Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 11(48): 6377-83, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26540591

RESUMO

Laterally ordered sub-10 nm features are produced from the directed self-assembly of poly(1,1-dimethyl silacyclo-butane)-block-poly(methyl methacrylate) (PDMSB-b-PMMA) thin films on sinusoidal azobenzene-containing patterns. The use of sinusoidal surface relief grating enables the formation of very large grain areas (over several µm(2) ) consisting of out-of-plane PMMA cylinders.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120583, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782267

RESUMO

The use of deuterocarbons is an effective method in the Raman spectroscopy of multicomponent lipid materials and biological samples. Here, Raman spectra of hydrated multilamellar vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), its deuterated analog 1,2-dipalmitoyl-d62-sn-glycero-3-phosphocholine (DPPCd62), and DPPC-DPPCd62 mixtures were studied in a wide temperature range to specify the Raman indicators of conformational and lateral orders. The temperature dependence of the 985 cm-1 line in the deuterated phospholipid unequivocally indicates that this line corresponds to the CC stretching vibrations of deuterated hydrocarbon chains in the all-trans conformation. It was also concluded that the ratio of Raman intensities at the maximum of the peak of the symmetric CD2 stretching and at a maximum near 2168 cm-1 reflects the conformational order of the hydrocarbon chain and can be used for an evaluation of the fraction of the all-trans sequences. The frequency of the symmetric CD2 stretching peak is sensitive to the phase state (gel or fluid) but has a low sensitivity to the partial conformational disordering within the gel phase. The Raman study of DPPC-DPPCd62 mixtures reveals that the lateral order contributes to the ratio of intensities of the antisymmetric and symmetric CH2 stretching peaks as a prefactor enhancing the effect of conformational ordering.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Análise Espectral Raman , Bicamadas Lipídicas , Conformação Molecular , Fosfolipídeos , Temperatura
3.
ACS Appl Mater Interfaces ; 9(37): 31215-31223, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28195457

RESUMO

Block copolymers (BCPs) are emerging as a cost-effective nanofabrication tool to complement conventional optical lithography because they self-assemble in highly ordered polymeric templates with well-defined sub-20-nm periodic features. In this context, cylinder-forming polystyrene-block-poly(methyl methacrylate) BCPs are revealed as an interesting material of choice because the orientation of the nanostructures with respect to the underlying substrate can be effectively controlled by a poly(styrene-random-methyl methacrylate) random copolymer (RCP) brush layer grafted to the substrate prior to BCP deposition. In this work, we investigate the self-assembly process and lateral order evolution in RCP + BCP systems consisting of cylinder-forming PS-b-PMMA (67 kg mol-1, PS fraction of ∼70%) films with thicknesses of 30, 70, 100, and 130 nm deposited on RCP brush layers having thicknesses ranging from 2 to 20 nm. The self-assembly process is promoted by a rapid thermal processing machine operating at 250 °C for 300 s. The level of lateral order is determined by measuring the correlation length (ξ) in the self-assembled BCP films. Moreover, the amount of solvent (Φ) retained in the RCP + BCP systems is measured as a function of the thicknesses of the RCP and BCP layers, respectively. In the 30-nm-thick BCP films, an increase in Φ as a function of the thickness of the RCP brush layer significantly affects the self-assembly kinetics and the final extent of the lateral order in the BCP films. Conversely, no significant variations of ξ are observed in the 70-, 100-, and 130-nm-thick BCP films with increasing Φ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA