Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 15(1): 709-13, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25434747

RESUMO

Transition metal dichacogenides represent a unique class of two-dimensional layered materials that can be exfoliated into single or few atomic layers. Tungsten diselenide (WSe(2)) is one typical example with p-type semiconductor characteristics. Bulk WSe(2) has an indirect band gap (∼ 1.2 eV), which transits into a direct band gap (∼ 1.65 eV) in monolayers. Monolayer WSe(2), therefore, is of considerable interest as a new electronic material for functional electronics and optoelectronics. However, the controllable synthesis of large-area WSe(2) atomic layers remains a challenge. The studies on WSe(2) are largely limited by relatively small lateral size of exfoliated flakes and poor yield, which has significantly restricted the large-scale applications of the WSe(2) atomic layers. Here, we report a systematic study of chemical vapor deposition approach for large area growth of atomically thin WSe(2) film with the lateral dimensions up to ∼ 1 cm(2). Microphotoluminescence mapping indicates distinct layer dependent efficiency. The monolayer area exhibits much stronger light emission than bilayer or multilayers, consistent with the expected transition to direct band gap in the monolayer limit. The transmission electron microscopy studies demonstrate excellent crystalline quality of the atomically thin WSe(2). Electrical transport studies further show that the p-type WSe(2) field-effect transistors exhibit excellent electronic characteristics with effective hole carrier mobility up to 100 cm(2) V(-1) s(-1) for monolayer and up to 350 cm(2) V(-1) s(-1) for few-layer materials at room temperature, comparable or well above that of previously reported mobility values for the synthetic WSe(2) and comparable to the best exfoliated materials.


Assuntos
Semicondutores , Compostos de Tungstênio/química
2.
Adv Mater ; 36(4): e2308301, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37929619

RESUMO

In2 Se3 , 2D ferroelectric-semiconductor, is a promising candidate for next-generation memory device because of its outstanding electrical properties. However, the large-area manufacturing of In2 Se3 is still a big challenge. In this work, spray pyrolysis technique is introduced for the growth of large-area In2 Se3 thin film. A polycrystalline γ-In2 Se3 layer can be grown on 15 cm × 15 cm glasss at the substrate temperature of 275 °C. The In2 Se3 ferroelectric-semiconductor field effect transistor (FeS-FET) on glass substrate demonstrates a large hysteresis window of 40.3 V at the ±40 V of gate voltage sweep and excellent uniformity. The FeS-FET exhibits an electron field effect mobility of 0.97 cm2 V-1 s-1 and an on/off current ratio of >107 in the transfer curves. The memory behavior of the large-area, In2 Se3 FeS-FETs for next-generation memory is demonstrated.

3.
Nanomaterials (Basel) ; 12(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335786

RESUMO

Molybdenum disulfide (MoS2) got tremendous attention due to its atomically thin body, rich physics, and high carrier mobility. The controlled synthesis of large area and high crystalline monolayer MoS2 nanosheets on diverse substrates remains a challenge for potential practical applications. Synthesizing different structured MoS2 nanosheets with horizontal and vertical orientations with respect to the substrate surface would bring a configurational versatility with benefit for numerous applications, including nanoelectronics, optoelectronics, and energy technologies. Among the proposed methods, ambient pressure chemical vapor deposition (AP-CVD) is a promising way for developing large-scale MoS2 nanosheets because of its high flexibility and facile approach. Here, we show an effective way for synthesizing large-scale horizontally and vertically aligned MoS2 on different substrates such as flat SiO2/Si, pre-patterned SiO2 and conductive substrates (TaN) benefit various direct TMDs production. In particular, we show precise control of CVD optimization for yielding high-quality MoS2 layers by changing growth zone configuration and the process steps. We demonstrated that the influence of configuration variability by local changes of the S to MoO3 precursor positions in the growth zones inside the CVD reactor is a key factor that results in differently oriented MoS2 formation. Finally, we show the layer quality and physical properties of as-grown MoS2 by means of different characterizations: Raman spectroscopy, scanning electron microscopy (SEM), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). These experimental findings provide a strong pathway for conformally recasting AP-CVD grown MoS2 in many different configurations (i.e., substrate variability) or motifs (i.e., vertical or planar alignment) with potential for flexible electronics, optoelectronics, memories to energy storage devices.

4.
ACS Appl Mater Interfaces ; 12(11): 13174-13181, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32103663

RESUMO

Growth of large-area, uniform, and high-quality monolayer transition-metal dichalcogenides (TMDs) for practical and industrial applications remains a long-standing challenge. The present study demonstrates a modified predeposited chemical vapor deposition (CVD) process by employing an annealing procedure before sulfurization, which helps in achieving large-area, highly uniform, and high-quality TMDs on various substrates. The annealing procedure resulted in a molten liquid state of the precursors in the CVD process, which not only facilitated a uniform redistribution of the precursor on the substrate (avoid the aggregation) because of the uniform redistribution of the liquid precursor on the substrate but more importantly avoided the undesired multilayer growth via the self-limited lateral supply precursors mechanism. A 2 in. uniform and continuous monolayer WS2 film has been synthesized on the SiO2/Si substrate. Moreover, uniform monolayer WS2 single crystals can be prepared on more general and various substrates including sapphire, mica, quartz, and Si3N4 using the same growth procedure. Besides, this growth mechanism can be generalized to synthesize other monolayer TMDs such as MoS2 and MoS2/WS2 heterostructures. Hence, the present method provides a generalized attractive strategy to grow large-area, uniform, single-layer two-dimensional (2D) materials. This study has significant implications in the advancement of batch production of various 2D-material-based devices for industrial and commercial applications.

5.
ACS Appl Mater Interfaces ; 12(39): 44335-44344, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32877158

RESUMO

Van der Waals heterostructures have attracted increasing interest, owing to the combined benefits of their constituents. These hybrid nanostructures can be realized via epitaxial growth, which offers a promising approach for the controlled synthesis of the desired crystal phase and the interface between van der Waals layers. Here, the epitaxial growth of a continuous molybdenum disulfide (MoS2) film on large-area graphene, which was directly grown on a sapphire substrate, is reported. Interestingly, the grain size of MoS2 grown on graphene increases, whereas that of MoS2 grown on SiO2 decreases with an increasing amount of hydrogen in the chemical vapor deposition reactor. In addition, to achieve the same quality, MoS2 grown on graphene requires a much lower growth temperature (400 °C) than that grown on SiO2 (580 °C). The MoS2/graphene heterostructure that was epitaxially grown on a transparent platform was investigated to explore its photosensing properties and was found to exhibit inverse photoresponse with highly uniform photoresponsivity in the photodetector pixels fabricated across a full wafer. The MoS2/graphene heterostructure exhibited ultrahigh photoresponsivity (4.3 × 104 A W-1) upon exposure to visible light of a wide range of wavelengths, confirming the growth of a high-quality MoS2/graphene heterostructure with a clean interface.

6.
Nanomicro Lett ; 9(4): 52, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30393747

RESUMO

ABSTRACT: Organic field-effect transistors (OFETs) based on organic micro-/nanocrystals have been widely reported with charge carrier mobility exceeding 1.0 cm2 V-1 s-1, demonstrating great potential for high-performance, low-cost organic electronic applications. However, fabrication of large-area organic micro-/nanocrystal arrays with consistent crystal growth direction has posed a significant technical challenge. Here, we describe a solution-processed dip-coating technique to grow large-area, aligned 9,10-bis(phenylethynyl) anthracene (BPEA) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) single-crystalline nanoribbon arrays. The method is scalable to a 5 × 10 cm2 wafer substrate, with around 60% of the wafer surface covered by aligned crystals. The quality of crystals can be easily controlled by tuning the dip-coating speed. Furthermore, OFETs based on well-aligned BPEA and TIPS-PEN single-crystalline nanoribbons were constructed. By optimizing channel lengths and using appropriate metallic electrodes, the BPEA and TIPS-PEN-based OFETs showed hole mobility exceeding 2.0 cm2 V-1 s-1 (average mobility 1.2 cm2 V-1 s-1) and 3.0 cm2 V-1 s-1 (average mobility 2.0 cm2 V-1 s-1), respectively. They both have a high on/off ratio (I on/I off) > 109. The performance can well satisfy the requirements for light-emitting diodes driving.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA