RESUMO
Chronic obstructive pulmonary disease (COPD), which includes emphysema and chronic bronchitis, is now the third cause of death worldwide, and COVID-19 infection has been reported as an exacerbation factor of them. In this study, we report that the intratracheal administration of the keratan sulfate-based disaccharide L4 mitigates the symptoms of elastase-induced emphysema in a mouse model. To know the molecular mechanisms, we performed a functional analysis of a C-type lectin receptor, langerin, a molecule that binds L4. Using mouse BMDCs (bone marrow-derived dendritic cells) as langerin-expressing cells, we observed the downregulation of IL-6 and TNFa and the upregulation of IL-10 after incubation with L4. We also identified CapG (a macrophage-capping protein) as a possible molecule that binds langerin by immunoprecipitation combined with a mass spectrometry analysis. We identified a portion of the CapG that was localized in the nucleus and binds to the promoter region of IL-6 and the TNFa gene in BMDCs, suggesting that CapG suppresses the gene expression of IL-6 and TNFa as an inhibitory transcriptional factor. To examine the effects of L4 in vivo, we also generated langerin-knockout mice by means of genome editing technology. In an emphysema mouse model, the administration of L4 did not mitigate the symptoms of emphysema as well as the inflammatory state of the lung in the langerin-knockout mice. These data suggest that the anti-inflammatory effect of L4 through the langerin-CapG axis represents a potential therapeutic target for the treatment of emphysema and COPD.
Assuntos
Dissacarídeos , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Camundongos , Dissacarídeos/farmacologia , Modelos Animais de Doenças , Interleucina-6/genética , Sulfato de Queratano/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/genética , Enfisema Pulmonar/induzido quimicamente , Lectinas Tipo C/metabolismoRESUMO
Human sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed on subsets of immune cells. Siglec-8 is an immune inhibitory Siglec on eosinophils and mast cells, which are effectors in allergic disorders including eosinophilic esophagitis. Inhibition occurs when Siglec-8 is crosslinked by multivalent Siglec ligands in target tissues. Previously we discovered a high-affinity Siglec-8 sialoglycan ligand on human airways composed of terminally sialylated keratan sulfate chains carried on a single protein, DMBT1. Here we extend that approach to another allergic inflammatory target tissue, human esophagus. Lectin overlay histochemistry revealed that Siglec-8 ligands are expressed predominantly by esophageal submucosal glands, and are densely packed in submucosal ducts leading to the lumen. Expression is tissue-specific; esophageal glands express Siglec-8 ligand whereas nearby gastric glands do not. Extraction and resolution by gel electrophoresis revealed a single predominant human esophageal Siglec-8 ligand migrating at >2 MDa. Purification by size exclusion and affinity chromatography, followed by proteomic mass spectrometry, revealed the protein carrier to be MUC5B. Whereas all human esophageal submucosal cells express MUC5B, only a portion convert it to Siglec-8 ligand by adding terminally sialylated keratan sulfate chains. We refer to this as MUC5B S8L. Material from the esophageal lumen of live subjects revealed MUC5B S8L species ranging from ~1-4 MDa. We conclude that MUC5B in the human esophagus is a protein canvas on which Siglec-8 binding sialylated keratan sulfate chains are post-translationally added. These data expand understanding of Siglec-8 ligands and may help us understand their roles in allergic immune regulation.
Assuntos
Esôfago , Sulfato de Queratano , Lectinas , Mucina-5B , Humanos , Ligantes , Mucina-5B/metabolismo , Mucina-5B/genética , Lectinas/metabolismo , Lectinas/química , Sulfato de Queratano/metabolismo , Sulfato de Queratano/química , Esôfago/metabolismo , Antígenos CD/metabolismo , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos BRESUMO
The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.
Assuntos
Glicosaminoglicanos , Sulfato de Queratano , Animais , Sulfato de Queratano/química , Proteoglicanas/metabolismo , Mamíferos/metabolismoRESUMO
Keratan sulfate glycosaminoglycan is composed of repeating N-acetyllactosamine (LacNAc) disaccharide units consisting of galactose (Gal) and N-acetylglucosamine (GlcNAc), both often 6-O-sulfated. Sulfate contents of keratan sulfate are heterogeneous depending upon the origins. In this study, keratan sulfate is classified as either highly sulfated (in which both GlcNAc and Gal residues are 6-O-sulfated) or low-sulfated (in which only GlcNAc residues are 6-O-sulfated). It is reported that highly sulfated keratan sulfate detected by the 5D4 monoclonal antibody is preferentially expressed in normal epithelial cells lining the female genital tract and in their neoplastic counterparts; however, expression of low-sulfated keratan sulfate in either has not been characterized. In the present study, we generated the 294-1B1 monoclonal antibody, which selectively recognizes low-sulfated keratan sulfate, and performed precise glycan analysis of sulfated glycans expressed on human serous ovarian carcinoma OVCAR-3 cells. We found that OVCAR-3 cells do not express highly sulfated keratan sulfate but rather express low-sulfated form, which was heterogeneous in 294-1B1 reactivity. Comparison of mass spectrometry spectra of sulfated glycans in 294-1B1-positive versus -negative OVCAR-3 cells indicated that the 294-1B1 epitope is likely at least 2, and possibly 3 or more, tandem GlcNAc-6-O-sulfated LacNAc units. Then, using the 294-1B1 antibody, we performed quantitative immunohistochemical analysis of 40 specimens from patients with ovarian cancer, consisting of 10 each of serous, endometrioid, clear cell, and mucinous carcinomas, and found that among them low-sulfated keratan sulfate was widely expressed in all but mucinous ovarian carcinoma.
Assuntos
Adenocarcinoma Mucinoso , Neoplasias Ovarianas , Humanos , Feminino , Sulfato de Queratano/química , Sulfatos , Apoptose , Linhagem Celular Tumoral , Polissacarídeos , Anticorpos MonoclonaisRESUMO
We recently showed that 6-sulfo sialyl N-acetyllactosamine (LacNAc) in O-linked glycans recognized by the CL40 antibody is abundant in the pleural mesothelium under physiological conditions and that these glycans undergo complementary synthesis by GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5) in mice. GlcNAc6ST3 is essential for the synthesis of R-10G-positive keratan sulfate (KS) in the brain. The predicted minimum epitope of the R-10G antibody is a dimeric asialo 6-sulfo LacNAc. Whether R-10G-reactive KS/sulfated LacNAc oligosaccharides are also present in the pleural mesothelium was unknown. The question of which GlcNAc6STs are responsible for R-10G-reactive glycans was an additional issue to be clarified. Here, we show that R-10G-reactive glycans are as abundant in the pulmonary pleura as CL40-reactive glycans and that GlcNAc6ST3 is only partially involved in the synthesis of these pleural R-10G glycans, unlike in the adult brain. Unexpectedly, GlcNAc6ST2 is essential for the synthesis of R-10G-positive KS/sulfated LacNAc oligosaccharides in the lung pleura. The type of GlcNAc6ST and the magnitude of its contribution to KS glycan synthesis varied among tissues in vivo. We show that GlcNAc6ST2 is required and sufficient for R-10G-reactive KS synthesis in the lung pleura. Interestingly, R-10G immunoreactivity in KSGal6ST (encoded by Chst1) and C6ST1 (encoded by Chst3) double-deficient mouse lungs was markedly increased. MUC16, a mucin molecule, was shown to be a candidate carrier protein for pleural R-10G-reactive glycans. These results suggest that R-10G-reactive KS/sulfated LacNAc oligosaccharides may play a role in mesothelial cell proliferation and differentiation. Further elucidation of the functions of sulfated glycans synthesized by GlcNAc6ST2 and GlcNAc6ST3, such as R-10G and CL40 glycans, in pathological conditions may lead to a better understanding of the underlying mechanisms of the physiopathology of the lung mesothelium.
Assuntos
Amino Açúcares , Sulfato de Queratano , Pleura , Animais , Camundongos , Sulfato de Queratano/metabolismo , Pleura/metabolismo , Oligossacarídeos , Polissacarídeos/metabolismo , Epitélio/metabolismoRESUMO
Alzheimer's disease (AD) is characterized by accumulation of misfolded proteins. Genetic studies implicate microglia, brain-resident phagocytic immune cells, in AD pathogenesis. As positive effectors, microglia clear toxic proteins, whereas as negative effectors, they release proinflammatory mediators. An imbalance of these functions contributes to AD progression. Polymorphisms of human CD33, an inhibitory microglial receptor, are linked to AD susceptibility; higher CD33 expression correlates with increased AD risk. CD33, also called Siglec-3, is a member of the sialic acid-binding immunoglobulin-type lectin (Siglec) family of immune regulatory receptors. Siglec-mediated inhibition is initiated by binding to complementary sialoglycan ligands in the tissue environment. Here, we identify a single sialoglycoprotein in human cerebral cortex that binds CD33 as well as Siglec-8, the most abundant Siglec on human microglia. The ligand, which we term receptor protein tyrosine phosphatase zeta (RPTPζ)S3L, is composed of sialylated keratan sulfate chains carried on a minor isoform/glycoform of RPTPζ (phosphacan) and is found in the extracellular milieu of the human brain parenchyma. Brains from human AD donors had twofold higher levels of RPTPζS3L than age-matched control donors, raising the possibility that RPTPζS3L overexpression limits misfolded protein clearance contributing to AD pathology. Mice express the same structure, a sialylated keratan sulfate RPTPζ isoform, that binds mouse Siglec-F and crossreacts with human CD33 and Siglec-8. Brains from mice engineered to lack RPTPζ, the sialyltransferase St3gal4, or the keratan sulfate sulfotransferase Chst1 lacked Siglec binding, establishing the ligand structure. The unique CD33 and Siglec-8 ligand, RPTPζS3L, may contribute to AD progression.
Assuntos
Doença de Alzheimer , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Sulfato de Queratano/metabolismo , Ligantes , Camundongos , Microglia/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismoRESUMO
A sulfated polysaccharide (AG) was extracted and isolated from the sea cucumber H. fuscopunctata, consisting of GlcNAc, GalNAc, Gal, Fuc and lacking any uronic acid residues. Importantly, several chemical depolymerization methods were used to elucidate the structure of the AG through a bottom-up strategy. A highly sulfated galactose (oAG-1) and two disaccharides labeled with 2,5-anhydro-D-mannose (oAG-2, oAG-3) were obtained from the deaminative depolymerized product along with the structures of the disaccharide derivatives (oAG-4~oAG-6) identified from the free radical depolymerized product, suggesting that the repeating building blocks in a natural AG should comprise the disaccharide ß-D-GalS-1,4-D-GlcNAc6S. The possible disaccharide side chains (bAG-1) were obtained with mild acid hydrolysis. Thus, a natural AG may consist of a keratan sulfate-like (KS-like) glycosaminoglycan with diverse modifications, including the sulfation types of the Gal residue and the possible disaccharide branches α-D-GalNAc4S6S-1,2-α/ß-L-Fuc3S linked to the KS-like chain. Additionally, the anticoagulant activities of the AG and its depolymerized products (dAG1-9) were evaluated in vitro using normal human plasma. The AG could prolong activated partial thromboplastin time (APTT) in a dose-dependent manner, and the activity potency was positively related to the chain length. The AG and dAG1-dAG3 could prolong thrombin time (TT), while they had little effect on prothrombin time (PT). The results indicate that the AG could inhibit the intrinsic and common coagulation pathways.
Assuntos
Holothuria , Pepinos-do-Mar , Animais , Humanos , Sulfato de Queratano/química , Holothuria/química , Pepinos-do-Mar/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Dissacarídeos , Anticoagulantes/químicaRESUMO
Recombinant adeno-associated virus (rAAV) vectors are one of the leading tools for the delivery of therapeutic genes in human gene therapy applications. For a successful transfer of their payload, the AAV vectors have to circumvent potential preexisting neutralizing host antibodies and bind to the receptors of the target cells. Both of these aspects have not been structurally analyzed for AAVrh.10. Here, cryo-electron microscopy and three-dimensional image reconstruction were used to map the binding site of sulfated N-acetyllactosamine (LacNAc; previously shown to bind AAVrh.10) and a series of four monoclonal antibodies (MAbs). LacNAc was found to bind to a pocket located on the side of the 3-fold capsid protrusion that is mostly conserved to AAV9 and equivalent to its galactose-binding site. As a result, AAVrh.10 was also shown to be able to bind to cell surface glycans with terminal galactose. For the antigenic characterization, it was observed that several anti-AAV8 MAbs cross-react with AAVrh.10. The binding sites of these antibodies were mapped to the 3-fold capsid protrusions. Based on these observations, the AAVrh.10 capsid surface was engineered to create variant capsids that escape these antibodies while maintaining infectivity. IMPORTANCE Gene therapy vectors based on adeno-associated virus rhesus isolate 10 (AAVrh.10) have been used in several clinical trials to treat monogenetic diseases. However, compared to other AAV serotypes little is known about receptor binding and antigenicity of the AAVrh.10 capsid. Particularly, preexisting neutralizing antibodies against capsids are an important challenge that can hamper treatment efficiency. This study addresses both topics and identifies critical regions of the AAVrh.10 capsid for receptor and antibody binding. The insights gained were utilized to generate AAVrh.10 variants capable of evading known neutralizing antibodies. The findings of this study could further aid the utilization of AAVrh.10 vectors in clinical trials and help the approval of the subsequent biologics.
Assuntos
Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Capsídeo/química , Dependovirus/metabolismo , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Células CHO , Capsídeo/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Cricetulus , Microscopia Crioeletrônica , Dependovirus/genética , Dependovirus/imunologia , Terapia Genética , Células HEK293 , Humanos , Imunoglobulina G , Modelos Moleculares , Polissacarídeos , Ligação ProteicaRESUMO
BACKGROUND: The immunoinhibitory receptor Siglec-8 on the surface of human eosinophils and mast cells binds to sialic acid-containing ligands in the local milieu, resulting in eosinophil apoptosis, inhibition of mast cell degranulation, and suppression of inflammation. Siglec-8 ligands were found on postmortem human trachea and bronchi and on upper airways in 2 compartments, cartilage and submucosal glands, but they were surprisingly absent from the epithelium. We hypothesized that Siglec-8 ligands in submucosal glands and ducts are normally transported to the airway mucus layer, which is lost during tissue preparation. OBJECTIVE: Our aim was to identify the major Siglec-8 sialoglycan ligand on the mucus layer of human airways. METHODS: Human upper airway mucus layer proteins were recovered during presurgical nasal lavage of patients at a sinus clinic. Proteins were resolved by gel electrophoresis and blotted, and Siglec-8 ligands detected. Ligands were purified by size exclusion and affinity chromatography, identified by proteomic mass spectrometry, and validated by electrophoretic and histochemical colocalization. The affinity of Siglec-8 binding to purified human airway ligand was determined by inhibition of glycan binding. RESULTS: A Siglec-8-ligand with a molecular weight of approximately 1000 kDa was found in all patient nasal lavage samples. Purification and identification revealed deleted in malignant brain tumors 1 (DMBT1) (also known by the aliases GP340 and SALSA), a large glycoprotein with multiple O-glycosylation repeats. Immunoblotting, immunohistochemistry, and enzyme treatments confirmed that Siglec-8 ligand on the human airway mucus layer is an isoform of DMBT1 carrying O-linked sialylated keratan sulfate chains (DMBT1S8). Quantitative inhibition revealed that DMBT1S8 has picomolar affinity for Siglec-8. CONCLUSION: A distinct DMBT1 isoform, DMBT1S8, is the major high-avidity ligand for Siglec-8 on human airways.
Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação a DNA/imunologia , Lectinas/imunologia , Proteínas Supressoras de Tumor/imunologia , Brônquios/imunologia , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação a DNA/química , Eosinófilos/imunologia , Humanos , Ligantes , Mastócitos/imunologia , Líquido da Lavagem Nasal/imunologia , Proteoglicanas/imunologia , Traqueia/imunologia , Proteínas Supressoras de Tumor/químicaRESUMO
Understanding the basic elements of the airway mucosal surfaces and how they form a functional barrier is essential in understanding disease initiation, progression, pathogenesis and ultimately treating chronic lung diseases. Using primary airway epithelial cell cultures, atomic force microscopy (AFM), multiangle light scattering and quartz crystal micro balance with dissipation monitoring techniques, here we report that the membrane bound mucins (MBMs) found in the periciliary layer (PCL) of the airway surface are densely decorated with keratan sulfate (KS). AFM and immunoblotting show that the KS sidechains can be removed enzymatically with keratanase II (KII) treatment, and the antibody accessibility for B2729 (MUC1), MUCH4 (MUC4) and OC125 (MUC16) was substantially enhanced. Light scattering analysis confirmed that KII treatment removed ~40% of the mass from the mucin fractions. Surface binding experiments indicated that MBMs were able to pack into a tighter conformation following KS removal, suggesting that negatively charged KS sidechains play a role in mucin-mucin repulsion and contribute to "space filling" in the PCL. We also observed that soluble filtrate from the common airway pathogen Pseudomonas aeruginosa is capable of stripping KS from MBMs. Altogether, our findings indicate that KS glycosylation of MBMs may play an important role in the integrity of the airway mucosal barrier and its compromise in disease.
Assuntos
Sulfato de Queratano , Mucinas , Glicosilação , Sulfato de Queratano/metabolismo , Pulmão/metabolismo , Mucinas/metabolismoRESUMO
To date, a number of studies have reported the heterogeneity of activated microglia. However, there is increasing evidence suggests that ramified, so-called resting, microglia may also be heterogeneous, and they may play diverse roles in normal brain homeostasis. Here, we found that both 5D4 keratan sulfate epitope-positive (5D4+ ) and 5D4-negative (5D4- ) microglia coexisted in the hippocampus of normal rats, while all microglia were negative for the 5D4 epitope in the hippocampus of normal mice. We thus aimed to determine the potential heterogeneity of microglia related to the 5D4 epitope in the normal rat hippocampus. The optical disector analysis showed that the densities of 5D4+ microglia were higher in the stratum oriens of the CA3 region than in other layers and regions. Although both 5D4+ and 5D4- microglia exhibited a ramified morphology, the three-dimensional reconstruction analysis showed that the node numbers, end numbers, and complexity of processes were higher in 5D4+ than in 5D4- microglia. The linear discriminant analysis showed that 5D4+ and 5D4- microglia can be classified into distinct morphometric subtypes. The ratios of contact between synaptic boutons and microglial processes were higher in 5D4+ than in 5D4- microglia. The gene expressions of pro-inflammatory cytokine interleukin-1ß and purinergic receptor P2Y12 (P2Y12 R) were higher in 5D4+ than in 5D4- microglia. Together, these results indicate that at least two different subtypes of ramified microglia coexist in the normal rat hippocampus and also suggest that 5D4+ microglia may represent a unique subtype associated with synapses.
Assuntos
Sulfato de Queratano , Microglia , Animais , Encéfalo , Hipocampo , Camundongos , Ratos , SinapsesRESUMO
Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.
Assuntos
Materiais Biomiméticos/uso terapêutico , Sulfato de Queratano/química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Antígenos de Superfície/fisiologia , Materiais Biomiméticos/química , Fucose/metabolismo , Fucosiltransferases/fisiologia , Glicosilação , Humanos , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/fisiologia , Lectinas de Ligação a Manose/antagonistas & inibidores , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/fisiologia , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular/métodos , Polissacarídeos/química , Polissacarídeos/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismoRESUMO
Glycan antigens recognized by monoclonal antibodies have served as stem cell markers. To understand regulation of their biosynthesis and their roles in stem cell behavior precise assignments are required. We have applied state-of-the-art glycan array technologies to compare the glycans bound by five antibodies that recognize carbohydrates on human stem cells. These are: FC10.2, TRA-1-60, TRA-1-81, anti-i and R-10G. Microarray analyses with a panel of sequence-defined glycans corroborate that FC10.2, TRA-1-60, TRA-1-81 recognize the type 1-(Galß-3GlcNAc)-terminating backbone sequence, Galß-3GlcNAcß-3Galß-4GlcNAcß-3Galß-4GlcNAc, and anti-i, the type 2-(Galß-4GlcNAc) analog, Galß-4GlcNAcß-3Galß-4GlcNAcß-3Galß-4GlcNAc, and we determine substituents they can accommodate. They differ from R-10G, which requires sulfate. By Beam Search approach, starting with an antigen-positive keratan sulfate polysaccharide, followed by targeted iterative microarray analyses of glycan populations released with keratanases and mass spectrometric monitoring, R-10G is assigned as a mono-sulfated type 2 chain with 6-sulfation at the penultimate N-acetylglucosamine, Galß-4GlcNAc(6S)ß-3Galß-4GlcNAcß-3Galß-4GlcNAc. Microarray analyses using newly synthesized glycans corroborate the assignment of this unique determinant raising questions regarding involvement as a ligand in the stem cell niche.
Assuntos
Anticorpos Monoclonais/metabolismo , Biomarcadores/análise , Células-Tronco Embrionárias/metabolismo , Polissacarídeos/análise , Antígenos de Superfície/metabolismo , Sequência de Carboidratos , Células Cultivadas , Células-Tronco Embrionárias/citologia , Humanos , Espectrometria de Massas , Polissacarídeos/imunologia , Análise Serial de Proteínas , Proteoglicanas/metabolismoRESUMO
BACKGROUND: Glycosaminoglycans (GAGs) are negatively charged long linear (highly sulfated) polysaccharides consisting of repeating disaccharide units that are expressed on the surfaces of all nucleated cells. The expression of GAGs is required for embryogenesis, regulation of cell growth and proliferation, maintenance of tissue hydration, and interactions of the cells via receptors. Mucopolysaccharidoses (MPS) are caused by deficiency of specific lysosomal enzymes that result in the accumulation of GAGs in multiple tissues leading to organ dysfunction. Therefore, GAGs are important biomarkers for MPS. Without any treatment, patients with severe forms of MPS die within the first two decades of life. SCOPE OF REVIEW: Accurate measurement of GAGs is important to understand the diagnosis and pathogenesis of MPS and to monitor therapeutic efficacy before, during, and after treatment of the disease. This review covers various qualitative and quantitative methods for measurement of GAGs, including dye specific, thin layer chromatography (TLC), capillary electrophoresis, high-performance liquid chromatography (HPLC), liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography, ELISA, and automated high-throughput mass spectrometry. Major conclusion: There are several methods for GAG detection however, specific GAG detection in the various biological systems requires rapid, sensitive, specific, and cost-effective methods such as LC-MS/MS. GENERAL SIGNIFICANCE: This review will describe different methods for GAG detection and analysis, including their advantages and limitation.
Assuntos
Biomarcadores/metabolismo , Glicosaminoglicanos/metabolismo , Mucopolissacaridoses/diagnóstico , Humanos , Mucopolissacaridoses/metabolismoRESUMO
Chondroitin sulfate is extracted from animal cartilaginous tissues and is commercialized as active principle against osteoarthritis. Its biological activity depends on its purity grade and could be altered by the presence of other glycosaminoglycans like keratan sulfate that could be contemporarily extracted from animal tissues or like hyaluronic acid that, instead, is added on purpose in food supplements. Although numerous methods are reported in literature for quality control analyses of chondroitin sulfate, few of them are able to detect other glycosaminoglycans. In this paper, for the first time, a new high-performance CE method was set up to quantify the chondroitin sulfate, the eventual keratan sulfate, and hyaluronic acid as intact chains: five chondroitin sulfate standards and 13 animal origin samples or food supplements from six different suppliers were analyzed. The new method was able to determine keratan sulfate similarly to a previously reported high-performance anion-exchange chromatography method, but in addition it showed the advantage to determine also the hyaluronic acid as never reported before.
Assuntos
Sulfatos de Condroitina/química , Suplementos Nutricionais/análise , Eletroforese Capilar/métodos , Ácido Hialurônico/análise , Sulfato de Queratano/análise , Animais , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos TestesRESUMO
ß1,4-galactosyltransferase 4 (B4GalT4) is one of seven B4GalTs that belong to CAZy glycosyltransferase family 7 and transfer galactose to growing sugar moieties of proteins, glycolipids, glycosaminoglycans as well as single sugar for lactose synthesis. Herein, we identify two asparagine-linked glycosylation sites in B4GalT4. We found that mutation of one site (Asn220) had greater impact on enzymatic activity while another (Asn335) on Golgi localization and presence of N-glycans at both sites is required for production of stable and enzymatically active protein and its secretion. Additionally, we confirm B4GalT4 involvement in synthesis of keratan sulfate (KS) by generating A375 B4GalT4 knock-out cell lines that show drastic decrease in the amount of KS proteoglycans and no significant structural changes in N- and O-glycans. We show that KS decrease in A375 cells deficient in B4GalT4 activity can be rescued by overproduction of either partially or fully glycosylated B4GalT4 but not with N-glycan-depleted B4GalT4 version.
Assuntos
Galactosiltransferases/genética , Glicosaminoglicanos/genética , Complexo de Golgi/genética , Polissacarídeos/genética , Linhagem Celular , Galactose/genética , Galactosiltransferases/química , Técnicas de Inativação de Genes , Glicosaminoglicanos/química , Glicosilação , Humanos , Sulfato de Queratano/química , Polissacarídeos/metabolismoRESUMO
Mucopolysaccharidosis type IVA (MPS IVA, or Morquio syndrome type A) is an inherited metabolic lysosomal disease caused by the deficiency of the N-acetylglucosamine-6-sulfate sulfatase enzyme. The deficiency of this enzyme accumulates the specific glycosaminoglycans (GAG), keratan sulfate, and chondroitin-6-sulfate mainly in bone, cartilage, and its extracellular matrix. GAG accumulation in these lesions leads to unique skeletal dysplasia in MPS IVA patients. Clinical, radiographic, and biochemical tests are needed to complete the diagnosis of MPS IVA since some clinical characteristics in MPS IVA are overlapped with other disorders. Early and accurate diagnosis is vital to optimizing patient management, which provides a better quality of life and prolonged life-time in MPS IVA patients. Currently, enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are available for patients with MPS IVA. However, ERT and HSCT do not have enough impact on bone and cartilage lesions in patients with MPS IVA. Penetrating the deficient enzyme into an avascular lesion remains an unmet challenge, and several innovative therapies are under development in a preclinical study. In this review article, we comprehensively describe the current diagnosis, treatment, and management for MPS IVA. We also illustrate developing future therapies focused on the improvement of skeletal dysplasia in MPS IVA.
Assuntos
Gerenciamento Clínico , Mucopolissacaridose IV/diagnóstico , Mucopolissacaridose IV/terapia , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Sulfatos de Condroitina/metabolismo , Diagnóstico Precoce , Terapia de Reposição de Enzimas/métodos , Terapia Genética/métodos , Glicosaminoglicanos/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Sulfato de Queratano/metabolismo , Lisossomos/metabolismo , Mucopolissacaridose III/genética , Mucopolissacaridose III/metabolismo , Mucopolissacaridose IV/genética , Mucopolissacaridose IV/patologia , Nanomedicina , Osteocondrodisplasias , Qualidade de VidaRESUMO
Morquio B disease (MBD) is an autosomal recessive GLB1-gene-related lysosomal storage disease, presenting with a peculiar type of dysostosis multiplex which is also observed in GALNS-related Morquio A disease. MBD may present as pure skeletal phenotype (pure MBD) or in combination with the neuronopathic manifestations seen in type 2 (juvenile) or type 3 (late onset) GM1 gangliosidosis (MBD plus). The main skeletal features are progressive growth impairment, kyphoscoliosis, coxa/genua valga, joint laxity, platyspondyly and odontoid hypoplasia. The main neuronopathic features are dystonia, ataxia, and intellectual/developmental/speech delay. Spinal cord compression occurs as a complication of spinal dysostosis. Chronic pain is reported, along with mobility issues and challenges with daily living and self-care activities, as the most common health concern. The most commonly reported orthopedic surgeries are hip and knee replacements. Keratan sulphate-derived oligosaccharides are characteristic biomarkers. Residual ß-galactosidase activities measured against synthetic substrates do not correlate with the phenotype. W273 L and T500A are the most frequently observed GLB1 variants in MBD, W273L being invariably associated with pure MBD. Cytokines play a role in joint destruction and pain, providing a promising treatment target. In the future, patients may benefit from small molecule therapies, and gene and enzyme replacement therapies, which are currently being developed for GM1 gangliosidosis.
Assuntos
Mucopolissacaridose IV/diagnóstico , Mucopolissacaridose IV/terapia , Biomarcadores , Citocinas/metabolismo , Diagnóstico Diferencial , Suscetibilidade a Doenças , Gangliosidose GM1/diagnóstico , Gangliosidose GM1/genética , Gangliosidose GM1/terapia , Humanos , Mucopolissacaridose IV/etiologia , Mutação , Fenótipo , beta-Galactosidase/genéticaRESUMO
Compared to the other classes of glycosaminoglycans (GAGs), that is, chondroitin/dermatan sulfate, heparin/heparan sulfate and hyaluronan, keratan sulfate (KS), have the least known of its interactive properties. In the human body, the cornea and the brain are the two most abundant tissue sources of KS. Embryonic KS is synthesized as a linear poly-N-acetyllactosamine chain of d-galactose-GlcNAc repeat disaccharides which become progressively sulfated with development, sulfation of GlcNAc is more predominant than galactose. KS contains multi-sulfated high-charge density, monosulfated and non-sulfated poly-N-acetyllactosamine regions and thus is a heterogeneous molecule in terms of chain length and charge distribution. A recent proteomics study on corneal KS demonstrated its interactivity with members of the Slit-Robbo and Ephrin-Ephrin receptor families and proteins which regulate Rho GTPase signaling and actin polymerization/depolymerization in neural development and differentiation. KS decorates a number of peripheral nervous system/CNS proteoglycan (PG) core proteins. The astrocyte KS-PG abakan defines functional margins of the brain and is up-regulated following trauma. The chondroitin sulfate/KS PG aggrecan forms perineuronal nets which are dynamic neuroprotective structures with anti-oxidant properties and roles in neural differentiation, development and synaptic plasticity. Brain phosphacan a chondroitin sulfate, KS, HNK-1 PG have roles in neural development and repair. The intracellular microtubule and synaptic vesicle KS-PGs MAP1B and SV2 have roles in metabolite transport, storage, and export of neurotransmitters and cytoskeletal assembly. MAP1B has binding sites for tubulin and actin through which it promotes cytoskeletal development in growth cones and is highly expressed during neurite extension. The interactive capability of KS with neuroregulatory ligands indicate varied roles for KS-PGs in development and regenerative neural processes.
Assuntos
Sulfato de Queratano/metabolismo , Neurônios/metabolismo , Proteoglicanas/metabolismo , Animais , HumanosRESUMO
Glycosaminoglycans (GAG) from the velvet antlers of Sika deer (Cervus nippon) at the different growing stages (Fukurozuno, Anshi, and Santajo) of bred and wild deer were isolated and their concentrations and sulfation patterns were analyzed. GAG were digested with chondroitinase ABC, ACI, heparinase-I and -III, and keratanase-II into the corresponding repeating disaccharides of chondroitin sulfate (CS), dermatan sulfate (DS), hyaluronan, heparan sulfate (HS), and keratan sulfate. Cartilaginous tissues contained CS-DS at high concentrations with an almost equal ratio of 4- and 6-sulfates, while 4-sulfate-type CS-DS predominantly occupied ossified tissues, but at low concentrations. High O- and N-sulfation degrees of HS correspond to high ossification. Dynamic quantitative changes in CS-DS and compositional changes in CS-DS and HS were closely associated with the mineralization of deer antlers.