Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(18): e2221040120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098071

RESUMO

Wound healing through reepithelialization of gaps is of profound importance to the medical community. One critical mechanism identified by researchers for closing non-cell-adhesive gaps is the accumulation of actin cables around concave edges and the resulting purse-string constriction. However, the studies to date have not separated the gap-edge curvature effect from the gap size effect. Here, we fabricate micropatterned hydrogel substrates with long, straight, and wavy non-cell-adhesive stripes of different gap widths to investigate the stripe edge curvature and stripe width effects on the reepithelialization of Madin-Darby canine kidney (MDCK) cells. Our results show that MDCK cell reepithelization is closely regulated by the gap geometry and may occur through different pathways. In addition to purse-string contraction, we identify gap bridging either via cell protrusion or by lamellipodium extension as critical cellular and molecular mechanisms for wavy gap closure. Cell migration in the direction perpendicular to wound front, sufficiently small gap size to allow bridging, and sufficiently high negative curvature at cell bridges for actin cable constriction are necessary/sufficient conditions for gap closure. Our experiments demonstrate that straight stripes rarely induce cell migration perpendicular to wound front, but wavy stripes do; cell protrusion and lamellipodia extension can help establish bridges over gaps of about five times the cell size, but not significantly beyond. Such discoveries deepen our understanding of mechanobiology of cell responses to curvature and help guide development of biophysical strategies for tissue repair, plastic surgery, and better wound management.


Assuntos
Actinas , Cicatrização , Animais , Cães , Actinas/fisiologia , Células Madin Darby de Rim Canino , Movimento Celular/fisiologia , Cicatrização/fisiologia
2.
Stem Cells ; 42(7): 607-622, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717908

RESUMO

Cationic liposome-mediated delivery of drugs, DNA, or RNA plays a pivotal role in small molecule therapy, gene editing, and immunization. However, our current knowledge regarding the cellular structures that facilitate this process remains limited. Here, we used human pluripotent stem cells (hPSCs), which form compact colonies consisting of dynamically active cells at the periphery and epithelial-like cells at the core. We discovered that cells at the colony edges selectively got transfected by cationic liposomes through actin-related protein 2/3 (Arp2/3) dependent dynamic lamellipodia, which is augmented by myosin II inhibition. Conversely, cells at the core establish tight junctions at their apical surfaces, impeding liposomal access to the basal lamellipodia and thereby inhibiting transfection. In contrast, liposomes incorporating mannosylated lipids are internalized throughout the entire colony via receptor-mediated endocytosis. These findings contribute a novel mechanistic insight into enhancing therapeutic delivery via liposomes, particularly in cell types characterized by dynamic lamellipodia, such as immune cells or those comprising the epithelial layer.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Lipossomos , Pseudópodes , Lipossomos/metabolismo , Humanos , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Pseudópodes/metabolismo , Pseudópodes/efeitos dos fármacos , DNA/metabolismo , Transfecção , Endocitose/efeitos dos fármacos
3.
Curr Issues Mol Biol ; 45(10): 8126-8137, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37886956

RESUMO

This study investigated the effects of silibinin, derived from milk thistle (Silybum marianum), on lipopolysaccharide (LPS)-induced morphological changes in mouse macrophages. Silibinin was treated at various doses and time points to assess its effects on macrophage activation, including morphological changes and phagocytosis. Silibinin effectively inhibited LPS-induced pseudopodia formation and size increase, while unstimulated cells remained round. Silibinin's impact on phagocytosis was dose- and time-dependent, showing a decrease. We explored its mechanism of action on kinases using a MAPK array. Among the three MAPK family members tested, silibinin had a limited effect on JNK and p38 but significantly inhibited ERK1/2 and related RSK1/2. Silibinin also inhibited MKK6, AKT3, MSK2, p70S6K, and GSK-3ß. These findings highlight silibinin's potent inhibitory effects on phagocytosis and morphological changes in macrophages. We suggest its potential as an anti-inflammatory agent due to its ability to target key inflammatory pathways involving ERK1/2 and related kinases. Overall, this study demonstrates the promising therapeutic properties of silibinin in modulating macrophage function and inflammation.

4.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34060614

RESUMO

The dynamic control of the actin cytoskeleton is a key aspect of essentially all animal cell movements. Experiments in single migrating cells and in vitro systems have provided an exceptionally deep understanding of actin dynamics. However, we still know relatively little of how these systems are tuned in cell-type-specific ways, for example in the context of collective cell movements that sculpt the early embryo. Here, we provide an analysis of the actin-severing and depolymerization machinery during vertebrate gastrulation, with a focus on Twinfilin1 (Twf1) in Xenopus. We find that Twf1 is essential for convergent extension, and loss of Twf1 results in a disruption of lamellipodial dynamics and polarity. Moreover, Twf1 loss results in a failure to assemble polarized cytoplasmic actin cables, which are essential for convergent extension. These data provide an in vivo complement to our more-extensive understanding of Twf1 action in vitro and provide new links between the core machinery of actin regulation and the specialized cell behaviors of embryonic morphogenesis.


Assuntos
Actinas , Gastrulação , Citoesqueleto de Actina , Actinas/genética , Animais , Pseudópodes , Xenopus laevis
5.
J Cell Sci ; 134(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722978

RESUMO

The mechanisms underlying the cellular response to extracellular matrices (ECMs) that consist of multiple adhesive ligands are still poorly understood. Here, we address this topic by monitoring specific cellular responses to two different extracellular adhesion molecules - the main integrin ligand fibronectin and galectin-8, a lectin that binds ß-galactoside residues  - as well as to mixtures of the two proteins. Compared with cell spreading on fibronectin, cell spreading on galectin-8-coated substrates resulted in increased projected cell area, more-pronounced extension of filopodia and, yet, the inability to form focal adhesions and stress fibers. These differences can be partially reversed by experimental manipulations of small G-proteins of the Rho family and their downstream targets, such as formins, the Arp2/3 complex and Rho kinase. We also show that the physical adhesion of cells to galectin-8 was stronger than adhesion to fibronectin. Notably, galectin-8 and fibronectin differently regulate cell spreading and focal adhesion formation, yet act synergistically to upregulate the number and length of filopodia. The physiological significance of the coherent cellular response to a molecularly complex matrix is discussed. This article has an associated First Person interview with the first author of the paper.


Assuntos
Adesivos , Fibronectinas , Adesão Celular , Galectinas , Pseudópodes
6.
J Cell Sci ; 134(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33298514

RESUMO

Cells can adopt both mesenchymal and amoeboid modes of migration through membrane protrusive activities, namely formation of lamellipodia and blebbing. How the molecular players control the transition between lamellipodia and blebs is yet to be explored. Here, we show that addition of the ROCK inhibitor Y27632 or low doses of blebbistatin, an inhibitor of non-muscle myosin II (NMII) ATPase activity and filament partitioning, induces blebbing to lamellipodia conversion (BLC), whereas addition of low doses of ML7, an inhibitor of myosin light chain kinase (MLCK), induces lamellipodia to blebbing conversion (LBC) in human MDA-MB-231 cells. Similarly, siRNA-mediated knockdown of ROCK and MLCK induces BLC and LBC, respectively. Interestingly, both blebs and lamellipodia membrane protrusions are able to maintain the ratio of phosphorylated to unphosphorylated regulatory light chain at cortices when MLCK and ROCK, respectively, are inhibited either pharmacologically or genetically, suggesting that MLCK and ROCK activities are interlinked in BLC and LBC. Such BLCs and LBCs are also inducible in other cell lines, including MCF7 and MCF10A. These studies reveal that the relative activity of ROCK and MLCK, which controls both the ATPase activity and filament-forming property of NMII, is a determining factor in whether a cell exhibits blebbing or lamellipodia.


Assuntos
Pseudópodes , Quinases Associadas a rho , Humanos , Cadeias Leves de Miosina/metabolismo , Miosina Tipo II , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação , Pseudópodes/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
7.
J Cell Sci ; 134(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34730182

RESUMO

The WAVE regulatory complex (WRC) is the main activator of the Arp2/3 complex, promoting lamellipodial protrusions in migrating cells. The WRC is basally inactive but can be activated by Rac1 and phospholipids, and through phosphorylation. However, the in vivo relevance of the phosphorylation of WAVE proteins remains largely unknown. Here, we identified casein kinase I alpha (CK1α) as a regulator of WAVE, thereby controlling cell shape and cell motility in Drosophila macrophages. CK1α binds and phosphorylates WAVE in vitro. Phosphorylation of WAVE by CK1α appears not to be required for activation but, rather, regulates its stability. Pharmacologic inhibition of CK1α promotes ubiquitin-dependent degradation of WAVE. Consistently, loss of Ck1α but not ck2 function phenocopies the depletion of WAVE. Phosphorylation-deficient mutations in the CK1α consensus sequences within the VCA domain of WAVE can neither rescue mutant lethality nor lamellipodium defects. By contrast, phosphomimetic mutations rescue all cellular and developmental defects. Finally, RNAi-mediated suppression of 26S proteasome or E3 ligase complexes substantially rescues lamellipodia defects in CK1α-depleted macrophages. Therefore, we conclude that basal phosphorylation of WAVE by CK1α protects it from premature ubiquitin-dependent degradation, thus promoting WAVE function in vivo. This article has an associated First Person interview with the first author of the paper.


Assuntos
Caseína Quinase Ialfa , Caseína Quinase Ialfa/genética , Caseína Quinase Ialfa/metabolismo , Forma Celular , Humanos , Imunidade , Fosforilação , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
8.
Mol Biol Rep ; 50(9): 7557-7569, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37507586

RESUMO

BACKGROUND: Osteoclasts are multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage lineage. During osteoclast differentiation, Rho GTPases are involved in various processes, including cell migration, adhesion, and polarity. However, the role of Rho-regulatory molecules in the regulation of osteoclast differentiation remains unclear. In this study, among these genes, we focused on active breakpoint cluster region-related (Abr) protein that is a multifunctional regulator of Rho GTPases. METHODS AND RESULTS: We examined using knockdown and overexpression experiments in RANKL-stimulated RAW-D macrophages whether Abr regulates osteoclast differentiation and cell morphology. We observed an increase in Abr expression during osteoclast differentiation and identified expression of a variant of the Abr gene in osteoclasts. Knockdown of Abr suppressed osteoclast differentiation and resorption. Abr knockdown markedly inhibited the expression of osteoclast markers, such as Nfatc1, c-fos, Src, and Ctsk in osteoclasts. Conversely, overexpression of Abr enhanced the formation of multinucleated osteoclasts, bone resorption activity, and osteoclast marker gene expression. Moreover, Abr overexpression accelerated lamellipodia formation and induced the formation of well-developed actin in osteoclasts. Importantly, the Abr protein interacted with poly(ADP-ribose) glycohydrolase (PARG) and Rho GTPases, including RhoA, Rac1/2/3, and Cdc42 in osteoclasts. CONCLUSIONS: Taken together, these results indicate that Abr modulates osteoclastogenesis by enhancing lamellipodia formation via its interaction with PARG.


Assuntos
Osteogênese , Pseudópodes , Diferenciação Celular/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Pseudópodes/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
9.
Cell Mol Life Sci ; 79(2): 88, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35067832

RESUMO

Junctional adhesion molecule (JAM)-A is a cell adhesion receptor localized at epithelial cell-cell contacts with enrichment at the tight junctions. Its role during cell-cell contact formation and epithelial barrier formation has intensively been studied. In contrast, its role during collective cell migration is largely unexplored. Here, we show that JAM-A regulates collective cell migration of polarized epithelial cells. Depletion of JAM-A in MDCK cells enhances the motility of singly migrating cells but reduces cell motility of cells embedded in a collective by impairing the dynamics of cryptic lamellipodia formation. This activity of JAM-A is observed in cells grown on laminin and collagen-I but not on fibronectin or vitronectin. Accordingly, we find that JAM-A exists in a complex with the laminin- and collagen-I-binding α3ß1 integrin. We also find that JAM-A interacts with tetraspanins CD151 and CD9, which both interact with α3ß1 integrin and regulate α3ß1 integrin activity in different contexts. Mapping experiments indicate that JAM-A associates with α3ß1 integrin and tetraspanins CD151 and CD9 through its extracellular domain. Similar to depletion of JAM-A, depletion of either α3ß1 integrin or tetraspanins CD151 and CD9 in MDCK cells slows down collective cell migration. Our findings suggest that JAM-A exists with α3ß1 integrin and tetraspanins CD151 and CD9 in a functional complex to regulate collective cell migration of polarized epithelial cells.


Assuntos
Moléculas de Adesão Celular/metabolismo , Integrina alfa3beta1/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 29/metabolismo , Animais , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Cães , Doxorrubicina/farmacologia , Humanos , Molécula A de Adesão Juncional/antagonistas & inibidores , Molécula A de Adesão Juncional/genética , Células Madin Darby de Rim Canino , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo
10.
Dev Biol ; 469: 125-134, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096063

RESUMO

Collective cell migration is a process where cohorts of cells exhibit coordinated migratory behavior. During individual and collective cellular migration, cells must extend protrusions to interact with the extracellular environment, sense chemotactic cues, and act as points of attachment. The mechanisms and regulators of protrusive behavior have been widely studied in individually migrating cells; however, how this behavior is regulated throughout collectives is not well understood. To address this, we used the zebrafish posterior lateral line primordium (pLLP) as a model. The pLLP is a cluster of ~150 â€‹cells that migrates along the zebrafish trunk, depositing groups of cells that will become sensory organs. To define protrusive behavior, we performed mosaic analysis to sparsely label pLLP cells with a transgene marking filamentous actin. This approach revealed an abundance of brush-like protrusions throughout the pLLP that orient in the direction of migration. Formation of these protrusions depends on the Arp2/3 complex, a regulator of dendritic actin. This argues that these brush-like protrusions are an in vivo example of lamellipodia. Mosaic analysis demonstrated that these lamellipodia-like protrusions are located in a close proximity to the overlying skin. Immunostaining revealed an abundance of focal adhesion complexes surrounding the pLLP. Disruption of these complexes specifically in pLLP cells led to impaired pLLP migration. Finally, we show that Erk signaling, a known regulator of focal adhesions, is required for proper formation of lamellipodia-like protrusions and pLLP migration. Altogether, our results suggest a model where the coordinated dynamics of lamellipodia-like protrusions, making contact with either the overlying skin or the extracellular matrix through focal adhesions, promotes migration of pLLP cells.


Assuntos
Movimento Celular , Adesões Focais/fisiologia , Pseudópodes/fisiologia , Peixe-Zebra/embriologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/análise , Animais , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Pseudópodes/enzimologia , Pseudópodes/metabolismo , Peixe-Zebra/fisiologia
11.
J Biol Chem ; 296: 100136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33268376

RESUMO

To migrate, cells assume a polarized morphology, extending forward with a leading edge with their trailing edge retracting back toward the cell body. Both cell extension and retraction critically depend on the organization and dynamics of the actin cytoskeleton, and the small, monomeric GTPases Rac and Rho are important regulators of actin. Activation of Rac induces actin polymerization and cell extension, whereas activation of Rho enhances acto-myosin II contractility and cell retraction. To coordinate migration, these processes must be carefully regulated. The myosin Myo9b, a Rho GTPase-activating protein (GAP), negatively regulates Rho activity and deletion of Myo9b in leukocytes impairs cell migration through increased Rho activity. However, it is not known whether cell motility is regulated by global or local inhibition of Rho activity by Myo9b. Here, we addressed this question by using Myo9b-deficient macrophage-like cells that expressed different recombinant Myo9b constructs. We found that Myo9b accumulates in lamellipodial extensions generated by Rac-induced actin polymerization as a function of its motor activity. Deletion of Myo9b in HL-60-derived macrophages altered cell morphology and impaired cell migration. Reintroduction of Myo9b or Myo9b motor and GAP mutants revealed that local GAP activity rescues cell morphology and migration. In summary, Rac activation leads to actin polymerization and recruitment of Myo9b, which locally inhibits Rho activity to enhance directional cell migration.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Miosinas/metabolismo , Pseudópodes/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Proteínas Ativadoras de GTPase/genética , Humanos , Miosinas/genética
12.
J Cell Sci ; 133(15)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32591485

RESUMO

The affinity of T-cell receptors (TCRs) for major histocompatibility complex molecules (MHCs) presenting cognate antigens likely determines whether T cells initiate immune responses, or not. There exist few measurements of two-dimensional (2D) TCR-MHC interactions, and the effect of auxiliary proteins on binding is unexplored. Here, Jurkat T-cells expressing the MHC molecule HLA-DQ8-glia-α1 and the ligand of an adhesion protein (rat CD2) were allowed to bind supported lipid bilayers (SLBs) presenting fluorescently labelled L3-12 TCR and rat CD2, allowing measurements of binding unconfounded by cell signaling effects or co-receptor binding. The 2D Kd for L3-12 TCR binding to HLA-DQ8-glia-α1, of 14±5 molecules/µm2 (mean±s.d.), was only marginally influenced by including CD2 up to ∼200 bound molecules/µm2 but higher CD2 densities reduced the affinity up to 1.9-fold. Cell-SLB contact size increased steadily with ligand density without affecting binding for contacts at up to ∼20% of total cell area, but beyond this lamellipodia appeared, giving an apparent increase in bound receptors of up to 50%. Our findings show how parameters other than the specific protein-protein interaction can influence binding behavior at cell-cell contacts.


Assuntos
Complexo Principal de Histocompatibilidade , Receptores de Antígenos de Linfócitos T , Animais , Antígenos , Complexo Principal de Histocompatibilidade/genética , Peptídeos , Ligação Proteica , Ratos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
13.
Exp Parasitol ; 236-237: 108245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283169

RESUMO

Acanthamoeba castellanii is the etiological agent of granulomatous amebic encephalitis, amebic keratitis, and skin lesions. In vitro and in vivo studies have demonstrated that Acanthamoeba trophozoites induce contact-dependent, and contact-independent pathogenic mechanisms. We have explored the potential role neuroactive substances may have in the migration of Acanthamoeba castellanii trophozoites using Transwell permeable supports in the presence of physiological concentrations of dopamine, glutamate, serotonin, or taurine diluted in PBS. Quantitation of migrated amoebae was carried out in scanning electron micrographs of the upper and under compartments sides of the chamber membranes. Our results showed that at 2 h of interaction, a statistically significant larger proportion of A. castellanii trophozoites migrated through the chamber membranes when neurotransmitters were placed in the lower compartments of the chambers compared to control. This migration effect was more evident under the presence of glutamate and taurine on the three surfaces (upper/lower membrane and bottom compartment) when the percentage of migrated trophozoites was analyzed. Scanning electron microscopy of trophozoites revealed that glutamate and taurine induced the formation of large adhesion lamellas and phagocytic stomas. These observations suggest that certain neuroactive substances could stimulate the migration of A. castellanii trophozoites in the central nervous system.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Animais , Glutamatos/farmacologia , Neurotransmissores/farmacologia , Taurina/farmacologia , Trofozoítos
14.
BMC Biol ; 19(1): 72, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849538

RESUMO

BACKGROUND: Membrane protrusions that occur on the dorsal surface of a cell are an excellent experimental system to study actin machinery at work in a living cell. Small GTPase Rac1 controls the membrane protrusions that form and encapsulate extracellular volumes to perform pinocytic or phagocytic functions. RESULTS: Here, capitalizing on rapid volumetric imaging capabilities of lattice light-sheet microscopy (LLSM), we describe optogenetic approaches using photoactivable Rac1 (PA-Rac1) for controlled ruffle generation. We demonstrate that PA-Rac1 activation needs to be continuous, suggesting a threshold local concentration for sustained actin polymerization leading to ruffling. We show that Rac1 activation leads to actin assembly at the dorsal surface of the cell membrane that result in sheet-like protrusion formation without any requirement of a template. Further, this approach can be used to study the complex morpho-dynamics of the protrusions or to investigate specific proteins that may be enriched in the ruffles. Deactivating PA-Rac1 leads to complex contractile processes resulting in formation of macropinosomes. Using multicolour imaging in combination with these approaches, we find that Myo1e specifically is enriched in the ruffles. CONCLUSIONS: Combining LLSM and optogenetics enables superior spatial and temporal control for studying such dynamic mechanisms. Demonstrated here, the techniques implemented provide insight into the complex nature of the molecular interplay involved in dynamic actin machinery, revealing that Rac1 activation can generate untemplated, lamellar protrusions.


Assuntos
Membrana Celular , Actinas/metabolismo , Membrana Celular/metabolismo , Proteínas rac1 de Ligação ao GTP/genética
15.
Dev Dyn ; 250(5): 732-744, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33378081

RESUMO

BACKGROUND: The transcription factor Grainyhead-like 3 (GRHL3) has multiple roles in a variety of tissues during development including epithelial patterning and actin cytoskeletal regulation. During neural tube closure (NTC) in the mouse embryo, GRHL3 is expressed and functions in the non-neural ectoderm (NNE). Two important functions of GRHL3 are regulating the actin cytoskeleton during NTC and regulating the boundary between the NNE and neural ectoderm. However, an open question that remains is whether these functions explain the caudally restricted neural tube defect (NTD) of spina bifida observed in Grhl3 mutants. RESULTS: Using scanning electron microscopy and immunofluorescence based imaging on Grhl3 mutants and wildtype controls, we show that GRHL3 is dispensable for NNE identity or epithelial maintenance in the caudal NNE but is needed for regulation of cellular protrusions during NTC. Grhl3 mutants have decreased lamellipodia relative to wildtype embryos during caudal NTC, first observed at the onset of delays when lamellipodia become prominent in wildtype embryos. At the axial level of NTD, half of the mutants show increased and disorganized filopodia and half lack cellular protrusions. CONCLUSION: These data suggest that altered cellular protrusions during NTC contribute to the etiology of NTD in Grhl3 mutants.


Assuntos
Extensões da Superfície Celular , Proteínas de Ligação a DNA/fisiologia , Ectoderma/fisiologia , Tubo Neural/ultraestrutura , Neurulação , Fatores de Transcrição/fisiologia , Animais , Ectoderma/ultraestrutura , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
J Struct Biol ; 213(4): 107808, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34742832

RESUMO

A precise quantitative description of the ultrastructural characteristics underlying biological mechanisms is often key to their understanding. This is particularly true for dynamic extra- and intracellular filamentous assemblies, playing a role in cell motility, cell integrity, cytokinesis, tissue formation and maintenance. For example, genetic manipulation or modulation of actin regulatory proteins frequently manifests in changes of the morphology, dynamics, and ultrastructural architecture of actin filament-rich cell peripheral structures, such as lamellipodia or filopodia. However, the observed ultrastructural effects often remain subtle and require sufficiently large datasets for appropriate quantitative analysis. The acquisition of such large datasets has been enabled by recent advances in high-throughput cryo-electron tomography (cryo-ET) methods. This also necessitates the development of complementary approaches to maximize the extraction of relevant biological information. We have developed a computational toolbox for the semi-automatic quantification of segmented and vectorized filamentous networks from pre-processed cryo-electron tomograms, facilitating the analysis and cross-comparison of multiple experimental conditions. GUI-based components simplify the processing of data and allow users to obtain a large number of ultrastructural parameters describing filamentous assemblies. We demonstrate the feasibility of this workflow by analyzing cryo-ET data of untreated and chemically perturbed branched actin filament networks and that of parallel actin filament arrays. In principle, the computational toolbox presented here is applicable for data analysis comprising any type of filaments in regular (i.e. parallel) or random arrangement. We show that it can ease the identification of key differences between experimental groups and facilitate the in-depth analysis of ultrastructural data in a time-efficient manner.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Biologia Computacional/métodos , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Citoesqueleto de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Aprendizado Profundo , Camundongos , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Reprodutibilidade dos Testes
17.
Glia ; 69(1): 91-108, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32744761

RESUMO

In the developing peripheral nervous system, Schwann cells (SCs) extend their processes to contact, sort, and myelinate axons. The mechanisms that contribute to the interaction between SCs and axons are just beginning to be elucidated. Using a SC-neuron coculture system, we demonstrate that Arg-Gly-Asp (RGD) peptides that inhibit αV -containing integrins delay the extension of SCs elongating on axons. αV integrins in SC localize to sites of contact with axons and are expressed early in development during radial sorting and myelination. Short interfering RNA-mediated knockdown of the αV integrin subunit also delays SC extension along axons in vitro, suggesting that αV -containing integrins participate in axo-glial interactions. However, mice lacking the αV subunit in SCs, alone or in combination with the potentially compensating α5 subunit, or the αV partners ß3 or ß8 , myelinate normally during development and remyelinate normally after nerve crush, indicating that overlapping or compensatory mechanisms may hide the in vivo role of RGD-binding integrins.


Assuntos
Células de Schwann , Animais , Axônios , Integrina alfaV , Integrinas , Camundongos , Oligopeptídeos
18.
Am J Hum Genet ; 103(1): 144-153, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29961568

RESUMO

Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability.


Assuntos
Deficiência Intelectual/genética , Mutação/genética , Convulsões/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Adulto , Feminino , Heterozigoto , Humanos , Masculino , Sequenciamento do Exoma/métodos , Adulto Jovem
19.
J Cell Sci ; 132(1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606730

RESUMO

Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin-catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Movimento Celular , Junções Intercelulares/fisiologia , Neovascularização Fisiológica , Pseudópodes/fisiologia , Animais , Humanos , Transdução de Sinais
20.
Exp Cell Res ; 388(1): 111824, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31926148

RESUMO

Cell migration and invasion play an important role in the development of cancer. Cell migration is associated with several specific actin filament-based structures, including lamellipodia, filopodia, invadopodia and blebs, and with cell-cell adhesion, cell-extracellular matrix adhesion. Migration occurs via different modes, human epithelial cancer cells mainly migrate collectively, while in vivo imaging studies in laboratory animals have found that most cells migrate as single cells. Rho GTPases play an important role in the process of cell migration, and several Rho GTPase-related signaling complexes are also involved. However, the exact mechanism by which these signaling complexes act remains unclear. This paper reviews how Rho GTPases and related signaling complexes interact with other proteins, how their expression is regulated, how tumor microenvironment-related factors play a role in invasion and metastasis, and the mechanism of these complex signaling networks in cell migration and invasion.


Assuntos
Movimento Celular , Neoplasias/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Humanos , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/patologia , Proteínas rho de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA