Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Mol Cell ; 83(20): 3659-3668.e10, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37832547

RESUMO

The integrity of the nuclear envelope (NE) is essential for maintaining the structural stability of the nucleus. Rupture of the NE has been frequently observed in cancer cells, especially in the context of mechanical challenges, such as physical confinement and migration. However, spontaneous NE rupture events, without any obvious physical challenges to the cell, have also been described. The molecular mechanism(s) of these spontaneous NE rupture events remain to be explored. Here, we show that DNA damage and subsequent ATR activation leads to NE rupture. Upon DNA damage, lamin A/C is phosphorylated in an ATR-dependent manner, leading to changes in lamina assembly and, ultimately, NE rupture. In addition, we show that cancer cells with intrinsic DNA repair defects undergo frequent events of DNA-damage-induced NE rupture, which renders them extremely sensitive to further NE perturbations. Exploiting this NE vulnerability could provide a new angle to complement traditional, DNA-damage-based chemotherapy.


Assuntos
Lamina Tipo A , Membrana Nuclear , Membrana Nuclear/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fosforilação , Dano ao DNA , DNA/metabolismo , Núcleo Celular/metabolismo
2.
J Cell Sci ; 136(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36695453

RESUMO

The heat shock (HS) response is crucial for cell survival in harmful environments. Nuclear lamin A/C, encoded by the LMNA gene, contributes towards altered gene expression during HS, but the underlying mechanisms are poorly understood. Here, we show that upon HS, lamin A/C was reversibly phosphorylated at serine 22 in concert with HSF1 activation in human cells, mouse cells and Drosophila melanogaster in vivo. Consequently, the phosphorylation facilitated nucleoplasmic localization of lamin A/C and nuclear sphericity in response to HS. Interestingly, lamin A/C knock-out cells showed deformed nuclei after HS and were rescued by ectopic expression of wild-type lamin A, but not by a phosphomimetic (S22D) lamin A mutant. Furthermore, HS triggered concurrent downregulation of lamina-associated protein 2α (Lap2α, encoded by TMPO) in wild-type lamin A/C-expressing cells, but a similar response was perturbed in lamin A/C knock-out cells and in LMNA mutant patient fibroblasts, which showed impaired cell cycle arrest under HS and compromised survival at recovery. Taken together, our results suggest that the altered phosphorylation stoichiometry of lamin A/C provides an evolutionarily conserved mechanism to regulate lamina structure and serve nuclear adaptation and cell survival during HS.


Assuntos
Lamina Tipo A , Serina , Humanos , Camundongos , Animais , Lamina Tipo A/genética , Fosforilação , Serina/metabolismo , Drosophila melanogaster/metabolismo , Núcleo Celular/metabolismo
3.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36606487

RESUMO

53BP1 (also known as TP53BP1) is a key mediator of the non-homologous end joining (NHEJ) DNA repair pathway, which is the primary repair pathway in interphase cells. However, the mitotic functions of 53BP1 are less well understood. Here, we describe 53BP1 mitotic stress bodies (MSBs) formed in cancer cell lines in response to delayed mitosis. These bodies displayed liquid-liquid phase separation characteristics, were close to centromeres, and included lamin A/C and the DNA repair protein RIF1. After release from mitotic arrest, 53BP1 MSBs decreased in number and moved away from the chromatin. Using GFP fusion constructs, we found that the 53BP1 oligomerization domain region was required for MSB formation, and that inclusion of the 53BP1 N terminus increased MSB size. Exogenous expression of 53BP1 did not increase MSB size or number but did increase levels of MSB-free 53BP1. This was associated with slower mitotic progression, elevated levels of DNA damage and increased apoptosis, which is consistent with MSBs suppressing a mitotic surveillance by 53BP1 through sequestration. The 53BP1 MSBs, which were also found spontaneously in a subset of normally dividing cancer cells but not in non-transformed cells (ARPE-19), might facilitate the survival of cancer cells following aberrant mitoses. This article has an associated First Person interview with the first author of the paper.


Assuntos
Reparo do DNA , Neoplasias , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Humanos , Cromatina , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Mitose , Neoplasias/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral
4.
Cell Mol Life Sci ; 81(1): 400, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264480

RESUMO

Dendritic cells (DCs) play a crucial role in orchestrating immune responses, particularly in promoting IFNγ-producing-CD8 cytotoxic T lymphocytes (CTLs) and IFNγ-producing-CD4 T helper 1 (Th1) cells, which are essential for defending against viral infections. Additionally, the nuclear envelope protein lamin A/C has been implicated in T cell immunity. Nevertheless, the intricate interplay between innate and adaptive immunity in response to viral infections, particularly the role of lamin A/C in DC functions within this context, remains poorly understood. In this study, we demonstrate that mice lacking lamin A/C in myeloid LysM promoter-expressing cells exhibit a reduced capacity to induce Th1 and CD8 CTL responses, leading to impaired clearance of acute primary Vaccinia virus (VACV) infection. Remarkably, in vitro-generated granulocyte macrophage colony-stimulating factor bone marrow-derived DCs (GM-CSF BMDCs) show high levels of lamin A/C. Lamin A/C absence on GM-CSF BMDCs does not affect the expression of costimulatory molecules on the cell membrane but it reduces the cellular ability to form immunological synapses with naïve CD4 T cells. Lamin A/C deletion induces alterations in NFκB nuclear localization, thereby influencing NF-κB-dependent transcription. Furthermore, lamin A/C ablation modifies the gene accessibility of BMDCs, predisposing these cells to mount a less effective antiviral response upon TLR stimulation. This study highlights the critical role of DCs in interacting with CD4 T cells during antiviral responses and proposes some mechanisms through which lamin A/C may modulate DC function via gene accessibility and transcriptional regulation.


Assuntos
Células Dendríticas , Lamina Tipo A , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Camundongos , NF-kappa B/metabolismo , Vaccinia virus/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Camundongos Knockout , Vacínia/imunologia , Células Th1/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
5.
Cell Physiol Biochem ; 58(3): 250-272, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865588

RESUMO

BACKGROUND/AIMS: Motivated by the vacuolar proton pump's importance in cancer, we investigate the effects of proton pump inhibition on breast cancer cell migration and proliferation, F-actin polymerization, lamin A/C, heterochromatin, and ETV7 expressions, nuclear size and shape, and AKT/mTOR signaling. METHODS: Lowly metastatic MCF7 and highly metastatic MDA-MB-231 breast cancer cells were treated with 120 nM of proton pump inhibitor Bafilomycin A1 for 24 hours. Cell migration was studied with wound- scratch assays, ATP levels with a chemiluminescent assay; cell proliferation was quantified by a cell area expansion assay. Nuclear size and shape were determined using DAPI nuclear stain and fluorescence microscopy. The levels of F-actin, lamin A/C, heterochromatin, and ETV7 were quantified using both immunocytochemistry and western blots; p-mTORC1, p-mTORC2, mTOR, p-AKT, and AKT were measured by western blots. RESULTS: We reveal that proton pump inhibition reduces F-actin polymerization, cell migration, proliferation, and increases heterochromatin in both lowly and highly metastatic cells. Surprisingly, Bafilomycin decreases lamin A/C in both cell lines. Inhibition has different effects on ETV7 expression in lowly and highly metastatic cells, as well as nuclear area, perimeter, and circularity. Bafilomycin also significantly decreases p-mTORC1, p-MTORC2, and MTOR expression in both cell lines, whereas it significantly decreases p-AKT in lowly metastatic cells and surprisingly significantly increases p-AKT in highly metastatic cells. Our proton pump inhibition protocol reduces V-ATPase levels (~25%) within three hours. V-ATPase levels vary in time for both control and inhibited cells, and inhibition reduces cellular ATP. CONCLUSION: Proton pumps promote F-actin polymerization and decrease heterochromatin, facilitating invasion. These pumps also upregulate both mTORC1 and mTORC2, thus highlighting the relevance of vacuolar proton pumps as metastatic cancer targets.


Assuntos
Actinas , Neoplasias da Mama , Movimento Celular , Proliferação de Células , Heterocromatina , Macrolídeos , Alvo Mecanístico do Complexo 2 de Rapamicina , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , ATPases Vacuolares Próton-Translocadoras , Humanos , Actinas/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Macrolídeos/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Heterocromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Células MCF-7
6.
J Neurosci Res ; 102(1): e25263, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284866

RESUMO

Lamin A/C is involved in macrophage activation and premature aging, also known as progeria. As the resident macrophage in brain, overactivation of microglia causes brain inflammation, promoting aging and brain disease. In this study, we investigated the role of Lamin A/C in microglial activation and its impact on progeria using Lmna-/- mice, primary microglia, Lmna knockout (Lmna-KO) and Lmna-knockdown (Lmna-KD) BV2 cell lines. We found that the microglial activation signatures, including cell proliferation, morphology changes, and proinflammatory cytokine secretion (IL-1ß, IL-6, and TNF-α), were significantly suppressed in all Lamin A/C-deficient models when stimulated with LPS. TMT-based quantitative proteomic and bioinformatic analysis were further applied to explore the mechanism of Lamin A/C-regulated microglia activation from the proteome level. The results revealed that immune response and phagocytosis were impaired in Lmna-/- microglia. Stat1 was identified as the hub protein in the mechanism by which Lamin A/C regulates microglial activation. Additionally, DNA replication, chromatin organization, and mRNA processing were also altered by Lamin A/C, with Ki67 fulfilling the main hub function. Lamin A/C is a mechanosensitive protein and, the immune- and proliferation-related biological processes are also regulated by mechanotransduction. We speculate that Lamin A/C-mediated mechanotransduction is required for microglial activation. Our study proposes a novel mechanism for microglial activation mediated by Lamin A/C.


Assuntos
Lamina Tipo A , Progéria , Animais , Camundongos , Proliferação de Células , Ativação de Macrófagos , Mecanotransdução Celular , Microglia , Fagocitose , Proteômica
7.
FASEB J ; 37(2): e22745, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36637913

RESUMO

Here, we identify that Caveolin-2 (Cav-2), an integral membrane protein, controls adipocyte hypertrophy in association with nuclear lamina. In the hypertrophy stage of adipogenesis, pY19-Cav-2 association with lamin A/C facilitated the disengagement of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) from lamin A/C and repressed Cav-2 promoter at the nuclear periphery for epigenetic activation of Cav-2, and thereby promoted C/EBPα and PPARγ-induced adipocyte hypertrophy. Stable expression of Cav-2 was required and retained by phosphorylation, deubiquitination, and association with lamin A/C for the adipocyte hypertrophy. However, obese adipocytes exhibited augmented Cav-2 stability resulting from the up-regulation of lamin A/C over lamin B1, protein tyrosine phosphatase 1B (PTP1B), and nuclear deubiquitinating enzyme (DUB), Uchl5. Our findings show a novel epigenetic regulatory mechanism of adipocyte hypertrophy by Cav-2 at the nuclear periphery.


Assuntos
Lamina Tipo A , PPAR gama , Humanos , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Lamina Tipo A/metabolismo , Lâmina Nuclear/metabolismo , Caveolina 2/genética , Caveolina 2/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Adipócitos/metabolismo , Hipertrofia/metabolismo , Diferenciação Celular , Adipogenia/genética , Células 3T3-L1
8.
FASEB J ; 37(2): e22730, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583724

RESUMO

The LMNA gene encodes for the nuclear envelope proteins lamin A and C (lamin A/C). A novel R133L heterozygous mutation in the LMNA gene causes atypical progeria syndrome (APS). However, the underlying mechanism remains unclear. Here, we used transgenic mice (LmnaR133L/+ mice) that expressed a heterozygous LMNA R133L mutation and 3T3-L1 cell lines with stable overexpression of LMNA R133L (by lentiviral transduction) as in vivo and in vitro models to investigate the mechanisms of LMNA R133L mutations that mediate the APS phenotype. We found that a heterozygous R133L mutation in LMNA induced most of the metabolic disturbances seen in patients with this mutation, including ectopic lipid accumulation, limited subcutaneous adipose tissue (SAT) expansion, and insulin resistance. Mitochondrial dysfunction and senescence promote ectopic lipid accumulation and insulin resistance. In addition, the FLAG-mediated pull-down capture followed by mass spectrometry assay showed that p160 Myb-binding protein (P160 MBP; Mybbp1 a $$ a $$ ), the critical transcriptional repressor of PGC-1α, was bound to lamin A/C. Increased Mybbp1 a $$ a $$ levels in tissues and greater Mybbp1 a $$ a $$ -lamin A/C binding in nuclear inhibit PGC-1α activity and promotes mitochondrial dysfunction. Our findings confirm that the novel R133L heterozygous mutation in the LMNA gene caused APS are associated with marked mitochondrial respiratory chain impairment, which were induced by decreased PGC-1α levels correlating with increased Mybbp1a levels in nuclear, and a senescence phenotype of the subcutaneous fat.


Assuntos
Envelhecimento , Lamina Tipo A , Progéria , Animais , Camundongos , Tecido Adiposo/metabolismo , Envelhecimento/genética , Resistência à Insulina , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipídeos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Progéria/genética , Progéria/metabolismo
9.
J Orthop Traumatol ; 25(1): 8, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381214

RESUMO

BACKGROUND: The network of intermediate filament proteins underlying the inner nuclear membrane forms the nuclear lamina. Lamins have been associated with important cellular functions: DNA replication, chromatin organization, differentiation of the cell, apoptosis and in maintenance of nuclear structure. Little is known regarding the etiopathogenesis of adhesive capsulitis (AC); recently, a dysregulating fibrotic response starting from a subpopulation has been described within the fibroblast compartment, which suddenly turns on an activated phenotype. Considering the key role of A-type lamins in the regulation of cellular stability and function, our aim was to compare the lamin A/C expression between patients with AC and healthy controls. MATERIALS AND METHODS: A case-control study was performed between January 2020 and December 2021. Tissue samples excised from the rotator interval were analysed for lamin A/C expression by immunohistochemistry. Patients with AC were arbitrarily distinguished according to the severity of shoulder flexion limitation: ≥ 90° and < 90°. Controls were represented by samples obtained by normal rotator interval excised from patients submitted to shoulder surgery. The intensity of staining was graded, and an H-score was assigned. Statistical analysis was performed (Chi-square analysis; significance was set at alpha = 0.05). RESULTS: We enrolled 26 patients [12 male and 14 female, mean age (SD): 52.3 (6.08)] and 15 controls [6 male and 9 female, mean age (SD): 57.1 (5.3)]. The expression of lamin A/C was found to be significantly lower in the fibroblasts of patients with adhesive capsulitis when compared with controls (intensity of staining: p: 0.005; H-score: 0.034); no differences were found regarding the synoviocytes (p: > 0.05). Considering only patients with AC, lamin A/C intensity staining was found to be significantly higher in samples where acute inflammatory infiltrate was detected (p: 0.004). No significant changes in levels of lamin A/C expression were documented between the mild and severe adhesive capsulitis severity groups. CONCLUSIONS: Our study demonstrated that the activity of lamin A/C in maintaining nuclear structural integrity and cell viability is decreased in patients with adhesive capsulitis. The phase of the pathogenetic process (freezing and early frozen) is the key factor for cell functionality. On the contrary, the clinical severity of adhesive capsulitis plays a marginal role in nuclear stability. LEVEL OF EVIDENCE: III.


Assuntos
Bursite , Lamina Tipo A , Humanos , Feminino , Masculino , Estudos de Casos e Controles , Bursite/cirurgia
10.
Am J Respir Cell Mol Biol ; 68(6): 625-637, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36848480

RESUMO

In idiopathic pulmonary fibrosis (IPF), the normal delicate lung architecture is replaced with rigid extracellular matrix (ECM) as a result of the accumulation of activated myofibroblasts and excessive deposition of ECM. Lamins have a role in fostering mechanosignaling from the ECM to the nucleus. Although there is a growing number of studies on lamins and associated diseases, there are no prior reports linking aberrations in lamins with pulmonary fibrosis. Here, we discovered, through analysis of RNA sequencing data, a novel isoform of lamin A/C that is more highly expressed in IPF compared with control lung. This novel LMNA (lamin A/C) splice variant includes retained introns 10 and 11 and exons 11 and 12 as documented by rapid amplification of cDNA ends. We found that this novel isoform is induced by stiff ECM. To better clarify the specific effects of this novel isoform of lamin A/C and how it may contribute to the pathogenesis of IPF, we transduced the lamin transcript into primary lung fibroblasts and alveolar epithelial cells and found that it impacts several biological effects, including cell proliferation, senescence, cell contraction, and the transition of fibroblasts to myofibroblasts. We also observed that type II epithelial cells and myofibroblasts in the IPF lung exhibited wrinkled nuclei, and this is notable because this has not been previously described and is consistent with laminopathy-mediated cellular effects.


Assuntos
Fibrose Pulmonar Idiopática , Lamina Tipo A , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Pulmão/patologia , Fibrose Pulmonar Idiopática/patologia , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G184-G195, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366543

RESUMO

There is increasing evidence for the importance of the nuclear envelope in lipid metabolism, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Human mutations in LMNA, encoding A-type nuclear lamins, cause early-onset insulin resistance and NASH, while hepatocyte-specific deletion of Lmna predisposes to NASH with fibrosis in male mice. Given that variants in the gene encoding LAP2α, a nuclear protein that regulates lamin A/C, were previously identified in patients with NAFLD, we sought to determine the role of LAP2α in NAFLD using a mouse genetic model. Hepatocyte-specific Lap2α-knockout (Lap2α(ΔHep)) mice and littermate controls were fed normal chow or high-fat diet (HFD) for 8 wk or 6 mo. Unexpectedly, male Lap2α(ΔHep) mice showed no increase in hepatic steatosis or NASH compared with controls. Rather, Lap2α(ΔHep) mice demonstrated reduced hepatic steatosis, with decreased NASH and fibrosis after long-term HFD. Accordingly, pro-steatotic genes including Cidea, Mogat1, and Cd36 were downregulated in Lap2α(ΔHep) mice, along with concomitant decreases in expression of pro-inflammatory and pro-fibrotic genes. These data indicate that hepatocyte-specific Lap2α deletion protects against hepatic steatosis and NASH in mice and raise the possibility that LAP2α could become a potential therapeutic target in human NASH.NEW & NOTEWORTHY The nuclear envelope and lamina regulate lipid metabolism and susceptibility to nonalcoholic steatohepatitis (NASH), but the role of the nuclear lamin-binding protein LAP2α in NASH has not been explored. Our data demonstrate that hepatocyte-specific loss of LAP2α protects against diet-induced hepatic steatosis, NASH, and fibrosis in male mice, with downregulation of pro-steatotic, pro-inflammatory, and pro-fibrotic lamin-regulated genes. These findings suggest that targeting LAP2α could have future potential as a novel therapeutic avenue in NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Dieta Hiperlipídica , Modelos Animais de Doenças , Hepatócitos/metabolismo , Laminas/metabolismo , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/prevenção & controle , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle
12.
Am J Hum Genet ; 107(4): 753-762, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910914

RESUMO

Lamin B1 plays an important role in the nuclear envelope stability, the regulation of gene expression, and neural development. Duplication of LMNB1, or missense mutations increasing LMNB1 expression, are associated with autosomal-dominant leukodystrophy. On the basis of its role in neurogenesis, it has been postulated that LMNB1 variants could cause microcephaly. Here, we confirm this hypothesis with the identification of de novo mutations in LMNB1 in seven individuals with pronounced primary microcephaly (ranging from -3.6 to -12 SD) associated with relative short stature and variable degree of intellectual disability and neurological features as the core symptoms. Simplified gyral pattern of the cortex and abnormal corpus callosum were noted on MRI of three individuals, and these individuals also presented with a more severe phenotype. Functional analysis of the three missense mutations showed impaired formation of the LMNB1 nuclear lamina. The two variants located within the head group of LMNB1 result in a decrease in the nuclear localization of the protein and an increase in misshapen nuclei. We further demonstrate that another mutation, located in the coil region, leads to increased frequency of condensed nuclei and lower steady-state levels of lamin B1 in proband lymphoblasts. Our findings collectively indicate that de novo mutations in LMNB1 result in a dominant and damaging effect on nuclear envelope formation that correlates with microcephaly in humans. This adds LMNB1 to the growing list of genes implicated in severe autosomal-dominant microcephaly and broadens the phenotypic spectrum of the laminopathies.


Assuntos
Nanismo/genética , Deficiência Intelectual/genética , Lamina Tipo B/genética , Microcefalia/genética , Mutação , Lâmina Nuclear/genética , Sequência de Aminoácidos , Sequência de Bases , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Pré-Escolar , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Nanismo/diagnóstico por imagem , Nanismo/metabolismo , Nanismo/patologia , Feminino , Expressão Gênica , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Lamina Tipo B/metabolismo , Linfócitos/metabolismo , Linfócitos/patologia , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/metabolismo , Microcefalia/patologia , Lâmina Nuclear/metabolismo , Lâmina Nuclear/patologia
13.
J Cell Sci ; 134(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34028539

RESUMO

While diverse cellular components have been identified as mechanotransduction elements, the deformation of the nucleus itself is a critical mechanosensory mechanism, implying that nuclear stiffness is essential in determining responses to intracellular and extracellular stresses. Although the nuclear membrane protein lamin A/C is known to contribute to nuclear stiffness, bulk moduli of nuclei have not been reported for various levels of lamin A/C. Here, we measure the nuclear bulk moduli as a function of lamin A/C expression and applied osmotic stress, revealing a linear dependence within the range of 2-4 MPa. We also find that the nuclear compression is anisotropic, with the vertical axis of the nucleus being more compliant than the minor and major axes in the substrate plane. We then related the spatial distribution of lamin A/C with submicron 3D nuclear envelope deformation, revealing that local areas of the nuclear envelope with higher density of lamin A/C have correspondingly lower local deformations. These findings describe the complex dispersion of nuclear deformations as a function of lamin A/C expression and distribution, implicating a lamin A/C role in mechanotransduction. This article has an associated First Person interview with the first author of the paper.


Assuntos
Lamina Tipo A , Mecanotransdução Celular , Núcleo Celular/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Membrana Nuclear/metabolismo
14.
J Transl Med ; 21(1): 690, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37840136

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) is a severe, non-ischemic heart disease which ultimately results in heart failure (HF). Decades of research on DCM have revealed diverse aetiologies. Among them, familial DCM is the major form of DCM, with pathogenic variants in LMNA being the second most common form of autosomal dominant DCM. LMNA DCM is a multifactorial and complex disease with no specific treatment thus far. Many studies have demonstrated that perturbing candidates related to various dysregulated pathways ameliorate LMNA DCM. However, it is unknown whether these candidates could serve as potential therapeutic targets especially in long term efficacy. METHODS: We evaluated 14 potential candidates including Lmna gene products (Lamin A and Lamin C), key signaling pathways (Tgfß/Smad, mTor and Fgf/Mapk), calcium handling, proliferation regulators and modifiers of LINC complex function in a cardiac specific Lmna DCM model. Positive candidates for improved cardiac function were further assessed by survival analysis. Suppressive roles and mechanisms of these candidates in ameliorating Lmna DCM were dissected by comparing marker gene expression, Tgfß signaling pathway activation, fibrosis, inflammation, proliferation and DNA damage. Furthermore, transcriptome profiling compared the differences between Lamin A and Lamin C treatment. RESULTS: Cardiac function was restored by several positive candidates (Smad3, Yy1, Bmp7, Ctgf, aYAP1, Sun1, Lamin A, and Lamin C), which significantly correlated with suppression of HF/fibrosis marker expression and cardiac fibrosis in Lmna DCM. Lamin C or Sun1 shRNA administration achieved consistent, prolonged survival which highly correlated with reduced heart inflammation and DNA damage. Importantly, Lamin A treatment improved but could not reproduce long term survival, and Lamin A administration to healthy hearts itself induced DCM. Mechanistically, we identified this lapse as caused by a dose-dependent toxicity of Lamin A, which was independent from its maturation. CONCLUSIONS: In vivo candidate evaluation revealed that supplementation of Lamin C or knockdown of Sun1 significantly suppressed Lmna DCM and achieve prolonged survival. Conversely, Lamin A supplementation did not rescue long term survival and may impart detrimental cardiotoxicity risk. This study highlights a potential of advancing Lamin C and Sun1 as therapeutic targets for the treatment of LMNA DCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fibrose , Inflamação/complicações , Fator de Crescimento Transformador beta , Mutação
15.
J Transl Med ; 21(1): 340, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217929

RESUMO

BACKGROUND: We previously demonstrated that an Italian family affected by a severe dilated cardiomyopathy (DCM) with history of sudden deaths at young age, carried a mutation in the Lmna gene encoding for a truncated variant of the Lamin A/C protein (LMNA), R321X. When expressed in heterologous systems, such variant accumulates into the endoplasmic reticulum (ER), inducing the activation of the PERK-CHOP pathway of the unfolded protein response (UPR), ER dysfunction and increased rate of apoptosis. The aim of this work was to analyze whether targeting the UPR can be used to revert the ER dysfunction associated with LMNA R321X expression in HL-1 cardiac cells. METHODS: HL-1 cardiomyocytes stably expressing LMNA R321X were used to assess the ability of 3 different drugs targeting the UPR, salubrinal, guanabenz and empagliflozin to rescue ER stress and dysfunction. In these cells, the state of activation of both the UPR and the pro-apoptotic pathway were analyzed monitoring the expression levels of phospho-PERK, phospho-eIF2α, ATF4, CHOP and PARP-CL. In addition, we measured ER-dependent intracellular Ca2+ dynamics as indicator of proper ER functionality. RESULTS: We found that salubrinal and guanabenz increased the expression levels of phospho-eIF2α and downregulated the apoptosis markers CHOP and PARP-CL in LMNA R321X-cardiomyocytes, maintaining the so-called adaptive UPR. These drugs also restored ER ability to handle Ca2+ in these cardiomyocytes. Interestingly, we found that empagliflozin downregulated the apoptosis markers CHOP and PARP-CL shutting down the UPR itself through the inhibition of PERK phosphorylation in LMNA R321X-cardiomyocytes. Furthermore, upon empagliflozin treatment, ER homeostasis, in terms of ER ability to store and release intracellular Ca2+ was also restored in these cardiomyocytes. CONCLUSIONS: We provided evidence that the different drugs, although interfering with different steps of the UPR, were able to counteract pro-apoptotic processes and to preserve the ER homeostasis in R321X LMNA-cardiomyocytes. Of note, two of the tested drugs, guanabenz and empagliflozin, are already used in the clinical practice, thus providing preclinical evidence for ready-to-use therapies in patients affected by the LMNA R321X associated cardiomyocytes.


Assuntos
Lamina Tipo A , Miócitos Cardíacos , Humanos , Apoptose , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Guanabenzo/farmacologia , Homeostase , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Miócitos Cardíacos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Resposta a Proteínas não Dobradas
16.
Europace ; 25(2): 634-642, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36352512

RESUMO

AIMS: Cardiac disease progression prior to first ventricular arrhythmia (VA) in LMNA genotype-positive patients is not described. METHODS AND RESULTS: We performed a primary prevention cohort study, including consecutive LMNA genotype-positive patients from our centre. Patients underwent repeated clinical, electrocardiographic, and echocardiographic examinations. Electrocardiographic and echocardiographic disease progression as a predictor of first-time VA was evaluated by generalized estimation equation analyses. Threshold values at transition to an arrhythmic phenotype were assessed by threshold regression analyses. We included 94 LMNA genotype-positive patients without previous VA (age 38 ± 15 years, 32% probands, 53% females). Nineteen (20%) patients experienced VA during 4.6 (interquartile range 2.1-7.3) years follow up, at mean age 50 ± 11 years. We analysed 536 echocardiographic and 261 electrocardiogram examinations. Individual patient disease progression was associated with VA [left ventricular ejection fraction (LVEF) odds ratio (OR) 1.4, 95% confidence interval (CI) 1.2-1.6 per 5% reduction, left ventricular end-diastolic volume index (LVEDVi) OR 1.2 (95% CI 1.1-1.3) per 5 mL/m2 increase, PR interval OR 1.2 (95% CI 1.1-1.4) per 10 ms increase]. Threshold values for transition to an arrhythmic phenotype were LVEF 44%, LVEDVi 77 mL/m2, and PR interval 280 ms. CONCLUSIONS: Incidence of first-time VA was 20% during 4.6 years follow up in LMNA genotype-positive patients. Individual patient disease progression by ECG and echocardiography were strong predictors of VA, indicating that disease progression rate may have additional value to absolute measurements when considering primary preventive ICD. Threshold values of LVEF <44%, LVEDVi >77 mL/m2, and PR interval >280 ms indicated transition to a more arrhythmogenic phenotype.


Assuntos
Desfibriladores Implantáveis , Laminopatias , Feminino , Masculino , Humanos , Volume Sistólico , Estudos de Coortes , Função Ventricular Esquerda , Fatores de Risco , Desfibriladores Implantáveis/efeitos adversos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Laminopatias/complicações , Prevenção Primária , Progressão da Doença
17.
Drug Resist Updat ; 65: 100881, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368286

RESUMO

Taxanes (Taxol/paclitaxel, Docetaxel/taxotere) are a key group of successful drugs commonly used in chemotherapy to treat several major malignant tumors also as a front-line agent in combination with carboplatin/cisplatin, as well as a second line drug with a dose dense regimen following recurrence. Overall, the response to paclitaxel is excellent, though drug resistance inevitably develops in subsequent treatments. The commonly accepted mechanism of action is that the hindrance of microtubule function by paclitaxel leads to cell cycle arrest at mitosis, and subsequent apoptosis. The mechanisms for resistance to paclitaxel have also been extensively investigated, such as ABC transporter overexpression, altered signaling and apoptotic gene expression to resist cell death, and changes associated with microtubules to reduce influences of the drugs. Meanwhile, another important mechanism of paclitaxel resistance has been proposed: increased nuclear lamina/envelope sturdiness to retard the breaking of nuclear envelop and the paclitaxel-induced multinucleation as well as the formation of multiple micronuclei. Here in this review, we focus on experimental findings and ideas on the mechanism of paclitaxel resistance related to cancer nuclear envelope, to provide new insights on overcoming paclitaxel resistance.


Assuntos
Neoplasias , Paclitaxel , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Membrana Nuclear , Taxoides , Docetaxel , Cisplatino , Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/genética
18.
Proc Natl Acad Sci U S A ; 117(19): 10378-10387, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332162

RESUMO

Barrier-to-autointegration factor (BAF) is a highly conserved protein in metazoans that has multiple functions during the cell cycle. We found that BAF is SUMOylated at K6, and that this modification is essential for its nuclear localization and function, including nuclear integrity maintenance and DNA replication. K6-linked SUMOylation of BAF promotes binding and interaction with lamin A/C to regulate nuclear integrity. K6-linked SUMOylation of BAF also supports BAF binding to DNA and proliferating cell nuclear antigen and regulates DNA replication. SENP1 and SENP2 catalyze the de-SUMOylation of BAF at K6. Disrupting the SUMOylation and de-SUMOylation cycle of BAF at K6 not only disturbs nuclear integrity, but also induces DNA replication failure. Taken together, our findings demonstrate that SUMOylation at K6 is an important regulatory mechanism that governs the nuclear functions of BAF in mammalian cells.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Lamina Tipo A/metabolismo , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Sinais de Localização Nuclear/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/fisiologia , Sumoilação/fisiologia
19.
Perfusion ; 38(4): 826-836, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35514053

RESUMO

BACKGROUND: There are 30%-40% of patients with dilated cardiomyopathy (DCM) having genetic causes, among which Lamin A and C gene (LMNA) mutation is the second most frequent DCM-related mutation, and Lamin A/C may be involved in the pathogenesis of DCM through the regulation of gene transcription or the direct effect of cell structure. Methods: Echocardiography and electrocardiogram were used to diagnose DCM and arrhythmia in a DCM family. Then, linked mutations on LMNA were screened out by high-throughput sequencing and verified by Sanger sequencing in all research individuals. Meanwhile, Human Genome Variation Society (HGVS) and Integrative Genomics Viewer (IGV) were used to analyse the characteristics of the mutated Lamin A/C protein. Finally, mutated-type and wild-type LMNA plasmid was transfected into AC-16 cardiomyocytes with the form of a lentivirus vector, and its effect on nucleus and actin was studied by immunofluorescence detection. RESULTS: In this study, we found a new frame-shifted mutation of LMNA (p.Ser414Alafs*66) linked with another point mutation from a DCM family by using High-throughput sequencing, and this deletion mutation led to a truncation of Lamin A/C. By analysing the clinical characteristics of this DCM family, we found that all DCM patients with arrhythmia were carriers of this co-segregation mutation. In the cytological experiment, we found that the mutated-type transfections showed weaker fluorescent intensities on both actin and cell nucleus. CONCLUSIONS: A co-segregation mutation of LMNA (Point mutation chr1 156107548 c.1712 G>A and truncated frame-shifted mutation chr1 156106086 c.1240delA) was found from a DCM family, and this type of mutation could participate in the pathogenesis of DCM by affecting the expression of actin.


Assuntos
Cardiomiopatia Dilatada , Humanos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/patologia , Mutação Puntual , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Actinas/genética , Arritmias Cardíacas , Deleção de Sequência
20.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446344

RESUMO

Mutations in the LMNA gene (encoding lamin A/C proteins) cause several human cardiac diseases, including dilated cardiomyopathies (LMNA-DCM). The main clinical risks in LMNA-DCM patients are sudden cardiac death and progressive left ventricular ejection fraction deterioration, and therefore most human and animal studies have sought to define the mechanisms through which LMNA mutations provoke cardiac alterations, with a particular focus on cardiomyocytes. To investigate if LMNA mutations also cause vascular alterations that might contribute to the etiopathogenesis of LMNA-DCM, we generated and characterized Lmnaflox/floxSM22αCre mice, which constitutively lack lamin A/C in vascular smooth muscle cells (VSMCs), cardiac fibroblasts, and cardiomyocytes. Like mice with whole body or cardiomyocyte-specific lamin A/C ablation, Lmnaflox/floxSM22αCre mice recapitulated the main hallmarks of human LMNA-DCM, including ventricular systolic dysfunction, cardiac conduction defects, cardiac fibrosis, and premature death. These alterations were associated with elevated expression of total and phosphorylated (active) Smad3 and cleaved (active) caspase 3 in the heart. Lmnaflox/floxSM22αCre mice also exhibited perivascular fibrosis in the coronary arteries and a switch of aortic VSMCs from the 'contractile' to the 'synthetic' phenotype. Ex vivo wire myography in isolated aortic rings revealed impaired maximum contraction capacity and an altered response to vasoconstrictor and vasodilator agents in Lmnaflox/floxSM22αCre mice. To our knowledge, our results provide the first evidence of phenotypic alterations in VSMCs that might contribute significantly to the pathophysiology of some forms of LMNA-DCM. Future work addressing the mechanisms underlying vascular defects in LMNA-DCM may open new therapeutic avenues for these diseases.


Assuntos
Cardiomiopatia Dilatada , Miócitos Cardíacos , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Músculo Liso Vascular/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Volume Sistólico , Função Ventricular Esquerda , Cardiomiopatia Dilatada/patologia , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA