Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 235(4): 1351-1364, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35582952

RESUMO

The least-cost economic theory of photosynthesis shows that water and nitrogen are mutually substitutable resources to achieve a given carbon gain. However, vegetation in the Sahel has to cope with the dual challenge imposed by drought and nutrient-poor soils. We addressed how variation in leaf nitrogen per area (Narea ) modulates leaf oxygen and carbon isotopic composition (δ18 O, δ13 C), as proxies of stomatal conductance and water-use efficiency, across 34 Sahelian woody species. Dryland species exhibited diverging leaf δ18 O and δ13 C values, indicating large interspecific variation in time-integrated stomatal conductance and water-use efficiency. Structural equation modeling revealed that leaf Narea is a pivotal trait linked to multiple water-use traits. Leaf Narea was positively linked to both δ18 O and δ13 C, suggesting higher carboxylation capacity and tighter stomatal regulation of transpiration in N-rich species, which allows them to achieve higher water-use efficiency and more conservative water use. These adaptations represent a key physiological advantage of N-rich species, such as legumes, that could contribute to their dominance across many dryland regions. This is the first report of a robust mechanistic link between leaf Narea and δ18 O in dryland vegetation that is consistent with core principles of plant physiology.


Assuntos
Nitrogênio , Árvores , Isótopos de Carbono , Fotossíntese/fisiologia , Folhas de Planta , Transpiração Vegetal , Água
2.
Plants (Basel) ; 11(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501277

RESUMO

Arbuscular mycorrhiza (AM) and ectomycorrhiza (ECM) are the two most common mycorrhizal types and are paid the most attention to, playing a vital common but differentiated function in terrestrial ecosystems. The leaf carbon isotope ratio (δ13C) is an important factor in understanding the relationship between plants and the environment. In this study, a new database was established on leaf δ13C between AM and ECM plants based on the published data set of leaf δ13C in China's C3 terrestrial plants, which involved 1163 observations. The results showed that the differences in leaf δ13C between AM and ECM plants related closely to life forms. Leaf δ13C of ECM plants was higher than that of AM plants in trees, which was mainly led by the group of evergreen trees. The responses of leaf δ13C to environmental changes were varied between AM and ECM plants. Among the four life forms, leaf δ13C of ECM plants decreased more rapidly than that of AM plants, with an increase of longitude, except for deciduous trees. In terms of the sensitivity of leaf δ13C to temperature changes, AM plants were higher than ECM plants in the other three life forms, although there was no significant difference in evergreen trees. For the response to water conditions, the leaf δ13C of ECM plants was more sensitive than that of AM plants in all life forms, except evergreen and deciduous trees. This study laid a foundation for further understanding the role of mycorrhiza in the relationship between plants and the environment.

3.
Tree Physiol ; 42(12): 2419-2431, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35708583

RESUMO

Water use efficiency (WUE) is a key physiological trait in studying plant carbon and water relations. However, the determinants of WUE across a large geographical scale are not always clear, limiting our capacity to predict WUE in response to future global climate change. We propose that tree WUE is influenced by calcium (Ca) availability and precipitation. In addition, although it is well-known that transpiration is the major driving force for passive nutrient uptake, the linkage between these two processes has not been well-established. Because Ca uptake is an apoplastic and passive process that purely relies on transpiration, and there is no translocation once assimilated, we further developed a theoretical model to quantify the relationship between tree Ca accumulation and WUE using soil-to-plant calcium ratio (SCa/BCa) and tree WUE derived from δ13C. We tested our theoretical model and predicted relationships using three common tree species across their native habitats in Northern China, spanning 2300 km and a controlled greenhouse experiment with soil Ca concentrations manipulated. We found that tree WUE was negatively related to precipitation of the growing season (GSP) and positively with soil Ca. A multiple regression model and a path analysis suggested a higher contribution of soil Ca to WUE than GSP. As predicted by our theoretical model, we found a positive relationship between WUE and SCa/BCa across their distribution ranges in all three tree species and in the controlled experiment for one selected species. This relationship suggests a tight coupling between water and Ca uptake and the potential use of SCa/BCa to indicate WUE. A negative relationship between SCa/BCa and GSP also suggests a possible decrease in tree Ca accumulation efficiency in a drier future in Northern China.


Assuntos
Árvores , Água , Árvores/fisiologia , Água/fisiologia , Cálcio , Ecossistema , Solo , Plantas
4.
Plant Physiol Biochem ; 163: 45-54, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33812226

RESUMO

We investigated the within- and between-leaf variability in the carbon and nitrogen isotope composition (δ13C and δ15N) and total nitrogen (TN) content in two grapevine cultivars (Vitis vinifera cv. Chasselas and Pinot noir) field-grown under rain-fed conditions. The within-leaf variability was studied in discs sampled from base-to-tip and left and right regions from the margin to midrib. The intra- and interplant variability was studied by comparing leaves at different positions along the shoot (basal, median, apical). In leaves from both cultivars, a decrease in δ13C from base to tip was observed, which is in line with an upward gradient of stomatal density and chlorophyll concentration. Less important, but still significant differences were observed between the right and left discs. The leaf TN and δ15N values differed between cultivars, showed smaller variations than the δ13C values, and no systematic spatial trends. The intraleaf variations in δ13C, δ15N, and TN suggest that stomatal behavior, CO2 fixation, chlorophyll concentrations, and the chemical composition of leaf components were heterogeneous in the leaves. At the canopy scale, the apical leaves had less 13C and more 15N and TN than the basal leaves, indicating differences in their photosynthetic capacity and remobilizations from old, senescing leaves to younger leaves. Overall, this study demonstrates patchiness in the δ13C and δ15N values of grapevine leaves and species-specificity of the nitrogen assimilation and 15N fractionation. These findings suggest that care must be taken not to overinterpret foliar δ13C and δ15N values in studies based on fragmented material as markers of physiological and biochemical responses to environmental factors.


Assuntos
Carbono , Nitrogênio , Isótopos de Carbono , Isótopos de Nitrogênio , Folhas de Planta
5.
Environ Sci Pollut Res Int ; 25(2): 1460-1469, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29090446

RESUMO

Nitrogen (N) limitation is one of the major constrain factors for biochar in improving plant growth, the same for elevated atmospheric carbon dioxide (CO2). Hence, we hypothesized that (1) biochar would induce the same plant responses as elevated CO2 under N-poor conditions; (2) elevated CO2 would decrease the potential of biochar application in improving plant growth. To test these hypotheses, we assessed the effects of pinewood biochar, produced at three pyrolytic temperatures (650, 750 and 850 °C), on C and N allocation at the whole-plant level of three plant species (Austrostipa ramossissima, Dichelachne micrantha and Isolepis nodosa) grown in the N poor mine spoil under both ambient (400 µL L-1) and elevated (700 µL L-1) CO2 concentrations. Our data showed that biochar addition (1) significantly decreased leaf total N and δ15N (P < 0.05); (2) decreased leaf total N and δ15N more pronouncedly than those of root; and (3) showed more pronounced effects on improving plant biomass under ambient CO2 than under elevated CO2 concentration. Hence, it remained a strong possibility that biochar addition induced the same plant physiological responses as elevated CO2 in the N-deficient mine spoil. As expected, elevated CO2 decreased the ability of biochar addition in improving plant growth.


Assuntos
Dióxido de Carbono/farmacologia , Carvão Vegetal/farmacologia , Recuperação e Remediação Ambiental/métodos , Mineração , Poaceae/efeitos dos fármacos , Biomassa , Dióxido de Carbono/química , Nitrogênio/química , Nitrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poaceae/metabolismo , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA