Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Small ; 20(31): e2310912, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38438937

RESUMO

All-solid-state lithium batteries (ASSLBs) are highly promising as next-generation energy storage devices owing to their potential for great safety and high energy density. This work demonstrates that composite solid polymer electrolyte with vertically-aligned card-house structure can simultaneously improve the high rate and long-term cycling performance of ASSLBs. The vertical alignment of laponite nanosheets creates fast and uniform Li+ ion transport channels at the nanosheets/polymer interphase, resulting in high ionic conductivity of 8.9 × 10-4 S cm-1 and Li+ transference number of 0.32 at 60 °C, as well as uniformly distributed solid electrolyte interphase. Such electrolyte is characterized by high mechanical strength, low flammability, excellent structural stability and stable ion transport channels. In addition, the ASSLB cell with the electrolyte and LiFePO4 cathode delivers a high discharge specific capacity of 124.8 mAh g-1, which accounts for 85.6% of its initial capacity after 500 cycles at 1C. The reasonable design through structural control strategy by interconnecting the vertically-aligned nanosheets open a way to fabricate high performance composite solid polymer electrolytes.

2.
Chem Rec ; 24(2): e202300166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37387571

RESUMO

This review aims to provide a literature overview as well as the authors' personal account to the studies of Laponite® (Lap)/Polyethylene-oxide (PEO) based composite materials and their applications. These composites can be prepared over a wide range of their mutual concentrations, they are highly water soluble, and have many useful physico-chemical properties. To the readers' convenience, the contents are subdivided into different sections, related with consideration of PEO properties and its solubility in water, behavior of Lap systems(structure of Lap-platelets, properties of aqueous dispersions of Lap and aging effects in them), analyzing ofproperties LAP/PEO systems, Lap platelets-PEO interactions, adsorption mechanisms, aging effects, aggregation and electrokinetic properties. The different applications of Lap/PEO composites are reviewed. These applications include Lap/PEO based electrolytes for lithium polymer batteries, electrospun nanofibers, environmental, biomedical and biotechnology engineering. Both Lap and PEO are highly biocompatible with living systems and they are non-toxic, non-yellowing, and non-inflammable. Medical applications of Lap/PEO composites in bio-sensing, tissue engineering, drug delivery, cell proliferation, and wound dressings are also discussed.

3.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930887

RESUMO

Laponite® (LAP) is an intensively studied synthetic clay due to the versatility given by its layered structure, which makes it usable in various applications. This review describes the multifaceted properties and applications of LAP in aqueous dispersions and gel systems. The first sections of the review discuss the LAP structure and the interactions between clay discs in an aqueous medium under different conditions (such as ionic strength, pH, temperature, and the addition of polymers) in order to understand the function of clay in tailoring the properties of the designed material. Additionally, the review explores the aging phenomenon characteristic of LAP aqueous dispersions as well as the development of shake-gels by incorporating LAP. The second part shows the most recent studies on materials containing LAP with possible applicability in the drilling industry, cosmetics or care products industry, and biomedical fields. By elucidating the remarkable versatility and ease of integration of LAP into various matrices, this review underscores its significance as a key ingredient for the creation of next-generation materials with tailored functionalities.

4.
Molecules ; 28(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836672

RESUMO

Agro-industrial residues have attracted attention for their applications in the field of biodegradable packaging. Recently, our research group has developed onion-based films with promising properties for this type of application due to their non-toxicity, biocompatibility and biodegradability. Therefore, in this study, we investigated the effect of Laponite clay concentration on the physicochemical and antioxidant properties of the onion-based films, which were prepared by a casting method. The XRD and FTIR data confirm the presence of the mineral clay in the onion-based films. These findings are consistent with those obtained from FE-SEM analysis, which revealed the presence of typical Laponite grains. In terms of wettability, the results show that the clay decreases the hydrophilic character of the material but slightly increases the water vapor permeation. Optical characterization revealed that the materials exhibited zero transmittance in the UV region and increased opacity in the visible region for composites containing 5% and 10% Laponite. Furthermore, the antioxidant test demonstrated higher antioxidant potential in the composites compared to the pure films. Consequently, these results suggest that the formation of Laponite and onion composites could be an essential strategy for developing natural polymers in the field of food contact packaging.

5.
Molecules ; 28(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513359

RESUMO

Epinephrine (EP, also called adrenaline) is a compound belonging to the catecholamine neurotransmitter family. It can cause neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This work describes an amperometric sensor for the electroanalytical detection of EP by using an inkjet-printed graphene electrode (IPGE) that has been chemically modified by a thin layer of a laponite (La) clay mineral. The ion exchange properties and permeability of the chemically modified electrode (denoted La/IPGE) were evaluated using multi-sweep cyclic voltammetry, while its charge transfer resistance was determined by electrochemical impedance spectroscopy. The results showed that La/IPGE exhibited higher sensitivity to EP compared to the bare IPGE. The developed sensor was directly applied for the determination of EP in aqueous solution using differential pulse voltammetry. Under optimized conditions, a linear calibration graph was obtained in the concentration range between 0.8 µM and 10 µM. The anodic peak current of EP was directly proportional to its concentration, leading to detection limits of 0.34 µM and 0.26 µM with bare IPGE and La/IPGE, respectively. The sensor was successfully applied for the determination of EP in pharmaceutical preparations. Recovery rates and the effects of interfering species on the detection of EP were evaluated to highlight the selectivity of the elaborated sensor.


Assuntos
Grafite , Grafite/química , Carbono/química , Argila , Técnicas Eletroquímicas/métodos , Epinefrina/química , Eletrodos , Preparações Farmacêuticas
6.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015934

RESUMO

In this work, an electrode modified with an amino-functionalized clay mineral was used for the electrochemical analysis and quantification of quercetin (QCT). The resulting amine laponite (LaNH2) was used as modifier for a glassy carbon electrode (GCE). The organic-inorganic hybrid material was structurally characterized using X-ray diffraction, Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and CHN elemental analysis. The covalent grafting of the organosilane to the clay backbone was confirmed. The charge on the aminated laponite, both without and with the protonation of NH2 groups, was evaluated via cyclic voltammetry. On the protonated amine (LaNH3+)-modified GCE, the cyclic voltammograms for QCT showed two oxidation peaks and one reduction peak in the range of -0.2 V to 1.2 V in a phosphate buffer-ethanol mixture at pH 3. By using the differential pulse voltammetry (DPV), the modification showed an increase in the electrode performance and a strong pH dependence. The experimental conditions were optimized, with the results showing that the peak current intensity of the DPV increased linearly with the QCT concentration in the range from 2 × 10-7 M to 2 × 10-6 M, leading to a detection limit of 2.63 × 10-8 M (S/N 3). The sensor selectivity was also evaluated in the presence of interfering species. Finally, the proposed aminated organoclay-modified electrode was successfully applied for the detection of QCT in human urine. The accuracy of the results achieved with the sensor was evaluated by comparing the results obtained using UV-visible spectrometry.


Assuntos
Técnicas Eletroquímicas , Quercetina , Aminas , Carbono/química , Argila , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Silicatos
7.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012407

RESUMO

The use of flexible polyurethane foam (FPUF) is severely limited due to its flammability and dripping, which can easily cause major fire hazards. Therefore, choosing an appropriate flame retardant to solve this problem is an urgent need. A coating was prepared on the FPUF surface by dipping with phytic acid (PA), Fe2(SO4)3·xH2O, and laponite (LAP). The influence of PA-Fe/LAP coating on FPUF flame-retardant performance was explored by thermal stability, flame retardancy, combustion behavior, and smoke density analysis. FPUF/PA-Fe/LAP has a good performance in the small fire test, which can pass the UL-94 V-0 rating and the limiting oxygen index reaches 24.5%. Meanwhile, the peak heat release rate values and maximum smoke density of FPUF/PA-Fe/LAP are reduced by 38.7% and 38.5% compared with those of neat FPUF. After applying PA-Fe/LAP coating, the value of fire growth rate index decreases from 10.5 kW/(m2·s) to 5.1 kW/(m2·s), dramatically reducing the fire risk. Encouragingly, the effect of PA-Fe/LAP coating on cyclic compression and permanent deformation is small, which is close to that of neat FPUF. This work provides an effective strategy for making a flame-retardant FPUF with antidripping and keeping mechanical properties.


Assuntos
Retardadores de Chama , Ácido Fítico , Ferro , Poliuretanos , Silicatos , Fumaça
8.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142243

RESUMO

The present work aims to show how the main properties of poly(methacrylic acid) (PMAA) hydrogels can be engineered by means of several silicon-based fillers (Laponite XLS/XLG, montmorillonite (Mt), pyrogenic silica (PS)) employed at 10 wt% concentration based on MAA. Various techniques (FT-IR, XRD, TGA, SEM, TEM, DLS, rheological measurements, UV-VIS) were used to comparatively study the effect of these fillers, in correlation with their characteristics, upon the structure and swelling, viscoelastic, and water decontamination properties of (nano)composite hydrogels. The experiments demonstrated that the nanocomposite hydrogel morphology was dictated by the way the filler particles dispersed in water. The equilibrium swelling degree (SDe) depended on both the pH of the environment and the filler nature. At pH 1.2, a slight crosslinking effect of the fillers was evidenced, increasing in the order Mt < Laponite < PS. At pH > pKaMAA (pH 5.4; 7.4; 9.5), the Laponite/Mt-containing hydrogels displayed a higher SDe as compared to the neat one, while at pH 7.4/9.5 the PS-filled hydrogels surprisingly displayed the highest SDe. Rheological measurements on as-prepared hydrogels showed that the filler addition improved the mechanical properties. After equilibrium swelling at pH 5.4, G' and G" depended on the filler, the Laponite-reinforced hydrogels proving to be the strongest. The (nano)composite hydrogels synthesized displayed filler-dependent absorption properties of two cationic dyes used as model water pollutants, Laponite XLS-reinforced hydrogel demonstrating both the highest absorption rate and absorption capacity. Besides wastewater purification, the (nano)composite hydrogels described here may also find applications in the pharmaceutical field as devices for the controlled release of drugs.


Assuntos
Nanocompostos , Poluentes da Água , Bentonita , Corantes , Preparações de Ação Retardada , Hidrogéis/química , Metacrilatos , Nanocompostos/química , Nanogéis , Silicatos , Silício , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Água
9.
Chem Eng J ; 426: 130763, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131388

RESUMO

Infectious pollutants bioaerosols can threaten human public health. In particular, the indoor environment provides a unique exposure situation to induce infection through airborne transmission like SARS-CoV-2. To prevent the infection from spreading, personal protective equipment or indoor air purification is necessary. However, it has been discovered that the conventional filter can become contaminated by pathogen-containing aerosols, meaning that advanced filtering and self-sterilization systems are required. Here, we fabricate a multilayered nanocoating around the fabric using laponite (LAP) with Cu2+ ions (LAP-Cu2+ nanocoating) two contradictory functions in one system: trapping proteinaceous pathogens and antibacterial effect. Due to the strong LAP-protein interaction, albumin and spike protein (S-protein) are trapped into the fabric when proteins are sprayed using a nebulizer. The protein-blocking performance of the nanocoated fabric is 9.55-fold higher than bare fabric. These trapping capacities are retained after rinsing and repeated adsorption cycles, showing reproducibility for air filtration. Even though the protein-binding occurred, the LAP-Cu2+ fabric indicates antibacterial effect. LAP-Cu2+ fabric has an equivalent air and water transmittance rate to that of bare fabric with a stability under physiological environment. Therefore, given its excellent "Spear-and-shield" functions, the proposed LAP-Cu2+ fabric shows great potential for use in filter and masks during the viral pandemic.

10.
J Biol Phys ; 47(1): 49-59, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33713219

RESUMO

In this work, we consider a ternary system formed by a surfactant with a lamellar phase (lecithin) that was doped with a solution of Laponite at 1% by volume. The inclusion of nanoparticles in the lamellar phase was investigated by the small-angle X-ray scattering (SAXS) technique, which revealed three types of structures according to the observed scattering pattern. The lamellar period increased linearly with hydration up to a certain limit; this type of behavior is not the same as that found for a similar system using AOT as a surfactant. In the region that corresponds to an isotropic phase, it was observed that the period corresponds to 60 Å, and in the lamellar system of pure lecithin, with the same volumetric fraction (1/φ = 0.66), the corresponding periodicity is 62 Å, indicating that the presence of Laponite nanoparticles increases the attractive interaction, reducing the lamellar period, causing the bilayer to become more rigid, that is, with less fluctuations. In the more diluted region, the periodicity reached a limit value of 64 Å, which is slightly higher than the lamellar system in the absence of Laponite particles, so there was an expansion of the lamellar phase due to the lack of consistency of Laponite nanoparticles. In the more concentrated lamellar phase (under strong confinement), it was observed that the distance between the bilayers decreased, establishing a long-range order.


Assuntos
Nanopartículas , Silicatos , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Molecules ; 26(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803244

RESUMO

Cellulose, as a natural polymer with an abundant source, has been widely used in many fields including the electric field responsive medium that we are interested in. In this work, cellulose micron particles were applied as an electrorheological (ER) material. Because of the low ER effect of the raw cellulose, a composite particle of cellulose and Laponite was prepared via a dissolution-regeneration process. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were used to observe the morphologies and structures of the composite particles, which were different from pristine cellulose and Laponite, respectively. The ER performances of raw cellulose and the prepared composite were measured by an Anton Paar rotational rheometer. It was found that the ER properties of the composite were more superior to those of raw cellulose due to the flake-like shapes of the composite particles with rough surface. Moreover, the sedimentation stability of composite improves drastically, which means better suspension stability.


Assuntos
Celulose/química , Eletricidade , Silicatos/química , Microscopia Eletrônica de Varredura/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Suspensões/química , Difração de Raios X/métodos
12.
Chemistry ; 26(11): 2470-2477, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31912555

RESUMO

Multidrug resistance (MDR) is regarded as a main obstacle for effective chemotherapy, and P-glycoprotein (P-gp)-mediated drug efflux has been demonstrated to be the key factor responsible for MDR. In this study, a novel pH-responsive hybrid drug delivery system was developed by conjugating d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), a kind of P-gp inhibitor, on the surface of laponite nanodisks to overcome MDR. The prepared LM-TPGS display excellent colloidal stability, a high encapsulation efficiency of doxorubicin (DOX), and a pH-responsive drug release profile. In vitro experiments verified that LM-TPGS/DOX could exhibit significantly enhanced therapeutic efficacy in treating DOX-resistant breast cancer cells (MCF-7/ADR) through inhibiting the activity of P-gp-mediated drug efflux and effectively accumulating DOX within cancer cells. In vivo results revealed that LM-TPGS/DOX outstandingly suppressed MCF-7/ADR tumors with low side effects. Therefore, the high drug payload, enhanced inhibition efficacy to drug-resistant cells, and low side effects make the LM-TPGS/DOX a promising nanoplatform to reverse MDR for effective chemotherapy.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Nanocápsulas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Composição de Medicamentos/métodos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Vitamina E/química , Vitamina E/metabolismo
13.
Inorganica Chim Acta ; 5082020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32377022

RESUMO

Pickering emulsions, or emulsions with solid particles at the interface, have attracted significant interest in Enhanced Oil Recovery (EOR) processes, cosmetics, and drug delivery systems due to their ability to resist coalescence. Here, a synthetic clay nanoparticle, laponite®, is utilized to create oil-in-water (o/w) emulsions, and the addition of small-molecule surfactants induces a more stable emulsion. In this study, the stability of laponite® Pickering emulsions with and without the surfactants (dodecyltrimethylammonium bromide (DTAB), Pluronic F68 (F68), and sodium dodecyl sulfate (SDS) is investigated using dynamic light scattering (DLS), ζ-potential, optical microscopy, and rheology. With laponite® and no added surfactants, the DLS and ζ-potential results show formation of emulsion droplets with a diameter of 3 µm and a ζ-potential of -90 mV. With the addition of surfactants, both the droplet diameter and ζ-potential increase, suggesting adsorption of surfactants on the surface of laponite® particle. Optical microscopy suggests that the Pickering emulsion without surfactant undergoes flocculation, while the emulsion becomes stable to coalescence and creaming with addition of surfactants due to formation of a network structure. Regardless of the formation of network structure, the laponite®-F68 emulsion rheologically behaves as a Newtonian fluid, while the laponite®-SDS and laponite®-DTAB emulsions display shear thinning behavior. The difference in the rheological behavior can be attributed to the weak adsorption of F68 on laponite® and electrostatic interactions between laponite® and charged surfactants at oil-water interface.

14.
Drug Dev Ind Pharm ; 46(1): 8-19, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31809608

RESUMO

Objective: Brain drug delivery for effective treatment of neurodegenerative disorders is limited due to the selective permeability of blood brain barrier (BBB). During the past few years, development of novel delivery system has attracted considerable attention of formulation scientists to overcome the permeability limitation caused by BBB.Significance: Based on the outcomes of this study and taking into consideration of the unique characteristics of laponite, it can be further explored to deliver many other central nervous system acting drugs.Methods: In the present study, laponite (LAP) nanocomposites were exploited for the improved brain delivery of donepezil (DZ) following encapsulation approach due to their nano-size and positive charge at pH <9.Result: The size of prepared nanocomposites was 53.7 ± 4.0 to 137.7 ± 11.0 nm. The drug was released in a sustained manner till 120 h in phosphate buffer saline (pH 7.4) and acid phthalate buffer (pH 4.0). LAPDZ formulations inhibited acetylcholinesterase approximately by 82%, significantly higher (p < 0.05) than plain DZ (30%). Swiss albino mice exhibited enhanced brain uptake of LAPDZ administered via intravenous route. Promising pharmacokinetic parameters were observed in animals treated with LAPDZ. LAPDZ formulation showed half-life (t1/2), volume of distribution (Vd) and clearance (Cl) as 5.53 ± 0.40 h-1, 0.129 ± 0.02 L, 0.015 ± 0.002 L/h, respectively. While DZ solution showed the same parameters as 1.06 ± 0.12 h-1, 0.168 ± 0.01 L, 0.106 ± 0.013 L/h, respectively. The brain uptake of LAPDZ formulation was improved with quintuplet t1/2.Conclusion: Based on the results of present study, it is proposed that the formulated nanocomposite would result in improved patient compliance with therapeutic effect at lower doses.


Assuntos
Encéfalo/metabolismo , Donepezila/administração & dosagem , Sistemas de Liberação de Medicamentos , Silicatos/química , Animais , Barreira Hematoencefálica/metabolismo , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/farmacocinética , Inibidores da Colinesterase/farmacologia , Donepezila/farmacocinética , Donepezila/farmacologia , Liberação Controlada de Fármacos , Meia-Vida , Humanos , Camundongos , Nanocompostos , Tamanho da Partícula , Distribuição Tecidual
15.
AAPS PharmSciTech ; 21(1): 5, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31749020

RESUMO

As a synthetic clay material, laponite RDS (LR) was investigated as an effective drug carrier as a result of the special nanodisk structure together with the negative-charged surface to achieve enhanced cellular uptake and targeted delivery. In this research work, the synthesized oligomeric hyaluronic acid-aminophenylboronic acid (oHA-APBA) was entangled onto LR nanodisks to fabricate a valid targeted platform for breast cancer therapy. Briefly, through the formation of amide bonds, 3-APBA was connected to the chain of oHA with a substituted ratio of 4.0 ± 0.2% to synthesize oHA-APBA copolymer. Thereafter, doxorubicin (DOX) was inserted into the interlayer space of LR by the way of the ion exchange process, followed by an assembly with oHA-APBA as a targeted protection layer. The satisfactory drug encapsulation efficiency (> 80%) and narrow size distribution were achieved. The in vitro drug release study demonstrated the release of DOX from DOX@LR/oHA-APBA was sustained and acid dependent. In addition, after fitting the drug cumulative release of DOX@LR/oHA-APBA under different pH conditions with several kinetic models, it was identified that drug release from DOX@LR/oHA-APBA nanohybrids at pH 5.0 was mainly dependent on both diffusion and ion exchange effects. However, under the condition of pH 7.4, the drug was most efficiently released by diffusion effect. Importantly, DOX@LR/oHA-APBA showed remarkable cellular uptake and intracellular drug distribution in MCF-7 cells, which were consistent with inhibitory ability against MCF-7 cells. Hence, the high DOX loading capacity and enhanced cellular tracking can enlighten LR/oHA-APBA as an effective drug delivery carrier for breast cancer therapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Antibióticos Antineoplásicos/química , Ácidos Borônicos , Sobrevivência Celular , Doxorrubicina/química , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Ácido Hialurônico , Concentração de Íons de Hidrogênio , Cinética , Células MCF-7 , Nanoestruturas , Silicatos
16.
J Food Sci Technol ; 56(5): 2545-2552, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31168136

RESUMO

In this work, the nano composites of carrageenan/AgNPs/Laponite were prepared and coated on the oxygen plasma surface modified polypropylene film to enhance the barrier and adhesion properties. The mechanical, barrier, adhesion and antimicrobial properties were also studied to use for food packaging applications. The polypropylene film was surface modified with oxygen plasma treatment for 60 s. The AgNPs are prepared by green synthesis method from the Digitalis purpurea plant. Then the carrageenan based nanocomposites were coated by roller coating method with the thickness of 24 µm. By using scanning electron microscopy, the morphology of the coating was investigated. The Laponite and AgNPs dispersion was analyzed by X-ray diffraction analysis. The tensile and adhesion strength of the coated film was increased and the OTR and WVTR were decreased after the incorporation of Laponite and AgNPs. It exhibited the strong antimicrobial activity against the E. coli and S. aureus.

17.
Mol Pharm ; 15(9): 4148-4160, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30067372

RESUMO

Solid-state lipid-based formulations offer great potential for the improved oral delivery of poorly water-soluble drugs. This study investigates the use of the high-surface-area clay materials, montmorillonite and laponite, as solid carriers for lipid-based formulations. The unique cation-exchange properties of clay platelets were exploited to preload the ionizable hydrophobic compound, blonanserin, prior to encapsulating a drug-loaded lipid solution. Thus, solid-state lipid-based formulations with dual-loading capabilities were developed and studied. These formulations were compared with simple clay-based lipid formulations, where blonanserin was loaded in the lipid phase only. The drug release behavior of all clay-based formulations was assessed during in vitro dissolution studies under simulated gastric conditions and in vitro fasting intestinal lipolysis studies. Montmorillonite- and laponite-based lipid formulations significantly reduced blonanserin solubilization relative to a control lipid solution and silica-lipid hybrid particles, owing to incomplete drug release from the clay cation-exchange sites. This phenomenon was replicated during in vivo pharmacokinetic studies, whereby the bioavailability of simple clay-based lipid formulations was decreased relative to controls. Importantly, the solid-state dual-loaded montmorillonite-based lipid formulation provided an optimal pharmacokinetic performance, achieving the same degree of bioavailability enhancement as the control lipid solution. These findings indicate the potential of solid-state dual-loaded clay-based lipid formulations for increasing drug loading levels and enhancing the oral absorption of poorly soluble weak base compounds.


Assuntos
Bentonita/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Lipídeos/química , Piperazinas/química , Piperidinas/química , Silicatos/química , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos/métodos , Microscopia Eletrônica de Varredura , Difração de Raios X
18.
Pharm Res ; 36(1): 21, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30519891

RESUMO

PURPOSE: To explore the feasibility of spray dried smectite clay particles fabricated from montmorillonite or laponite materials for adsorbing dietary lipids and reducing rodent weight gain in vivo. METHODS: Spray dried montmorillonite (SD-MMT) and spray dried laponite (SD-LAP) particles were prepared via spray drying. Particle morphology, surface area and redispersion/aggregation properties in aqueous media were characterized. The ability of SD-MMT and SD-LAP particles to inhibit lipid digestion kinetics and adsorb lipid species from solution was assessed during in vitro lipolysis using proton nuclear magnetic resonance analysis. SD-MMT and SD-LAP particles were dosed to rodents fed a high-fat diet and their effect on body weight gain was evaluated. RESULTS: Both SD-MMT and SD-LAP particles adsorbed significant quantities of medium chain triglycerides and lipolytic products from solution during in vitro lipolysis. At a concentration of 50% w/w relative to lipid content, SD-MMT and SD-LAP particles adsorbed 42% and 94% of all lipid species, respectively. SD-MMT and SD-LAP particles also reduced the extent of rodent weight gain relative to the negative control treatment group and performed similarly to orlistat via an alternate mechanism of action. CONCLUSIONS: Spray dried smectite clay particles (SD-MMT and SD-LAP) with significant adsorptive capacities for dietary lipids and digestion products were successfully fabricated. These particles may be developed as novel anti-obesity treatments with fewer adverse effects than currently marketed treatment options.


Assuntos
Bentonita/farmacologia , Obesidade/tratamento farmacológico , Silicatos/farmacologia , Adsorção/efeitos dos fármacos , Animais , Bentonita/química , Bentonita/farmacocinética , Peso Corporal/efeitos dos fármacos , Lipase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Masculino , Nanopartículas/uso terapêutico , Obesidade/metabolismo , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Silicatos/química , Silicatos/farmacocinética , Triglicerídeos/metabolismo
19.
Graefes Arch Clin Exp Ophthalmol ; 256(3): 535-546, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29353344

RESUMO

PURPOSE: To study the safety and biocompatibility of Laponite clay (LAP) within an intravitreal and suprachoroidal administration in rabbit eyes. METHODS: Thirty-two New Zealand albino rabbits were divided into two experimental groups to test intravitreal (IVT group) and suprachoroidal (SCS group) administration of a 100-µl and 50-µl Laponite suspension respectively. Following injection, the eyes were monitored by ocular tonometry, slit-lamp eye examination and indirect ophthalmoscopy, at 24 h, 1, 4, 12, and 14 weeks post administration. Histological examination was also performed to determine whether any ocular pathological change had occurred. Throughout the study, LAP presence in vitreous was estimated by complexometric titration with ethylenediaminetetraacetic acid (EDTA), taking advantage of the Laponite high content of magnesium ions. RESULTS: Neither significant differences in the intraocular pressure, nor relevant ocular complications were found in the two experimental groups after LAP administration. The histology of the retina remained unchanged. LAP presence in vitreous could be indirectly confirmed by complexometric titration until 14 weeks post administration in eyes of IVT group. CONCLUSION: Laponite could be considered as a vehicle for potential clinical use in ocular drug administration, due to its proven ocular biocompatibility and its transparency in gel state.


Assuntos
Retina/patologia , Doenças Retinianas/tratamento farmacológico , Silicatos/administração & dosagem , Visão Ocular , Silicatos de Alumínio/administração & dosagem , Animais , Materiais Biocompatíveis/administração & dosagem , Argila , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Injeções Intravítreas , Oftalmoscopia , Coelhos , Retina/efeitos dos fármacos , Retina/fisiopatologia , Doenças Retinianas/diagnóstico , Doenças Retinianas/fisiopatologia
20.
Nanomedicine ; 14(7): 2407-2420, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28552649

RESUMO

Laponite® is a synthetic smectite clay that already has many important technological applications, which go beyond the conventional uses of clays in pharmaceutics and cosmetics. In biomedical applications, particularly in nanomedicine, this material holds great potential. Laponite® is a 2-dimensional (2D) nanomaterial composed of disk-shaped nanoscale crystals that have a high aspect ratio. These disks can strongly interact with many types of chemical entities (from small molecules or ions, to natural or synthetic polymers, to different inorganic nanoparticles) and are also easily functionalized and readily degraded in the physiological environment giving rise to non-toxic and even bioactive products. This review will highlight the potential of Laponite® as a nanomaterial in the fields of drug delivery, bioimaging, tissue engineering and regenerative medicine. New concepts, as well as novel innovative materials that stand out from the usual ones due to the unique properties of Laponite®, will also be presented and discussed.


Assuntos
Pesquisa Biomédica , Nanomedicina , Nanopartículas/administração & dosagem , Medicina Regenerativa , Silicatos/química , Engenharia Tecidual , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA