Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37430785

RESUMO

Compressed imaging reconstruction technology can reconstruct high-resolution images with a small number of observations by applying the theory of block compressed sensing to traditional optical imaging systems, and the reconstruction algorithm mainly determines its reconstruction accuracy. In this work, we design a reconstruction algorithm based on block compressed sensing with a conjugate gradient smoothed l0 norm termed BCS-CGSL0. The algorithm is divided into two parts. The first part, CGSL0, optimizes the SL0 algorithm by constructing a new inverse triangular fraction function to approximate the l0 norm and uses the modified conjugate gradient method to solve the optimization problem. The second part combines the BCS-SPL method under the framework of block compressed sensing to remove the block effect. Research shows that the algorithm can reduce the block effect while improving the accuracy and efficiency of reconstruction. Simulation results also verify that the BCS-CGSL0 algorithm has significant advantages in reconstruction accuracy and efficiency.

2.
Sensors (Basel) ; 21(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199078

RESUMO

An enhanced smoothed l0-norm algorithm for the passive phased array system, which uses the covariance matrix of the received signal, is proposed in this paper. The SL0 (smoothed l0-norm) algorithm is a fast compressive-sensing-based DOA (direction-of-arrival) estimation algorithm that uses a single snapshot from the received signal. In the conventional SL0 algorithm, there are limitations in the resolution and the DOA estimation performance, since a single sample is used. If multiple snapshots are used, the conventional SL0 algorithm can improve performance in terms of the DOA estimation. In this paper, a covariance-fitting-based SL0 algorithm is proposed to further reduce the number of optimization variables when using multiple snapshots of the received signal. A cost function and a new null-space projection term of the sparse recovery for the proposed scheme are presented. In order to verify the performance of the proposed algorithm, we present the simulation results and the experimental results based on the measured data.

3.
IEEE Trans Instrum Meas ; 70: 4503012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582003

RESUMO

Methods to recover high-quality computed tomography (CT) images in low-dose cases will be of great benefit. To reach this goal, sparse-data subsampling is one of the common strategies to reduce radiation dose, which is attracting interest among the researchers in the CT community. Since analytic image reconstruction algorithms may lead to severe image artifacts, the iterative algorithms have been developed for reconstructing images from sparsely sampled projection data. In this study, we first develop a tensor gradient L0-norm minimization (TGLM) for low-dose CT imaging. Then, the TGLM model is optimized by using the split-Bregman method. The Coronavirus Disease 2019 (COVID-19) has been sweeping the globe, and CT imaging has been deployed for detection and assessing the severity of the disease. Finally, we first apply our proposed TGLM method for COVID-19 to achieve low-dose scan by incorporating the 3-D spatial information. Two COVID-19 patients (64 years old female and 56 years old man) were scanned by the [Formula: see text]CT 528 system, and the acquired projections were retrieved to validate and evaluate the performance of the TGLM.

4.
NMR Biomed ; 32(5): e4067, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30811722

RESUMO

Quantitative susceptibility mapping (QSM) is a meaningful MRI technique owing to its unique relation to actual physical tissue magnetic properties. The reconstruction of QSM is usually decomposed into three sub-problems, which are solved independently. However, this decomposition does not conform to the causes of the problems, and may cause discontinuity of parameters and error accumulation. In this paper, a fast reconstruction method named fast TFI based on total field inversion was proposed. It can accelerate the total field inversion by using a specially selected preconditioner and advanced solution of the weighted L0 regularization. Due to the employment of an effective model, the proposed method can efficiently reconstruct the QSM of brains with lesions, where other methods may encounter problems. Experimental results from simulation and in vivo data verified that the new method has better reconstruction accuracy, faster convergence ability and excellent robustness, which may promote clinical application of QSM.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Gadolínio/química , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imagens de Fantasmas
5.
Sensors (Basel) ; 18(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304858

RESUMO

In the reconstruction of sparse signals in compressed sensing, the reconstruction algorithm is required to reconstruct the sparsest form of signal. In order to minimize the objective function, minimal norm algorithm and greedy pursuit algorithm are most commonly used. The minimum L1 norm algorithm has very high reconstruction accuracy, but this convex optimization algorithm cannot get the sparsest signal like the minimum L0 norm algorithm. However, because the L0 norm method is a non-convex problem, it is difficult to get the global optimal solution and the amount of calculation required is huge. In this paper, a new algorithm is proposed to approximate the smooth L0 norm from the approximate L2 norm. First we set up an approximation function model of the sparse term, then the minimum value of the objective function is solved by the gradient projection, and the weight of the function model of the sparse term in the objective function is adjusted adaptively by the reconstruction error value to reconstruct the sparse signal more accurately. Compared with the pseudo inverse of L2 norm and the L1 norm algorithm, this new algorithm has a lower reconstruction error in one-dimensional sparse signal reconstruction. In simulation experiments of two-dimensional image signal reconstruction, the new algorithm has shorter image reconstruction time and higher image reconstruction accuracy compared with the usually used greedy algorithm and the minimum norm algorithm.

6.
Sensors (Basel) ; 18(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518076

RESUMO

Compressed sensing (CS) theory has attracted widespread attention in recent years and has been widely used in signal and image processing, such as underdetermined blind source separation (UBSS), magnetic resonance imaging (MRI), etc. As the main link of CS, the goal of sparse signal reconstruction is how to recover accurately and effectively the original signal from an underdetermined linear system of equations (ULSE). For this problem, we propose a new algorithm called the weighted regularized smoothed L 0 -norm minimization algorithm (WReSL0). Under the framework of this algorithm, we have done three things: (1) proposed a new smoothed function called the compound inverse proportional function (CIPF); (2) proposed a new weighted function; and (3) a new regularization form is derived and constructed. In this algorithm, the weighted function and the new smoothed function are combined as the sparsity-promoting object, and a new regularization form is derived and constructed to enhance de-noising performance. Performance simulation experiments on both the real signal and real images show that the proposed WReSL0 algorithm outperforms other popular approaches, such as SL0, BPDN, NSL0, and L p -RLSand achieves better performances when it is used for UBSS.

7.
J Xray Sci Technol ; 26(2): 241-261, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29036878

RESUMO

For cone-beam computed tomography (CBCT), transversal shifts of the rotation center exist inevitably, which will result in geometric artifacts in CT images. In this work, we propose a novel geometric calibration method for CBCT, which can also be used in micro-CT. The symmetry property of the sinogram is used for the first calibration, and then L0-norm of the gradient image from the reconstructed image is used as the cost function to be minimized for the second calibration. An iterative search method is adopted to pursue the local minimum of the L0-norm minimization problem. The transversal shift value is updated with affirmatory step size within a search range determined by the first calibration. In addition, graphic processing unit (GPU)-based FDK algorithm and acceleration techniques are designed to accelerate the calibration process of the presented new method. In simulation experiments, the mean absolute difference (MAD) and the standard deviation (SD) of the transversal shift value were less than 0.2 pixels between the noise-free and noisy projection images, which indicated highly accurate calibration applying the new calibration method. In real data experiments, the smaller entropies of the corrected images also indicated that higher resolution image was acquired using the corrected projection data and the textures were well protected. Study results also support the feasibility of applying the proposed method to other imaging modalities.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Abdome/diagnóstico por imagem , Algoritmos , Artefatos , Calibragem , Humanos , Modelos Biológicos , Imagens de Fantasmas
8.
Sensors (Basel) ; 17(5)2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481309

RESUMO

Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.

9.
Micron ; 124: 102709, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31280005

RESUMO

The degradation of optical microscopic imaging is space-variant, and how to fast restore optical degraded image remains a special problem. Based on point spread function (PSF) estimation under each field of view (FOV), a L0 gradient-constrained image restoration method is proposed to solve optical degradation in microscopic imaging. Firstly, the whole scene is segmented into several different regions according to different FOV. The PSFs for each region are estimated from modulation transfer function (MTF) measured in advance. Secondly, a penalty function is designed using L0 gradient constraint to deblur the degraded images of each sub-FOV. Finally, a weighted stitching approach is used to stitch the restored images of multiple FOV (m-FOV). Experimental results indicate that the m-FOV analysis could well solve the problem of space-variant degradation. Compared with the other methods, both subjective and objective evaluation results prove that the L0 norm idea could rapidly and effectively restore the degraded image. The approach could be well applied to a real product.

10.
Materials (Basel) ; 12(8)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991650

RESUMO

In this paper, we propose a fast sparse recovery algorithm based on the approximate l0 norm (FAL0), which is helpful in improving the practicability of the compressed sensing theory. We adopt a simple function that is continuous and differentiable to approximate the l0 norm. With the aim of minimizing the l0 norm, we derive a sparse recovery algorithm using the modified Newton method. In addition, we neglect the zero elements in the process of computing, which greatly reduces the amount of computation. In a computer simulation experiment, we test the image denoising and signal recovery performance of the different sparse recovery algorithms. The results show that the convergence rate of this method is faster, and it achieves nearly the same accuracy as other algorithms, improving the signal recovery efficiency under the same conditions.

11.
ISA Trans ; 76: 88-96, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29548679

RESUMO

Locating a pre-given number of key nodes that are connected to external control sources so as to minimize the cost of controlling a directed network x(t)=Ax(t)+Bu(t), known as the minimum cost control problem, is of critical importance. Considering a network consisting of N nodes with M external control sources, the state of art techniques employ iterative searching to determine the input matrix B that characterizes how nodes are connected to external control sources, in a matrix space RN×M. The nodes having M largest values of a defined importance index are selected as key nodes. However, such techniques may suffer from large performance penalty in some networks due to the diversity of real-life networks. To address this outstanding issue, we propose an iterative method, termed "L0-norm constraint based projected gradient method" (LPGM). We probabilistically search the input matrix in each iteration by restricting its L0 norm as a fixed value M, which implies that each control source is always only connected to a single key node during the whole searching process. Simulation results show that the solution always efficiently approaches a suboptimal key node set in a few iterations. These results provide a new point of view regarding the key nodes selection in the minimum cost control of directed networks.

12.
Artigo em Inglês | MEDLINE | ID: mdl-26150784

RESUMO

The impact of learning and long-term memory storage on synaptic connectivity is not completely understood. In this study, we examine the effects of associative learning on synaptic connectivity in adult cortical circuits by hypothesizing that these circuits function in a steady-state, in which the memory capacity of a circuit is maximal and learning must be accompanied by forgetting. Steady-state circuits should be characterized by unique connectivity features. To uncover such features we developed a biologically constrained, exactly solvable model of associative memory storage. The model is applicable to networks of multiple excitatory and inhibitory neuron classes and can account for homeostatic constraints on the number and the overall weight of functional connections received by each neuron. The results show that in spite of a large number of neuron classes, functional connections between potentially connected cells are realized with less than 50% probability if the presynaptic cell is excitatory and generally a much greater probability if it is inhibitory. We also find that constraining the overall weight of presynaptic connections leads to Gaussian connection weight distributions that are truncated at zero. In contrast, constraining the total number of functional presynaptic connections leads to non-Gaussian distributions, in which weak connections are absent. These theoretical predictions are compared with a large dataset of published experimental studies reporting amplitudes of unitary postsynaptic potentials and probabilities of connections between various classes of excitatory and inhibitory neurons in the cerebellum, neocortex, and hippocampus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA