by recently disclosed high-throughput screening (HTS) hit VU0606170 (4). New analogs were screened in a thallium (Tl+) flux assay in HEK-293 cells stably expressing wild-type human (WT) Slack. Selected analogs were screened in Tl+ flux versus A934T Slack and other Slo family members Slick and Maxi-K and evaluated in whole-cell electrophysiology (EP) assays using an automated patch clamp system. Results revealed the series to have flat SAR with significant structural modifications resulting in a loss of Slack activity. More minor changes led to compounds with Slack activity and Slo family selectivity similar to the HTS hit.


Assuntos
Canais de Potássio , Tálio , Humanos , Células HEK293 , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio Ativados por Sódio , Relação Estrutura-Atividade
13.
Brain ; 144(12): 3635-3650, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34114611

RESUMO

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Assuntos
Epilepsia/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genótipo , Humanos , Lactente , Masculino , Mutação , Fenótipo , Adulto Jovem
14.
FASEB J ; 34(1): 1591-1601, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914597

RESUMO

The Slack (KCNT1) gene encodes sodium-activated potassium channels that are abundantly expressed in the central nervous system. Human mutations alter the function of Slack channels, resulting in epilepsy and intellectual disability. Most of the disease-causing mutations are located in the extended cytoplasmic C-terminus of Slack channels and result in increased Slack current. Previous experiments have shown that the C-terminus of Slack channels binds a number of cytoplasmic signaling proteins. One of these is Phactr1, an actin-binding protein that recruits protein phosphatase 1 (PP1) to certain phosphoprotein substrates. Using co-immunoprecipitation, we found that Phactr1 is required to link the channels to actin. Using patch clamp recordings, we found that co-expression of Phactr1 with wild-type Slack channels reduces the current amplitude but has no effect on Slack channels in which a conserved PKC phosphorylation site (S407) that regulates the current amplitude has been mutated. Furthermore, a Phactr1 mutant that disrupts the binding of PP1 but not that of actin fails to alter Slack currents. Our data suggest that Phactr1 regulates the Slack by linking PP1 to the channel. Targeting Slack-Phactr1 interactions may therefore be helpful in developing the novel therapies for brain disorders associated with the malfunction of Slack channels.


Assuntos
Canais de Potássio Ativados por Sódio/metabolismo , Proteína Fosfatase 1/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Potenciais da Membrana/fisiologia , Camundongos , Mutação/genética , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Ratos , Transdução de Sinais/fisiologia
15.
Adv Exp Med Biol ; 1349: 387-400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35138624

RESUMO

The KCNT1 gene encodes the sodium-activated potassium channel that is abundantly expressed in the central nervous system of mammalians and plays an important role in reducing neuronal excitability. Structurally, the KCNT1 channel is absent of voltage sensor but possesses a long C-terminus including RCK1 and RCK2domain, to which the intracellular sodium and chloride bind to activate the channel. Recent publications using electron cryo-microscopy (cryo-EM) revealed the open and closed structural characteristics of the KCNT1 channel and co-assembly of functional domains. The activation of the KCNT1 channel regulates various physiological processes including nociceptive behavior, itch, spatial learning. Meanwhile, malfunction of this channel causes important pathophysiological consequences, including Fragile X syndrome and a wide spectrum of seizure disorders. This review comprehensively describes the structure, expression patterns, physiological functions of the KCNT1 channel and emphasizes the channelopathy of gain-of-function KCNT1 mutations in epilepsy.


Assuntos
Canalopatias , Epilepsia , Animais , Epilepsia/tratamento farmacológico , Epilepsia/genética , Mutação , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Canais de Potássio Ativados por Sódio
16.
Epilepsia ; 61(4): 679-692, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32167590

RESUMO

OBJECTIVE: Through international collaboration, we evaluated the phenotypic aspects of a multiethnic cohort of KCNT1-related epilepsy and explored genotype-phenotype correlations associated with frequently encountered variants. METHODS: A cross-sectional analysis of children harboring pathogenic or likely pathogenic KCNT1 variants was completed. Children with one of the two more common recurrent KCNT1 variants were compared with the rest of the cohort for the presence of particular characteristics. RESULTS: Twenty-seven children (15 males, mean age = 40.8 months) were included. Seizure onset ranged from 1 day to 6 months, and half (48.1%) exhibited developmental plateauing upon onset. Two-thirds had epilepsy of infancy with migrating focal seizures (EIMFS), and focal tonic seizures were common (48.1%). The most frequent recurrent KCNT1 variants were c.2800G>A; p.Ala934Thr (n = 5) and c.862G>A; p.Gly288Ser (n = 4). De novo variants were found in 96% of tested parents (23/24). Sixty percent had abnormal magnetic resonance imaging (MRI) findings. Delayed myelination, thin corpus callosum, and brain atrophy were the most common. One child had gray-white matter interface indistinctness, suggesting a malformation of cortical development. Several antiepileptic drugs (mean = 7.4/patient) were tried, with no consistent response to any one agent. Eleven tried quinidine; 45% had marked (>50% seizure reduction) or some improvement (25%-50% seizure reduction). Seven used cannabidiol; 71% experienced marked or some improvement. Fourteen tried diet therapies; 57% had marked or some improvement. When comparing the recurrent variants to the rest of the cohort with respect to developmental trajectory, presence of EIMFS, >500 seizures/mo, abnormal MRI, and treatment response, there were no statistically significant differences. Four patients died (15%), none of sudden unexpected death in epilepsy. SIGNIFICANCE: Our cohort reinforces common aspects of this highly pleiotropic entity. EIMFS manifesting with refractory tonic seizures was the most common. Cannabidiol, diet therapy, and quinidine seem to offer the best chances of seizure reduction, although evidence-based practice is still unavailable.


Assuntos
Epilepsias Parciais/genética , Epilepsias Parciais/patologia , Epilepsias Parciais/terapia , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Anticonvulsivantes/uso terapêutico , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Dieta Cetogênica , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/patologia , Epilepsia Resistente a Medicamentos/terapia , Feminino , Estudos de Associação Genética , Humanos , Masculino , Quinidina , Estudos Retrospectivos
17.
Cardiol Young ; 30(12): 1935-1939, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32883383

RESUMO

We report a 10-month-old girl with KCNT1 (c1420C > T; p. Arg474Cys, R474C) mutation-associated epileptic encephalopathy, systemic-to-pulmonary artery "collateralopathy", and intermittent QTc prolongation. Spontaneous regression of systemic-to-pulmonary artery collateral-mediated left heart dilation was noted in this patient, a finding which was ominous as it heralded the onset of severe pulmonary hypertension. The structural and electrical phenotypic features of KCNT1 mutation-associated heart disease, including the novel findings noted in our patient, are discussed in detail.


Assuntos
Proteínas do Tecido Nervoso , Canais de Potássio , Feminino , Humanos , Lactente , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/genética , Canais de Potássio Ativados por Sódio , Artéria Pulmonar/diagnóstico por imagem
18.
Curr Ther Res Clin Exp ; 90: 106-108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31388363

RESUMO

Epilepsy of infancy with migrating focal seizures is a devastating pediatric neurologic disorder that often results in treatment-resistant seizure activity and developmental delay. The condition has been associated with mutations in the KCNT1 gene that cause a gain of function in neuronal sodium-activated potassium channels. Quinidine has been shown to reverse this gain of function and has recently been used to reduce seizure activity in patients with these mutations. We report the case of an infant with 2 KCNT1 mutations who experienced minor relief with quinidine and discuss the drug's important interaction with phenobarbital.

19.
Epilepsia ; 59(10): 1889-1898, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30182418

RESUMO

OBJECTIVE: To evaluate the clinical efficacy and safety of quinidine in patients with KCNT1-related epilepsy of infancy with migrating focal seizures (EIMFS) in the infantile period and to compare with the effect of quinidine on mutant channels in vitro. METHODS: We identified 4 patients with EIMFS with onset in the neonatal period, pathogenic variants in the KCNT1 gene, and lack of response to AEDs. Patients were prospectively enrolled, treated with quinidine, and monitored according to a predefined protocol. Electroclinical, neuroimaging, and genetic data were reviewed. Two patients had novel variants in the KCNT1 gene that were modeled in Xenopus oocytes with channel properties characterized using electrophysiology recordings. RESULTS: Three of four patients were treated with quinidine early in their disease course, prior to 6 months of age. No significant side effects were noted with quinidine therapy. In addition, there were no significant changes in electroencephalography (EEG)-confirmed seizure burden during therapy, and patients had near hourly seizures before, during, and after treatment. Two patients had previously reported gain-of-function mutations, which demonstrated sensitivity to high levels of quinidine in the oocyte assay. Two patients with novel variants, showed characteristic gain-of-function and were thus predicted to be pathogenic. Of interest, these variants were essentially insensitive to high levels of quinidine. SIGNIFICANCE: Patients had no reported benefit to quinidine therapy despite age at treatment initiation. Pharmacogenetic results in oocytes were consistent with clinical treatment failure in 2 patients, suggesting that single-dose pharmacologic assessment may be helpful in predicting which patients are exceedingly unlikely to achieve benefit with quinidine. In the 2 patients who had a lack of therapeutic benefit despite sensitivity to high concentrations of quinidine with in vitro oocyte assay, it is likely that the achievable exposure levels in the brain were too low to cause significant in vivo channel blockade.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Canal de Potássio Kv1.1/genética , Mutação/genética , Quinidina/uso terapêutico , Animais , Anticonvulsivantes/sangue , Pré-Escolar , Eletroencefalografia , Epilepsia/diagnóstico , Feminino , Seguimentos , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Mutagênese , Oocistos , Técnicas de Patch-Clamp , Farmacogenética , Quinidina/sangue , Transdução Genética , Resultado do Tratamento , Xenopus
20.
J Biol Chem ; 291(14): 7347-56, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26823461

RESUMO

Two members of the family of high conductance K(+)channels SLO1 and SLO2 are both activated by intracellular cations. However, SLO1 is activated by Ca(2+)and other divalent cations, while SLO2 (Slack or SLO2.2 from rat) is activated by Na(+) Curiously though, we found that SLO2.2 is inhibited by all divalent cations that activate SLO1, with Zn(2+)being the most effective inhibitor with an IC50of ∼8 µmin contrast to Mg(2+), the least effective, with an IC50of ∼ 1.5 mm Our results suggest that divalent cations are not SLO2 pore blockers, but rather inhibit channel activity by an allosteric modification of channel gating. By site-directed mutagenesis we show that a histidine residue (His-347) downstream of S6 reduces inhibition by divalent cations. An analogous His residue present in some CNG channels is an inhibitory cation binding site. To investigate whether inhibition by divalent cations is conserved in an invertebrate SLO2 channel we cloned the SLO2 channel fromDrosophila(dSLO2) and compared its properties to those of rat SLO2.2. We found that, like rat SLO2.2, dSLO2 was also activated by Na(+)and inhibited by divalent cations. Inhibition of SLO2 channels in mammals andDrosophilaby divalent cations that have second messenger functions may reflect the physiological regulation of these channels by one or more of these ions.


Assuntos
Cátions Bivalentes/farmacologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Magnésio/farmacologia , Zinco/farmacologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Ratos , Especificidade da Espécie , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA