Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Small ; : e2403420, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136202

RESUMO

Precisely controlling the directional motion trajectories of droplets on anisotropic 3D functional surfaces has great application potential in self-cleaning, drug delivery, and droplet power generation, but it also faces huge challenges. Herein, inspired by the microcone structure in the heart of sunflowers, a nanoneedle-modified microcone array surface (NMAS) is reported. The surface is created using a combination of nanosecond laser direct engraving and electroforming and is subsequently fluorinated. Through programmable control of the laser spot, the geometric parameters and inclination angle of the microcone can be quickly and finely adjusted, thereby achieving precise control of the droplet bouncing trajectory. The results show that droplets can achieve programmable multiple bouncing behaviors on patterned functional surfaces, including gravity-defying hopping and directional water transport. It is worth noting that this functional surface has delayed freezing and anti-freezing effects. Furthermore, this functional surface has a wide range of potential applications, including surface self-cleaning, droplet capture, and droplet-based chemical microreactions, especially in the field of anti-icing operations. This opens up a new way for the directional transport of droplets on biomimetic functional surfaces.

2.
Small ; 19(29): e2207723, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37046182

RESUMO

Self-powered integrated sensor with high-sensitivity physiological signals detection is indispensable for next-generation wearable electronic devices. Herein, a Ti3 C2 Tx /CNTs-based self-powered resistive sensor with solar cells and in-plane micro-supercapacitors (MSCs) is successfully realized on a flexible styrene-ethylene/butylene-styrene (SEBS) electrospinning film. The prepared Ti3 C2 Tx /CNTs@SEBS/CNTs nanofiber membranes exhibit high electrical conductivity and mechanical flexibility. The laser-assisted fabricated Ti3 C2 Tx /CNTs based-MSCs demonstrate a high areal energy density of 52.89 and 9.56 µWh cm-2 with a corresponding areal power density of 0.2 and 4 mW cm-2 . Additionally, the MSCs exhibit remarkable capacity retention of 90.62% after 10 000 cycles. Furthermore, the Ti3 C2 Tx /CNTs based-sensor exhibits real-time detection capability for human facial micro-expressions and pulse single under physiological conditions. The repeated bending/release tests indicate the long-time cycle stability of the Ti3 C2 Tx /CNTs based-sensor. Owing to the excellent sensing performance, the sensing array was also fabricated. It is believed that this work develops a route for designing a self-powered sensor system with flexible production, high performance, and human-friendly characteristics for wearable electronics.

3.
Small ; 19(22): e2300469, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855777

RESUMO

Microactuators can autonomously convert external energy into specific mechanical motions. With the feature sizes varying from the micrometer to millimeter scale, microactuators offer many operation and control possibilities for miniaturized devices. In recent years, advanced microfluidic techniques have revolutionized the fabrication, actuation, and functionalization of microactuators. Microfluidics can not only facilitate fabrication with continuously changing materials but also deliver various signals to stimulate the microactuators as desired, and consequently improve microfluidic chips with multiple functions. Herein, this cross-field that systematically correlates microactuator properties and microfluidic functions is comprehensively reviewed. The fabrication strategies are classified into two types according to the flow state of the microfluids: stop-flow and continuous-flow prototyping. The working mechanism of microactuators in microfluidic chips is discussed in detail. Finally, the applications of microactuator-enriched functional chips, which include tunable imaging devices, micromanipulation tools, micromotors, and microsensors, are summarized. The existing challenges and future perspectives are also discussed. It is believed that with the rapid progress of this cutting-edge field, intelligent microsystems may realize high-throughput manipulation, characterization, and analysis of tiny objects and find broad applications in various fields, such as tissue engineering, micro/nanorobotics, and analytical devices.

4.
Sensors (Basel) ; 23(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765811

RESUMO

This paper reports a fiber in-line Fabry-Perot interferometer (FPI) fabricated in a no-core fiber using the direct femtosecond laser writing technique for high-temperature sensing applications. Two in-line reflectors are directly inscribed in a no-core fiber to construct a low-finesse FPI. Fringe visibility greater than 10 dB is obtained from the reflection spectra of the fabricated no-core fiber FPIs. Temperature responses of a prototype no-core fiber FPI are characterized up to 1000 °C. The proposed configuration is compact and easy to fabricate, making it attractive for sensing applications in high-temperature harsh environments.

5.
Molecules ; 26(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34684687

RESUMO

All-dielectric nanoparticles, as the counterpart of metallic nanostructures have recently attracted significant interest in manipulating light-matter interaction at a nanoscale. Directional scattering, as an important property of nanoparticles, has been investigated in traditional high refractive index materials, such as silicon, germanium and gallium arsenide in a narrow band range. Here in this paper, we demonstrate that a broadband forward scattering across the entire visible range can be achieved by the low loss TiO2 nanoparticles with moderate refractive index. This mainly stems from the optical interferences between the broadband electric dipole and the magnetic dipole modes. The forward/backward scattering ratio reaches maximum value at the wavelengths satisfying the first Kerker's condition. Experimentally, the femtosecond pulsed laser was employed to splash different-sized nanoparticles from a thin TiO2 film deposited on the glass substrate. Single particle scattering measurement in both the forward and backward direction was performed by a homemade confocal microscopic system, demonstrating the broadband forward scattering feature. Our research holds great promise for many applications such as light harvesting, photodetection and on-chip photonic devices and so on.

6.
Molecules ; 26(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198596

RESUMO

Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria represent major infectious threats in the hospital environment due to their wide distribution, opportunistic behavior, and increasing antibiotic resistance. This study reports on the deposition of polyvinylpyrrolidone/antibiotic/isoflavonoid thin films by the matrix-assisted pulsed laser evaporation (MAPLE) method as anti-adhesion barrier coatings, on biomedical surfaces for improved resistance to microbial colonization. The thin films were characterized by Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy. In vitro biological assay tests were performed to evaluate the influence of the thin films on the development of biofilms formed by Gram-positive and Gram-negative bacterial strains. In vitro biocompatibility tests were assessed on human endothelial cells examined for up to five days of incubation, via qualitative and quantitative methods. The results of this study revealed that the laser-fabricated coatings are biocompatible and resistant to microbial colonization and biofilm formation, making them successful candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Flavonoides/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/química , Flavonoides/química , Lasers/normas , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
7.
Int J Mol Sci ; 19(7)2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011926

RESUMO

Cell responses depend on the stimuli received by the surrounding extracellular environment, which provides the cues required for adhesion, orientation, proliferation, and differentiation at the micro and the nano scales. In this study, discontinuous microcones on silicon (Si) and continuous microgrooves on polyethylene terephthalate (PET) substrates were fabricated via ultrashort pulsed laser irradiation at various fluences, resulting in microstructures with different magnitudes of roughness and varying geometrical characteristics. The topographical models attained were specifically developed to imitate the guidance and alignment of Schwann cells for the oriented axonal regrowth that occurs in nerve regeneration. At the same time, positive replicas of the silicon microstructures were successfully reproduced via soft lithography on the biodegradable polymer poly(lactide-co-glycolide) (PLGA). The anisotropic continuous (PET) and discontinuous (PLGA replicas) microstructured polymeric substrates were assessed in terms of their influence on Schwann cell responses. It is shown that the micropatterned substrates enable control over cellular adhesion, proliferation, and orientation, and are thus useful to engineer cell alignment in vitro. This property is potentially useful in the fields of neural tissue engineering and for dynamic microenvironment systems that simulate in vivo conditions.


Assuntos
Materiais Biocompatíveis/química , Ácido Láctico/química , Polietilenotereftalatos/química , Ácido Poliglicólico/química , Células de Schwann/citologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Ácido Láctico/farmacologia , Lasers , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Células de Schwann/fisiologia , Silício/química , Propriedades de Superfície , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
8.
Biomed Microdevices ; 19(4): 85, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28929304

RESUMO

In this paper, we report the development and demonstration of a method to fabricate an all-glass microfluidic cell culturing device without circulation flow. On-chip microfluidic cell culturing is an indispensable technique for cellular replacement therapies and experimental cell biology. Polydimethylsiloxane (PDMS) have become a popular material for fabricating microfluidic cell culture devices because it is a transparent, biocompatible, deformable, easy-to-mold, and gas-permeable. However, PDMS is also a chemically and physically unstable material. For example, PDMS undergoes aging easily even in room temperature conditions. Therefore, it is difficult to control long term experimental culturing conditions. On the other hand, glass is expected to be stable not only in physically but also chemically even in the presence of organic solvents. However, cell culturing still requires substance exchanges such as gases and nutrients, and so on, which cannot be done in a closed space of a glass device without circulation flow that may influence cell behavior. Thus, we introduce a filter structure with micropores onto a glass device to improve permeability to the cell culture space. Normally, it is extremely difficult to fabricate a filter structure on a normal glass plate by using a conventional fabrication method. Here, we demonstrated a method for fabricating an all-glass microfluidic cell culturing device having filters structure. The function of this all-glass culturing device was confirmed by culturing HeLa, fibroblast and ES cells. Compared with the closed glass devices without a filter structure, the numbers of cells in our device increased and embryonic bodies (EBs) were formed. This method offers a new tool in microfluidic cell culture technology for biological analysis and it expands the field of microfluidic cell culture.


Assuntos
Técnicas de Cultura de Células , Corpos Embrioides/metabolismo , Vidro , Dispositivos Lab-On-A-Chip , Lasers , Membranas Artificiais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Corpos Embrioides/citologia , Células HeLa , Humanos
9.
ACS Appl Mater Interfaces ; 16(34): 45732-45744, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39155638

RESUMO

Hierarchical microstructures are widely recognized as one of the most effective components for enhancing the performance of flexible pressure sensors. However, the rapid and controllable fabrication of pressure sensing layers with hierarchical microstructures remains a significant challenge. In this study, we propose a method that utilizes laser-induced microscale shrinkage of shape memory polymers to enable rapid and controllable fabrication of hierarchical microstructures for high-performance pressure sensing. We systematically investigate the influence of UV laser fabrication parameters on the architecture and morphology of hierarchical microstructures. A flexible pressure sensor, equipped with optimized hierarchical microstructures, exhibits a high sensitivity larger than 15 kPa-1 and excellent linearity (R2 = 0.994) in a range from 0 to 200 kPa. It features response and recovery times of 57 and 62 ms, respectively, and maintains good stability, enduring over 5,000 cycles. The laser-induced shrinkage of shape memory polymers offers an effective method for the fabrication of hierarchical microstructures, holding great potential to boost the performance of flexible pressure sensors in applications within intelligent robotics and wearable healthcare.

10.
Adv Mater ; 36(35): e2400236, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38563243

RESUMO

Skin-interfaced high-sensitive biosensing systems to detect electrophysiological and biochemical signals have shown great potential in personal health monitoring and disease management. However, the integration of 3D porous nanostructures for improved sensitivity and various functional composites for signal transduction/processing/transmission often relies on different materials and complex fabrication processes, leading to weak interfaces prone to failure upon fatigue or mechanical deformations. The integrated system also needs additional adhesive to strongly conform to the human skin, which can also cause irritation, alignment issues, and motion artifacts. This work introduces a skin-attachable, reprogrammable, multifunctional, adhesive device patch fabricated by simple and low-cost laser scribing of an adhesive composite with polyimide powders and amine-based ethoxylated polyethylenimine dispersed in the silicone elastomer. The obtained laser-induced graphene in the adhesive composite can be further selectively functionalized with conductive nanomaterials or enzymes for enhanced electrical conductivity or selective sensing of various sweat biomarkers. The possible combination of the sensors for real-time biofluid analysis and electrophysiological signal monitoring with RF energy harvesting and communication promises a standalone stretchable adhesive device platform based on the same material system and fabrication process.


Assuntos
Lasers , Humanos , Dimetilpolisiloxanos/química , Técnicas Biossensoriais/instrumentação , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Grafite/química , Suor/química , Polietilenoimina/química
11.
Small Methods ; : e2400038, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593365

RESUMO

Self-cleaning and anti-biofouling are both advantages for lotus-leaf-like superhydrophobic surfaces. Methods for creating superhydrophobicity, including chemical bonding low surface energy molecular fragments and constructing surface morphology with protrusions, micropores, and trapped micro airbags by traditional physical strategies, unfortunately, have encountered challenges. They often involve complex synthesis processes, stubborn chemical accumulation, brutal degradation, or infeasible calculation and imprecise modulation in fabricating hierarchical surface roughness. Here, a scalable method to prepare high-quality, breathable superhydrophobic membranes is proposed by developing a successive roll-to-roll laser manufacturing technique, which offers advantages over conventional fabrication approaches in enabling automatically large-scale production and ensuring cost-effectiveness. Nanosecond laser writing and femtosecond laser drilling produce surface microstructures and micropore arrays, respectively, endowing the membrane with superior antiwater capability with hierarchical microstructures forming a barrier and blocking water infiltration. The membrane's breathability is carefully optimized by tailoring micropore arrays to allow for the adequate passage of water vapor while maintaining superhydrophobicity. These membranes combine the benefits of anti-aqueous corrosive liquid behaviors, photothermal effects, thermoplastic properties, and stretchable performances as promising comprehensive materials in diverse scenes.

12.
Adv Mater ; 36(21): e2312570, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38359909

RESUMO

Flexible photo-thermoelectric (PTE) devices have great application prospects in the fields of solar energy conversion, ultrabroadband light detection, etc. A suitable manufacturing process to avoid the substrate effects as well as to create a narrow transition area between p-n modules for high-performance freestanding flexible PTE devices is highly desired. Herein, an automated laser fabrication (ALF) method is reported to construct the PTE devices with rylene-diimide-doped n-type single-walled carbon nanotube (SWCNT) films. The wet-compressing approach is developed to improve the thermoelectric power factors and figure of merit (ZT) of the SWCNT hybrid films. Then, the films are cut and patterned automatically to make PTE devices with various structures by the proposed ALF method. The freestanding PTE device with a narrow transition area of ≈2-3 µm between the p and n modules exhibits a high-power density of 0.32 µW cm-2 under the light of 200 mW cm-2, which is among the highest level for freestanding-film-based PTE devices. The results pave the way for the automatic production process of PTE devices for green power generation and ultrabroadband light detection.

13.
J Mol Catal B Enzym ; 95(100): 111-117, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24187515

RESUMO

Biocatalytic synthesis in continuous-flow microreactors is of increasing interest for the production of specialty chemicals. However, the yield of production achievable in these reactors can be limited by the adverse effects of high substrate concentration on the biocatalyst, including inhibition and denaturation. Fed-batch reactors have been developed in order to overcome this problem, but no continuous-flow solution exists. We present the design of a novel multi-input microfluidic reactor, capable of substrate feeding at multiple points, as a first step towards overcoming these problems in a continuous-flow setting. Using the transketolase-(TK) catalysed reaction of lithium hydroxypyruvate (HPA) and glycolaldehyde (GA) to l-erythrulose (ERY), we demonstrate the transposition of a fed-batch substrate feeding strategy to our microfluidic reactor. We obtained a 4.5-fold increase in output concentration and a 5-fold increase in throughput compared with a single input reactor.

14.
J Colloid Interface Sci ; 629(Pt A): 582-592, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36088703

RESUMO

Photothermal responsive slippery surfaces with switchable superwettability are promising in the fields of biomedicine, self-cleaning, anti-corrosion, and lab-on-a-chip systems. However, the development of a light switchable slippery surface that combines high-performance photothermal materials with hierarchical microstructures of special orientation remains challenging, which limits the applications in anisotropic droplet manipulation. Herein, we demonstrate a photothermal responsive slippery surface based on laser-structured graphene and polyvinylidene difluoride composites (L-G@PVDF) for controllable droplet manipulation. The L-G@PVDF film exhibits high light absorption (∼95.4%) in the visible and NIR region. After lubricating with paraffin, the resultant surface shows excellent self-healing ability and light-responsive wettability change due to the photothermal effect of L-G@PVDF and the hot melting effect of paraffin. Additionally, by introducing anisotropic grooved structures, the paraffin-infused L-G@PVDF surface displays anisotropic wettability that further affects droplet manipulation under light irradiation. Also, the photothermal responsive slippery property endows the paraffin-infused L-G@PVDF surface with excellent anti-frosting and de-icing capability. Moreover, the smart paraffin-infused L-G@PVDF surface can be combined with a microfluidics chip for light-driven automatic sampling. This study offers insight into the rational design of photothermal responsive slippery surfaces for controllable droplet manipulation.


Assuntos
Grafite , Grafite/química , Parafina , Molhabilidade , Lasers
15.
ACS Nano ; 17(21): 21443-21454, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37857269

RESUMO

Photolithography is a well-established fabrication method for realizing multilayer electronic circuits. However, it is challenging to adopt photolithography to fabricate intrinsically stretchable multilayer electronic circuits fully composed of an elastomeric matrix, due to the opacity of thick stretchable nanocomposite conductors. Here, we present photothermal lithography that can pattern elastomeric conductors and via holes using pulsed lasers. The photothermal-patterned stretchable nanocomposite conductor exhibits 3 times higher conductivity (5940 S cm-1) and 5 orders of magnitude lower resistance change (R/R0 = 40) under a 30% strained 5000th cyclic stretch, compared to those of a screen-printed conductor, based on the percolation network formed by spatial heating of the laser. In addition, a 50 µm sized stretchable via holes can be patterned on the passivation without material ablation and electrical degradation of the bottom conductor. By repeatedly patterning the conductor and via holes, highly conductive and durable multilayer circuits can be stacked with layer-by-layer material integration. Finally, a stretchable wireless pressure sensor and passive matrix LED array are demonstrated, thus showing the potential for a stretchable multilayer electronic circuit with durability, high density, and multifunctionality.

16.
Materials (Basel) ; 16(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38005154

RESUMO

The conversion of metal-organic frameworks (MOFs) into advanced functional materials offers a promising route for producing unique nanomaterials. MOF-derived systems have the potential to overcome the drawbacks of MOFs, such as low electrical conductivity and poor structural stability, which have hindered their real-world applications in certain cases. In this study, laser scribing was used for pyrolysis of a Cu-based MOF ([Cu4{1,4-C6H4(COO)2}3(4,4'-bipy)2]n) to synthesize a Cu-CuO@C composite on the surface of a screen-printed electrode (SPE). Scanning electron microscopy, X-ray diffractometry, and Energy-dispersive X-ray spectroscopy were used for the investigation of the morphology and composition of the fabricated electrodes. The electrochemical properties of Cu-CuO@C/SPE were studied by cyclic voltammetry and differential pulse voltammetry. The proposed flexible electrochemical Cu-CuO@C/SPE sensor for the simultaneous detection of hydroquinone and catechol exhibited good sensitivity, broad linear range (1-500 µM), and low limits of detection (0.39 µM for HQ and 0.056 µM for CT).

17.
Nanomaterials (Basel) ; 13(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903801

RESUMO

Structural electronics, as well as flexible and wearable devices are applications that are possible by merging polymers with metal nanoparticles. However, using conventional technologies, it is challenging to fabricate plasmonic structures that remain flexible. We developed three-dimensional (3D) plasmonic nanostructures/polymer sensors via single-step laser processing and further functionalization with 4-nitrobenzenethiol (4-NBT) as a molecular probe. These sensors allow ultrasensitive detection with surface-enhanced Raman spectroscopy (SERS). We tracked the 4-NBT plasmonic enhancement and changes in its vibrational spectrum under the chemical environment perturbations. As a model system, we investigated the sensor's performance when exposed to prostate cancer cells' media over 7 days showing the possibility of identifying the cell death reflected in the environment through the effects on the 4-NBT probe. Thus, the fabricated sensor could have an impact on the monitoring of the cancer treatment process. Moreover, the laser-driven nanoparticles/polymer intermixing resulted in a free-form electrically conductive composite that withstands over 1000 bending cycles without losing electrical properties. Our results bridge the gap between plasmonic sensing with SERS and flexible electronics in a scalable, energy-efficient, inexpensive, and environmentally friendly way.

18.
Nanomaterials (Basel) ; 13(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770441

RESUMO

Functional surfaces with broadband ultralow optical reflectance have many potential applications in the fields of enhancing solar energy utilization, stray light shielding, infrared stealth, and so on. To fabricate broadband anti-reflection surfaces with low cost, high quality, and more controllability, a strategy of preparing multi-scale structures by thermal-assisted nanosecond laser was proposed. This strategy combines laser ablation with Marangoni flow of molten materials and in situ deposition of nanoparticles. The thermal-assisted strategy increases the depth to width ratio of the anti-reflection structures. The average reflectance of laser-textured TC4 (Ti-6Al-4V) surface is as low as 1.71% in the wavelength range of 200-2250 nm and 7.8% in the 2500-25,000 nm. The ultra-low reflectance surface has a significantly enhanced photothermal conversion performance. Meanwhile, the anti-reflection effect can be extended to the mid-infrared band, which has potential stealth application prospect. This synergetic manufacturing strategy has wide adaptability of materials, which provides new paths for the preparation of broadband ultralow reflectance surface. Moreover, this thermal-assisted laser fabrication strategy is prospective in the preparation of other functional micro-nano structures.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36759946

RESUMO

Capacitive humidity sensors have been used for human health monitoring, but their performance may be poor in terms of sensitivity and response time, because of limitations in sensing materials and insufficient knowledge about sensing mechanisms. Herein, a new combination of humidity sensing materials to assemble thin-film based capacitive-type sensors is proposed by using PA-doped polybenzimidazole (PA-PBI) as an electrolyte and laser-carbonized PA-PBI as a carbon electrode (PA-PBI-C). Based on PA involved laser scribing, the flexible sensor can reach excellent humidity-sensing performances with an ultrahigh sensitivity (1.16 × 106 pF RH%-1, where RH represents the relative humidity), a superior linearity (R2 = 0.9982), a fast response time (0.72 s), and a low hysteresis in a wide RH range from 1% to 95%. By further studying P-O decorated porous carbon electrode with superhydrophilicity and the solid-state dielectric electrolyte featured by a high dielectric constant, a synergistic sensing mechanism consisting of a "Water reservoir" and a "Bridge" is established to support advanced health-monitoring applications such as the respiration patterns and skin condition where both sensitivity and response time are critical.

20.
Micromachines (Basel) ; 14(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374802

RESUMO

A moiré photonic crystal is an optical analog of twisted graphene. A 3D moiré photonic crystal is a new nano-/microstructure that is distinguished from bilayer twisted photonic crystals. Holographic fabrication of a 3D moiré photonic crystal is very difficult due to the coexistence of the bright and dark regions, where the exposure threshold is suitable for one region but not for the other. In this paper, we study the holographic fabrication of 3D moiré photonic crystals using an integrated system of a single reflective optical element (ROE) and a spatial light modulator (SLM) where nine beams (four inner beams + four outer beams + central beam) are overlapped. By modifying the phase and amplitude of the interfering beams, the interference patterns of 3D moiré photonic crystals are systemically simulated and compared with the holographic structures to gain a comprehensive understanding of SLM-based holographic fabrication. We report the holographic fabrication of phase and beam intensity ratio-dependent 3D moiré photonic crystals and their structural characterization. Superlattices modulated in the z-direction of 3D moiré photonic crystals have been discovered. This comprehensive study provides guidance for future pixel-by-pixel phase engineering in SLM for complex holographic structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA