Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.274
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38940292

RESUMO

During heart development, the embryonic ventricle becomes enveloped by the epicardium, which adheres to the outer apical surface of the heart. This is concomitant with onset of ventricular trabeculation, where a subset of cardiomyocytes lose apicobasal polarity and delaminate basally from the ventricular wall. Llgl1 regulates the formation of apical cell junctions and apicobasal polarity, and we investigated its role in ventricular wall maturation. We found that llgl1 mutant zebrafish embryos exhibit aberrant apical extrusion of ventricular cardiomyocytes. While investigating apical cardiomyocyte extrusion, we identified a basal-to-apical shift in laminin deposition from the internal to the external ventricular wall. We find that epicardial cells express several laminin subunits as they adhere to the ventricle, and that the epicardium is required for laminin deposition on the ventricular surface. In llgl1 mutants, timely establishment of the epicardial layer is disrupted due to delayed emergence of epicardial cells, resulting in delayed apical deposition of laminin on the ventricular surface. Together, our analyses reveal an unexpected role for Llgl1 in correct timing of epicardial development, supporting integrity of the ventricular myocardial wall.


Assuntos
Ventrículos do Coração , Laminina , Pericárdio , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Laminina/metabolismo , Laminina/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Pericárdio/metabolismo , Pericárdio/embriologia , Pericárdio/citologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Polaridade Celular , Mutação/genética
2.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497562

RESUMO

Stem cell quiescence, proliferation and differentiation are controlled by interactions with niche cells and a specialized extracellular matrix called basement membrane (BM). Direct interactions with adjacent BM are known to regulate stem cell quiescence; however, it is less clear how niche BM relays signals to stem cells that it does not contact. Here, we examine how niche BM regulates Caenorhabditis elegans primordial germ cells (PGCs). BM regulates PGC quiescence even though PGCs are enwrapped by somatic niche cells and do not contact the BM; this can be demonstrated by depleting laminin, which causes normally quiescent embryonic PGCs to proliferate. We show that following laminin depletion, niche cells relay proliferation-inducing signals from the gonadal BM to PGCs via integrin receptors. Disrupting the BM proteoglycan perlecan blocks PGC proliferation when laminin is depleted, indicating that laminin functions to inhibit a proliferation-inducing signal originating from perlecan. Reducing perlecan levels in fed larvae hampers germline growth, suggesting that BM signals regulate germ cell proliferation under physiological conditions. Our results reveal how BM signals can regulate stem cell quiescence indirectly, by activating niche cell integrin receptors.


Assuntos
Laminina , Transdução de Sinais , Animais , Laminina/metabolismo , Células Germinativas/metabolismo , Diferenciação Celular , Membrana Basal/metabolismo , Caenorhabditis elegans/metabolismo , Integrinas/metabolismo
3.
Semin Cell Dev Biol ; 140: 82-89, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35659473

RESUMO

Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.


Assuntos
Espinhas Dendríticas , Transmissão Sináptica , Espinhas Dendríticas/fisiologia , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Plasticidade Neuronal/fisiologia
4.
J Biol Chem ; 300(4): 107202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508310

RESUMO

We are interested in the contribution of integrins and the extracellular matrix to epithelial differentiation in carcinomas. This study was motivated by our finding that the Hippo effectors YAP and TAZ can sustain the expression of laminin 332 (LM332), the predominant ECM ligand for the integrin ß4, in breast carcinoma cells with epithelial differentiation. More specifically, we observed that YAP and TAZ regulate the transcription of the LAMC2 subunit of LM332. Given that the ß4-LM332 axis is associated with epithelial differentiation and YAP/TAZ have been implicated in carcinoma de-differentiation, we sought to resolve this paradox. Here, we observed that the ß4 integrin sustains the expression of miR-200s that target the transcription factor ZEB1 and that ZEB1 has a pivotal role in determining the nature of YAP/TAZ-mediated transcription. In the presence of ß4, ZEB1 expression is repressed enabling YAP/TAZ/TEAD-mediated transcription of LAMC2. The absence of ß4, however, induces ZEB1, and ZEB1 binds to the LAMC2 promoter to inhibit LAMC2 transcription. YAP/TAZ-mediated regulation of LAMC2 has important functional consequences because we provide evidence that LM332 enables carcinoma cells to resist ferroptosis in concert with the ß4 integrin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ferroptose , Integrina beta4 , Calinina , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Feminino , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Integrina beta4/metabolismo , Integrina beta4/genética , Calinina/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Transativadores/metabolismo , Transativadores/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
5.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35575071

RESUMO

The basement membrane is a specialized extracellular matrix (ECM) that is crucial for the development of epithelial tissues and organs. In Drosophila, the mechanical properties of the basement membrane play an important role in the proper elongation of the developing egg chamber; however, the molecular mechanisms contributing to basement membrane mechanical properties are not fully understood. Here, we systematically analyze the contributions of individual ECM components towards the molecular composition and mechanical properties of the basement membrane underlying the follicle epithelium of Drosophila egg chambers. We find that the Laminin and Collagen IV networks largely persist in the absence of the other components. Moreover, we show that Perlecan and Collagen IV, but not Laminin or Nidogen, contribute greatly towards egg chamber elongation. Similarly, Perlecan and Collagen, but not Laminin or Nidogen, contribute towards the resistance of egg chambers against osmotic stress. Finally, using atomic force microscopy we show that basement membrane stiffness mainly depends on Collagen IV. Our analysis reveals how single ECM components contribute to the mechanical properties of the basement membrane controlling tissue and organ shape.


Assuntos
Drosophila , Proteínas da Matriz Extracelular , Animais , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Drosophila/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Laminina/metabolismo
6.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098369

RESUMO

Neurovascular unit and barrier maturation rely on vascular basement membrane (vBM) composition. Laminins, a major vBM component, are crucial for these processes, yet the signaling pathway(s) that regulate their expression remain unknown. Here, we show that mural cells have active Wnt/ß-catenin signaling during central nervous system development in mice. Bulk RNA sequencing and validation using postnatal day 10 and 14 wild-type versus adenomatosis polyposis coli downregulated 1 (Apcdd1-/-) mouse retinas revealed that Lama2 mRNA and protein levels are increased in mutant vasculature with higher Wnt/ß-catenin signaling. Mural cells are the main source of Lama2, and Wnt/ß-catenin activation induces Lama2 expression in mural cells in vitro. Markers of mature astrocytes, including aquaporin 4 (a water channel in astrocyte endfeet) and integrin-α6 (a laminin receptor), are upregulated in Apcdd1-/- retinas with higher Lama2 vBM deposition. Thus, the Wnt/ß-catenin pathway regulates Lama2 expression in mural cells to promote neurovascular unit and barrier maturation.


Assuntos
Via de Sinalização Wnt , beta Catenina , Animais , Camundongos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
7.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993299

RESUMO

Using the timely re-activation of WNT signalling in neuralizing human induced pluripotent stem cells (hiPSCs), we have produced neural progenitor cells with a gene expression profile typical of human embryonic dentate gyrus (DG) cells. Notably, in addition to continuous WNT signalling, a specific laminin isoform is crucial to prolonging the neural stem state and to extending progenitor cell proliferation for over 200 days in vitro. Laminin 511 is indeed specifically required to support proliferation and to inhibit differentiation of hippocampal progenitor cells for extended time periods when compared with a number of different laminin isoforms assayed. Global gene expression profiles of these cells suggest that a niche of laminin 511 and WNT signalling is sufficient to maintain their capability to undergo typical hippocampal neurogenesis. Moreover, laminin 511 signalling sustains the expression of a set of genes responsible for the maintenance of a hippocampal neurogenic niche. Finally, xenograft of human DG progenitors into the DG of adult immunosuppressed host mice produces efficient integration of neurons that innervate CA3 layer cells spanning the same area of endogenous hippocampal neuron synapses.


Assuntos
Células-Tronco Pluripotentes Induzidas , Laminina , Animais , Diferenciação Celular/genética , Giro Denteado , Hipocampo/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminina/metabolismo , Camundongos , Neurogênese/genética , Via de Sinalização Wnt
8.
Development ; 149(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35938454

RESUMO

Schwann cells (SCs) migrate along peripheral axons and divide intensively to generate the right number of cells prior to axonal ensheathment; however, little is known regarding the temporal and molecular control of their division and its impact on myelination. We report that Sil, a spindle pole protein associated with autosomal recessive primary microcephaly, is required for temporal mitotic exit of SCs. In sil-deficient cassiopeia (csp-/-) mutants, SCs fail to radially sort and myelinate peripheral axons. Elevation of cAMP, but not Rac1 activity, in csp-/- restores myelin ensheathment. Most importantly, we show a significant decrease in laminin expression within csp-/- posterior lateral line nerve and that forcing Laminin 2 expression in csp-/- fully restores the ability of SCs to myelinate. Thus, we demonstrate an essential role for timely SC division in mediating laminin expression to orchestrate radial sorting and peripheral myelination in vivo.


Assuntos
Laminina , Células de Schwann , Axônios/metabolismo , Divisão Celular/genética , Células Cultivadas , Laminina/genética , Laminina/metabolismo , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo
9.
J Virol ; : e0069724, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916400

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is an important pathogen of largemouth bass. Despite extensive research, the functional receptors of MSRV remained unknown. This study identified the host protein, laminin receptor (LamR), as a cellular receptor facilitating MSRV entry into host cells. Our results demonstrated that LamR directly interacts with MSRV G protein, playing a pivotal role in the attachment and internalization processes of MSRV. Knockdown of LamR with siRNA, blocking cells with LamR antibody, or incubating MSRV virions with soluble LamR protein significantly reduced MSRV entry. Notably, we found that LamR mediated MSRV entry via clathrin-mediated endocytosis. Additionally, our findings revealed that MSRV G and LamR were internalized into cells and co-localized in the early and late endosomes. These findings highlight the significance of LamR as a cellular receptor facilitating MSRV binding and entry into target cells through interaction with the MSRV G protein. IMPORTANCE: Despite the serious epidemic caused by Micropterus salmoides rhabdovirus (MSRV) in largemouth bass, the precise mechanism by which it invades host cells remains unclear. Here, we determined that laminin receptor (LamR) is a novel target of MSRV, that interacts with its G protein and is involved in viral attachment and internalization, transporting with MSRV together in early and late endosomes. This is the first report demonstrating that LamR is a cellular receptor in the MSRV life cycle, thus contributing new insights into host-pathogen interactions.

10.
Mass Spectrom Rev ; 43(1): 90-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36420714

RESUMO

The dystrophin-associated protein complex (DAPC) is a highly organized multiprotein complex that plays a pivotal role in muscle fiber structure integrity and cell signaling. The complex is composed of three distinct interacting subgroups, intracellular peripheral proteins, transmembrane glycoproteins, and extracellular glycoproteins subcomplexes. Dystrophin protein nucleates the DAPC and is important for connecting the intracellular actin cytoskeletal filaments to the sarcolemma glycoprotein complex that is connected to the extracellular matrix via laminin, thus stabilizing the sarcolemma during muscle fiber contraction and relaxation. Genetic mutations that lead to lack of expression or altered expression of any of the DAPC proteins are associated with different types of muscle diseases. Hence characterization of this complex in healthy and dystrophic muscle might bring insights into its role in muscle pathogenesis. This review highlights the role of mass spectrometry in characterizing the DAPC interactome as well as post-translational glycan modifications of some of its components such as α-dystroglycan. Detection and quantification of dystrophin using targeted mass spectrometry are also discussed in the context of healthy versus dystrophic skeletal muscle.


Assuntos
Complexo de Proteínas Associadas Distrofina , Distrofina , Distrofina/análise , Distrofina/genética , Distrofina/metabolismo , Complexo de Proteínas Associadas Distrofina/análise , Complexo de Proteínas Associadas Distrofina/metabolismo , Laminina/análise , Laminina/metabolismo , Sarcolema/química , Sarcolema/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Glicoproteínas/análise
11.
J Pathol ; 262(3): 296-309, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38129319

RESUMO

The standard of care for patients with Alport syndrome (AS) is angiotensin-converting enzyme (ACE) inhibitors. In autosomal recessive Alport (ARAS) mice, ACE inhibitors double lifespan. We previously showed that deletion of Itga1 in Alport mice [double-knockout (DKO) mice] increased lifespan by 50%. This effect seemed dependent on the prevention of laminin 211-mediated podocyte injury. Here, we treated DKO mice with vehicle or ramipril starting at 4 weeks of age. Proteinuria and glomerular filtration rates were measured at 5-week intervals. Glomeruli were analyzed for laminin 211 deposition in the glomerular basement membrane (GBM) and GBM ultrastructure was analyzed using transmission electron microscopy (TEM). RNA sequencing (RNA-seq) was performed on isolated glomeruli at all time points and the results were compared with cultured podocytes overlaid (or not) with recombinant laminin 211. Glomerular filtration rate declined in ramipril-treated DKO mice between 30 and 35 weeks. Proteinuria followed these same patterns with normalization of foot process architecture in ramipril-treated DKO mice. RNA-seq revealed a decline in the expression of Foxc2, nephrin (Nphs1), and podocin (Nphs2) mRNAs, which was delayed in the ramipril-treated DKO mice. GBM accumulation of laminin 211 was delayed in ramipril-treated DKO mice, likely due to a role for α1ß1 integrin in CDC42 activation in Alport mesangial cells, which is required for mesangial filopodial invasion of the subendothelial spaces of the glomerular capillary loops. Ramipril synergized with Itga1 knockout, tripling lifespan compared with untreated ARAS mice. © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Nefrite Hereditária , Podócitos , Humanos , Camundongos , Animais , Integrina alfa1/genética , Integrina alfa1/metabolismo , Ramipril/farmacologia , Ramipril/metabolismo , Longevidade , Membrana Basal Glomerular/metabolismo , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Laminina/genética , Laminina/metabolismo , Camundongos Knockout , Proteinúria/tratamento farmacológico , Proteinúria/genética , Proteinúria/metabolismo , Análise de Sequência de RNA
12.
Mol Ther ; 32(5): 1497-1509, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429928

RESUMO

The hallmark of epidermolysis bullosa (EB) is fragile attachment of epithelia due to genetic variants in cell adhesion genes. We describe 16 EB patients treated in the ear, nose, and throat department of a tertiary pediatric hospital linked to the United Kingdom's national EB unit between 1992 and 2023. Patients suffered a high degree of morbidity and mortality from laryngotracheal stenosis. Variants in laminin subunit alpha-3 (LAMA3) were found in 10/15 patients where genotype was available. LAMA3 encodes a subunit of the laminin-332 heterotrimeric extracellular matrix protein complex and is expressed by airway epithelial basal stem cells. We investigated the benefit of restoring wild-type LAMA3 expression in primary EB patient-derived basal cell cultures. EB basal cells demonstrated weak adhesion to cell culture substrates, but could otherwise be expanded similarly to non-EB basal cells. In vitro lentiviral overexpression of LAMA3A in EB basal cells enabled them to differentiate in air-liquid interface cultures, producing cilia with normal ciliary beat frequency. Moreover, transduction restored cell adhesion to levels comparable to a non-EB donor culture. These data provide proof of concept for a combined cell and gene therapy approach to treat airway disease in LAMA3-affected EB.


Assuntos
Adesão Celular , Epidermólise Bolhosa , Laminina , Lentivirus , Humanos , Laminina/metabolismo , Laminina/genética , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/terapia , Epidermólise Bolhosa/patologia , Criança , Lentivirus/genética , Masculino , Feminino , Pré-Escolar , Terapia Genética/métodos , Vetores Genéticos/genética , Células Epiteliais/metabolismo , Células Cultivadas , Expressão Gênica , Adolescente , Lactente
13.
Differentiation ; 138: 100792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935992

RESUMO

The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm and is regulated by transcription factor Pax6 and secreted BMP4. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2, a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.


Assuntos
Matriz Extracelular , Regulação da Expressão Gênica no Desenvolvimento , Cristalino , Fator de Transcrição PAX6 , Animais , Matriz Extracelular/metabolismo , Camundongos , Cristalino/metabolismo , Cristalino/crescimento & desenvolvimento , Cristalino/citologia , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Embrião de Galinha , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Galinhas/genética , Olho/metabolismo , Olho/crescimento & desenvolvimento , Olho/embriologia
14.
Semin Cell Dev Biol ; 121: 40-52, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33879391

RESUMO

In adult rat testes, the basement membrane is structurally constituted by laminin and collagen chains that lay adjacent to the blood-testis barrier (BTB). It plays a crucial scaffolding role to support spermatogenesis. On the other hand, laminin-333 comprised of laminin-α3/ß3/γ3 at the apical ES (ectoplasmic specialization, a testis-specific cell-cell adherens junction at the Sertoli cell-step 8-19 spermatid interface) expressed by spermatids serves as a unique cell adhesion protein that forms an adhesion complex with α6ß1-integrin expressed by Sertoli cells to support spermiogenesis. Emerging evidence has shown that biologically active fragments are derived from basement membrane and apical ES laminin chains through proteolytic cleavage mediated by matrix metalloproteinase 9 (MMP9) and MMP2, respectively. Two of these laminin bioactive fragments: one from the basement membrane laminin-α2 chain called LG3/4/5-peptide, and one from the apical ES laminin-γ3 chain known as F5-peptide, are potent regulators that modify cell adhesion function at the Sertoli-spermatid interface (i.e., apical ES) but also at the Sertoli cell-cell interface designated basal ES at the blood-testis barrier (BTB) with contrasting effects. These findings not only highlight the physiological significance of these bioactive peptides that create a local regulatory network to support spermatogenesis, they also open a unique area of research. For instance, it is likely that several other bioactive peptides remain to be identified. These bioactive peptides including their downstream signaling proteins and cascades should be studied collectively in future investigations to elucidate the underlying mechanism(s) by which they coordinate with each other to maintain spermatogenesis. This is the goal of this review.


Assuntos
Redes Reguladoras de Genes/genética , Laminina/imunologia , Espermatogênese/imunologia , Testículo/imunologia , Animais , Masculino , Camundongos , Ratos
15.
Semin Cell Dev Biol ; 121: 125-132, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325997

RESUMO

Studies have demonstrated that biologically active fragments are generated from the basement membrane and the Sertoli cell-spermatid adhesion site known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction) in the rat testis. These bioactive fragments or peptides are produced locally across the seminiferous epithelium through proteolytic cleavage of constituent proteins at the basement membrane and the apical ES. Studies have shown that they are being used to modulate and coordinate cellular functions across the seminiferous epithelium during different stages of the epithelial cycle of spermatogenesis. In this review, we briefly summarize recent findings based on studies using rat testes as a study model regarding the role of these bioactive peptides that serve as a local regulatory network to support spermatogenesis. We also used scRNA-Seq transcriptome datasets in the public domain for OA (obstructive azoospermia) and NAO (non-obstructive azoospermia) human testes versus testes from normal men for analysis in this review. It was shown that there are differential expression of different collagen chains and laminin chains in these testes, suggesting the possibility of a similar local regulatory network in the human testis to support spermatogenesis, and the possible disruption of such network in men is associated with OA and/or NOA.


Assuntos
Colágeno/metabolismo , Perfilação da Expressão Gênica/métodos , Laminina/metabolismo , Análise de Célula Única/métodos , Espermatogênese/genética , Animais , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos
16.
Breast Cancer Res ; 26(1): 91, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835038

RESUMO

BACKGROUND: The aberrant amplification of mammary luminal progenitors is at the origin of basal-like breast cancers associated with BRCA1 mutations. Integrins mediate cell-matrix adhesion and transmit mechanical and chemical signals that drive epithelial stem cell functions and regulate tumor progression, metastatic reactivation, and resistance to targeted therapies. Consistently, we have recently shown that laminin-binding integrins are essential for the expansion and differentiation of mammary luminal progenitors in physiological conditions. As over-expression of the laminin-binding α6 integrin (Itgα6) is associated with poor prognosis and reduced survival in breast cancer, we here investigate the role of Itgα6 in mammary tumorigenesis. METHODS: We used Blg-Cre; Brca1F/F; Trp53F/F mice, a model that phenocopies human basal-like breast cancer with BRCA1 mutations. We generated mutant mice proficient or deficient in Itgα6 expression and followed tumor formation. Mammary tumors and pretumoral tissues were characterized by immunohistochemistry, flow cytometry, RT-qPCR, Western blotting and organoid cultures. Clonogenicity of luminal progenitors from preneoplastic glands was studied in 3D Matrigel cultures. RESULTS: We show that Itga6 deletion favors activation of p16 cell cycle inhibitor in the preneoplastic tissue. Subsequently, the amplification of luminal progenitors, the cell of origin of Brca1-deficient tumors, is restrained in Itgα6-deficient gland. In addition, the partial EMT program operating in Brca1/p53-deficient epithelium is attenuated in the absence of Itgα6. As a consequence of these events, mammary tumor formation is delayed in Itgα6-deficient mice. After tumor formation, the lack of Itgα6 does not affect tumor growth but rather alters their differentiation, resulting in reduced expression of basal cell markers. CONCLUSIONS: Our data indicate that Itgα6 has a pro-tumorigenic role in Blg-Cre; Brca1F/F; Trp53F/F mice developing basal-like mammary tumors. In particular, we reveal that Itgα6 is required for the luminal progenitor expansion and the aberrant partial EMT program that precedes the formation of BRCA1 deficient tumors.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Integrina alfa6 , Proteína Supressora de Tumor p53 , Animais , Integrina alfa6/metabolismo , Integrina alfa6/genética , Feminino , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Camundongos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Células-Tronco/metabolismo , Deleção de Genes , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo
17.
Cancer Sci ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951133

RESUMO

Serum laminin-γ2 monomer (Lm-γ2m) is a potent predictive biomarker for hepatocellular carcinoma (HCC) onset in patients with hepatitis C infection who achieve a sustained virologic response with liver cirrhosis (LC) and for the onset of extrahepatic metastases in early-stage HCC. Although Lm-γ2m involvement in late-stage cancer progression has been well investigated, its precise roles in HCC onset remain to be systematically investigated. Therefore, we analyzed an HCC model, human hepatocytes and cholangiocytes, and surgically resected liver tissues from patients with HCC to understand the roles of Lm-γ2m in HCC onset. Ck-19- and EpCAM-positive hepatic progenitor cells (HPCs) in the liver of pdgf-c transgenic HCC mouse model with ductular reaction showed ectopic expression of Lm-γ2m. Forced expression of Lm-γ2m in hepatocytes adjacent to HPCs resulted in enhanced tumorigenicity, cell proliferation, and migration in immortalized hepatocytes, but not in cholangiocytes in vitro. Further, pharmacological inhibition of epidermal growth factor receptor (EGFR) and c-Jun activator JNK suppressed Lm-γ2m-induced hepatocyte transformation, suggesting the involvement of EGFR/c-Jun signaling in the transformation, leading to HCC development. Finally, immunohistochemical staining of HCC tissues revealed a high level of Lm-γ2 expression in the HPCs of the liver with ductular reaction in normal liver adjacent to HCC tissues. Overall, HPC-derived Lm-γ2m in normal liver with ductular reaction acts as a paracrine growth factor on surrounding hepatocytes and promotes their cellular transformation through the EGFR/c-Jun signaling pathway. Furthermore, this is the first report on Lm-γ2m expression detected in the normal liver with ductular reaction, a human precancerous lesion of HCC.

18.
J Cell Sci ; 135(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468336

RESUMO

Mammary epithelium is a bilayered ductal network composed of luminal and basal epithelial cells, which together drive the growth and functional differentiation of the gland. Basal mammary epithelial cells (MECs) exhibit remarkable plasticity and progenitor activity that facilitate epithelial expansion. However, their activity must be tightly regulated to restrict excess basal cell activity. Here, we show that adhesion of basal cells to laminin α5-containing basement membrane matrix, which is produced by luminal cells, presents such a control mechanism. Adhesion to laminin α5 directs basal cells towards a luminal cell fate, and thereby results in a marked decrease of basal MEC progenitor activity in vitro and in vivo. Mechanistically, these effects are mediated through ß4-integrin and activation of p21 (encoded by CDKN1A). Thus, we demonstrate that laminin matrix adhesion is a key determinant of basal identity and essential to building and maintaining a functional multicellular epithelium.


Assuntos
Células Epiteliais , Laminina , Epitélio , Membrana Basal , Integrina beta4
19.
J Cell Sci ; 135(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239052

RESUMO

Growing evidence indicates that p53 (encoded by TP53) has a crucial role in normal tissue development. The role of the canonical p53 (p53α) and its 12 isoforms in development and homeostasis of healthy tissue remains poorly understood. Here, we demonstrate that the Δ133p53 isoforms, the three short isoforms of p53, respond specifically to laminin-111 and play an important regulatory role in formation of mammary organoids in concert with p53α. We demonstrate that down-modulation of Δ133p53 isoforms leads to changes in gene expression of the extracellular matrix molecules fibronectin (FN), EDA+-FN, laminin α5 and laminin α3 in human breast epithelial cells. These changes resulted in increased actin stress fibers and enhanced migratory behavior of cells in two-dimensional culture. We found that α5ß1-integrin coupled with the extracellularly deposited EDA+-FN activates the Akt signaling pathway in three-dimensional (3D) culture when Δ133p53 is dysregulated. Cells that do not express detectable Δ133p53 isoforms or express low levels of these isoforms failed to form polarized structures in 3D. These results uncover that Δ133p53 isoforms coordinate expression and deposition of organ-specific ECM molecules that are critical for maintenance of tissue architecture and function.


Assuntos
Matriz Extracelular , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Morfogênese/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Expressão Gênica
20.
Biochem Biophys Res Commun ; 724: 150234, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38865812

RESUMO

Vasculature-on-chip (VoC) models have become a prominent tool in the study of microvasculature functions because of their cost-effective and ethical production process. These models typically use a hydrogel in which the three-dimensional (3D) microvascular structure is embedded. Thus, VoCs are directly impacted by the physical and chemical cues of the supporting hydrogel. Endothelial cell (EC) response in VoCs is critical, especially in organ-specific vasculature models, in which ECs exhibit specific traits and behaviors that vary between organs. Many studies customize the stimuli ECs perceive in different ways; however, customizing the hydrogel composition accordingly to the target organ's extracellular matrix (ECM), which we believe has great potential, has been rarely investigated. We explored this approach to organ-specific VoCs by fabricating microvessels (MVs) with either human umbilical vein ECs or human brain microvascular ECs in a 3D cylindrical VoC using a collagen hydrogel alone or one supplemented with laminin and hyaluronan, components found in the brain ECM. We characterized the physical properties of these hydrogels and analyzed the barrier properties of the MVs. Barrier function and tight junction (ZO-1) expression improved with the addition of laminin and hyaluronan in the composite hydrogel.


Assuntos
Colágeno , Células Endoteliais da Veia Umbilical Humana , Ácido Hialurônico , Hidrogéis , Laminina , Microvasos , Junções Íntimas , Humanos , Hidrogéis/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Laminina/química , Laminina/metabolismo , Colágeno/química , Colágeno/metabolismo , Microvasos/metabolismo , Microvasos/efeitos dos fármacos , Junções Íntimas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dispositivos Lab-On-A-Chip , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA