RESUMO
Legionella pneumophila replicates in macrophages and amoeba within a unique compartment, the Legionella-containing vacuole (LCV). Hallmarks of LCV formation are the phosphoinositide lipid conversion from PtdIns(3)P to PtdIns(4)P, fusion with ER-derived vesicles and a tight association with the ER. Proteomics of purified LCVs indicate the presence of membrane contact sites (MCS) proteins possibly implicated in lipid exchange. Using dually fluorescence-labeled Dictyostelium discoideum amoeba, we reveal that VAMP-associated protein (Vap) and the PtdIns(4)P 4-phosphatase Sac1 localize to the ER, and Vap also localizes to the LCV membrane. Furthermore, Vap as well as Sac1 promote intracellular replication of L. pneumophila and LCV remodeling. Oxysterol binding proteins (OSBPs) preferentially localize to the ER (OSBP8) or the LCV membrane (OSBP11), respectively, and restrict (OSBP8) or promote (OSBP11) bacterial replication and LCV expansion. The sterol probes GFP-D4H* and filipin indicate that sterols are rapidly depleted from LCVs, while PtdIns(4)P accumulates. In addition to Sac1, the PtdIns(4)P-subverting L. pneumophila effector proteins LepB and SidC also support LCV remodeling. Taken together, the Legionella- and host cell-driven PtdIns(4)P gradient at LCV-ER MCSs promotes Vap-, OSBP- and Sac1-dependent pathogen vacuole maturation.
Assuntos
Dictyostelium , Legionella pneumophila , Legionella , Vacúolos/metabolismo , Legionella/metabolismo , Dictyostelium/microbiologia , Fosfatidilinositóis/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/metabolismoRESUMO
We determined whether the incidence rates of travel-associated Legionnaires' disease (TALD) in hotels in Germany increased after a previous occurrence and whether control measures required by the European Legionnaires' Disease Surveillance Network after a cluster (>2 cases within 2 years) restored the rate to baseline. We analyzed TALD surveillance data from Germany during 2015-2019; a total of 307 TALD cases (163 domestic, 144 nondomestic) in hotels were reported. The incidence rate ratio was 5.5 (95% CI 3.6-7.9) for a second case and 25 (95% CI 11-50) for a third case after a cluster had occurred, suggesting that control measures initiated after the occurrence of TALD clusters might be inadequate to restore the incidence rate to baseline. Our findings indicate that substantial LD preventive measures should be explored by hotels or other accommodations after the first TALD case occurs to reduce the risk for future infections.
Assuntos
Doença dos Legionários , Humanos , Incidência , Doença dos Legionários/epidemiologia , Viagem , Alemanha/epidemiologiaRESUMO
Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.
Assuntos
Dieta , Gotículas Lipídicas , Gotículas Lipídicas/metabolismo , Metabolismo dos LipídeosRESUMO
Legionella pneumophila is ubiquitous and sporadically infects humans causing Legionnaire's disease (LD). Globally, reported cases of LD have risen fourfold from 2000 to 2014. In 2016, Sydney, Australia was the epicenter of an outbreak caused by L. pneumophila serogroup 1 (Lpsg1). Whole-genome sequencing was instrumental in identifying the causal clone which was found in multiple locations across the city. This study examined the epidemiology of Lpsg1 in an urban environment, assessed typing schemes to classify resident clones, and investigated the association between local climate variables and LD outbreaks. Of 223 local Lpsg1 isolates, we identified dominant clones with one clone isolated from patients in high frequency during outbreak investigations. The core genome multi-locus sequence typing scheme was the most reliable in identifying this Lpsg1 clone. While an increase in humidity and rainfall was found to coincide with a rise in LD cases, the incidence of the major L. pneumophila outbreak clone did not link to weather phenomena. These findings demonstrated the role of high-resolution typing and weather context assessment in determining source attribution for LD outbreaks in urban settings, particularly when clinical isolates remain scarce.IMPORTANCEWe investigated the genomic and meteorological influences of infections caused by Legionella pneumophila in Sydney, Australia. Our study contributes to a knowledge gap of factors that drive outbreaks of legionellosis compared to sporadic infections in urban settings. In such cases, clinical isolates can be rare, and thus, other data are needed to inform decision-making around control measures. The study revealed that core genome multi-locus sequence typing is a reliable and adaptable technique when investigating Lpsg1 outbreaks. In Sydney, the genomic profile of Lpsg1 was dominated by a single clone, which was linked to numerous community cases over a period of 40 years. Interestingly, the peak in legionellosis cases during Autumn was not associated with this prevalent outbreak clone. Incorporating meteorological data with Lpsg1 genomics can support risk assessment strategies for legionellosis in urban environments, and this approach may be relevant for other densely populated regions globally.
Assuntos
Surtos de Doenças , Genômica , Legionella pneumophila , Doença dos Legionários , Humanos , Legionella pneumophila/genética , Legionella pneumophila/classificação , Legionella pneumophila/isolamento & purificação , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia , Austrália/epidemiologia , Cidades/epidemiologia , Tipagem de Sequências Multilocus , Sequenciamento Completo do Genoma , Legionelose/epidemiologia , Legionelose/microbiologia , New South Wales/epidemiologia , Tempo (Meteorologia)RESUMO
Fundamental to effective Legionnaires' disease outbreak control is the ability to rapidly identify the environmental source(s) of the causative agent, Legionella pneumophila. Genomics has revolutionized pathogen surveillance, but L. pneumophila has a complex ecology and population structure that can limit source inference based on standard core genome phylogenetics. Here, we present a powerful machine learning approach that assigns the geographical source of Legionnaires' disease outbreaks more accurately than current core genome comparisons. Models were developed upon 534 L. pneumophila genome sequences, including 149 genomes linked to 20 previously reported Legionnaires' disease outbreaks through detailed case investigations. Our classification models were developed in a cross-validation framework using only environmental L. pneumophila genomes. Assignments of clinical isolate geographic origins demonstrated high predictive sensitivity and specificity of the models, with no false positives or false negatives for 13 out of 20 outbreak groups, despite the presence of within-outbreak polyclonal population structure. Analysis of the same 534-genome panel with a conventional phylogenomic tree and a core genome multi-locus sequence type allelic distance-based classification approach revealed that our machine learning method had the highest overall classification performance-agreement with epidemiological information. Our multivariate statistical learning approach maximizes the use of genomic variation data and is thus well-suited for supporting Legionnaires' disease outbreak investigations.IMPORTANCEIdentifying the sources of Legionnaires' disease outbreaks is crucial for effective control. Current genomic methods, while useful, often fall short due to the complex ecology and population structure of Legionella pneumophila, the causative agent. Our study introduces a high-performing machine learning approach for more accurate geographical source attribution of Legionnaires' disease outbreaks. Developed using cross-validation on environmental L. pneumophila genomes, our models demonstrate excellent predictive sensitivity and specificity. Importantly, this new approach outperforms traditional methods like phylogenomic trees and core genome multi-locus sequence typing, proving more efficient at leveraging genomic variation data to infer outbreak sources. Our machine learning algorithms, harnessing both core and accessory genomic variation, offer significant promise in public health settings. By enabling rapid and precise source identification in Legionnaires' disease outbreaks, such approaches have the potential to expedite intervention efforts and curtail disease transmission.
Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Legionella pneumophila/genética , Doença dos Legionários/epidemiologia , Tipagem de Sequências Multilocus/métodos , Genômica/métodos , Epidemiologia Molecular/métodos , Surtos de DoençasRESUMO
BACKGROUD: Although not fully investigated, studies show that Legionella pneumophila can develop antibiotic resistance. As there is limited data available for Portugal, we determined the antibiotic susceptibility profile of Portuguese L. pneumophila serogroup 1 (LpnSg1) isolates against antibiotics used in the clinical practice in Portugal. METHODS: Minimum inhibitory concentrations (MICs) were determined for LpnSg1 clinical (n = 100) and related environmental (n = 7) isolates, collected between 2006-2022 in the context of the National Legionnaire´s Disease Surveillance Programme, against azithromycin, clarithromycin, erythromycin, levofloxacin, ciprofloxacin, moxifloxacin, rifampicin, doxycycline, tigecycline, and amoxicillin/clavulanic acid, using three different assays. Isolates were also PCR-screened for the presence of the lpeAB gene. RESULTS: Twelve isolates had azithromycin MICs above the EUCAST tentative highest WT MIC, 9 of which were lpeAB negative; for erythromycin and clarithromycin, all isolates tested within the susceptible range. The number of isolates with MICs above the tentative highest WT MIC for the remaining antibiotics was: ciprofloxacin: 7; levofloxacin: 17; moxifloxacin: 8; rifampicin: 11; doxycycline: 82; tigecycline: 4. EUCAST breakpoints are not available for amoxicillin/clavulanic acid. We estimated the ECOFFs and one isolate had a MIC eightfold higher than the E-test ECOFF. Additionally, a clinical isolate generated three colonies growing on the E-test inhibition zone that resulted in MICs fourfold higher than for the parental isolate. CONCLUSIONS: We report, for the first time, elevated MICs against first-line and other antibiotics (including azithromycin, fluoroquinolones and amoxicillin/clavulanic acid commonly used to treat pneumonia patients in Portugal) in Portuguese L. pneumophila strains. Results point towards decreased susceptibility in circulating strains, justifying further investigation.
Assuntos
Antibacterianos , Azitromicina , Legionella pneumophila , Doença dos Legionários , Testes de Sensibilidade Microbiana , Portugal , Antibacterianos/farmacologia , Legionella pneumophila/efeitos dos fármacos , Legionella pneumophila/genética , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/classificação , Humanos , Azitromicina/farmacologia , Doença dos Legionários/microbiologia , Sorogrupo , Farmacorresistência BacterianaRESUMO
Legionella longbeachae is the leading cause of Legionnaires' disease (LD) in Australasia and has been linked to exposure to compost and potting soils. Adding antimicrobial metal ions such as copper (Cu2+), zinc (Zn2+), and manganese (Mn2+) to potting soils may reduce the load of L. longbeachae bacteria and infection risk. Baseline concentrations of metal ions in leachate from peat, bark dust, bagging base, and an all-purpose potting soil were: iron 0.40-0.99 µg/ml, Cu of 0.003-0.03 µg/ml, Zn 0.01-0.06 µg/ml and Mn 0.11-0.29 µg/ml. Addition of Cu2+ ions to leachate reduced L. longbeachae viability in a concentration dependent manner. A similar effect was seen in potting soil with Zn2+ and Mn2+ but 10-fold higher concentrations were needed. These metal ions have potential to reduce the load of L. longbeachae in potting soils but toxicity in plants needs to be determined.
Assuntos
Cobre , Legionella longbeachae , Manganês , Microbiologia do Solo , Zinco , Manganês/farmacologia , Zinco/farmacologia , Cobre/farmacologia , Legionella longbeachae/efeitos dos fármacos , Solo/química , Compostagem , Antibacterianos/farmacologiaRESUMO
Legionella pneumophila, the leading cause of Legionnaires' disease in the United States, is found in lakes, ponds, and streams but poses a health risk when it grows in building water systems. The growth of L. pneumophila in hot water systems of healthcare facilities poses a significant risk to patients, staff, and visitors. Hospitals and long-term care facilities account for 76% of reported Legionnaires' disease cases with mortality rates of 25%. Controlling L. pneumophila growth in hot water systems serving healthcare and hospitality buildings is currently achieved primarily by adding oxidizing chemical disinfectants. Chemical oxidants generate disinfection byproducts and can accelerate corrosion of premise plumbing materials and equipment. Alternative control methods that do not generate hazardous disinfection byproducts or accelerate corrosion are needed. L. pneumophila is an obligate aerobe that cannot sustain cellular respiration, amplify, or remain culturable when dissolved oxygen (DO) concentrations are too low (< 0.3 mg/L). An alternative method of controlling L. pneumophila growth by reducing DO levels in a hot water model system using a gas transfer membrane contactor was evaluated. A hot water model system was constructed and inoculated with L. pneumophila at DO concentrations above 0.5 mg/L. Once the model system was colonized, DO levels were incrementally reduced. Water samples were collected each week to evaluate the effect of reducing dissolved oxygen levels when all other conditions favored Legionella amplification. At DO concentrations below 0.3 mg/L, L. pneumophila concentrations were reduced by 1-log over 7 days. Under conditions in the hot water model system, at favorable temperatures and with no residual chlorine disinfectant, L. pneumophila concentrations were reduced by 1-log, indicating growth inhibition by reducing DO levels as the sole control measure. In sections of the model system where DO levels were not lowered L. pneumophila continued to grow. Reducing dissolved oxygen levels in hot water systems of healthcare and other large buildings to control L. pneumophila could also lower the risk of supplemental chemical treatment methods currently in use.
Assuntos
Desinfetantes , Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Doença dos Legionários/prevenção & controle , Abastecimento de Água , Engenharia Sanitária , Desinfetantes/farmacologia , Água/farmacologia , Microbiologia da Água , Temperatura AltaRESUMO
BACKGROUND: Legionnaires' disease is a type of severe pneumonia caused by Legionella bacteria. The case fatality rate in this disease is 5-10%. People with various comorbidities, smokers and the elderly are at greater risk of developing the disease. OBJECTIVE: The aim of the work is to present the results of an epidemiological investigation into the outbreak of Legionnaires' disease that occurred in the city of Rzeszów and the surrounding area in August and September 2023 and to present the threat related to the presence of Legionella bacteria in water supply installations and networks. MATERIAL AND METHODS: The material for this publication was data from an epidemiological investigation conducted in the outbreak of Legionnaires disease in Rzeszów in 2023. RESULTS: Epidemiological investigation revealed 165 cases of Legionnaires' disease in the outbreak, including 152 confirmed cases and 13 probable cases. The case fatality rate in a legionellosis outbreak was 15%. Environmental tests were carried out in residential and public buildings and industrial installations during the investigation. As part of environmental tests, 187 water samples were collected, including 87 warm water samples. CONCLUSIONS: The outbreak of Legionnaires' disease in the city of Rzeszów draws attention to the potential threat from the Legionella bacteria to the health and life of especially elderly people suffering from chronic diseases. The environmental tests carried out confirmed the highest number of Legionella bacteria at medium and high levels in water samples taken in the private apartments of sick people. Despite the lack of strict legal regulations clearly specifying the obligations regarding periodic disinfection of internal hot water supply installations, cooperation with their owners should be undertaken to enforce plans and actions in this area.
Assuntos
Surtos de Doenças , Doença dos Legionários , Microbiologia da Água , Humanos , Doença dos Legionários/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Masculino , Feminino , Idoso , Polônia/epidemiologia , Pessoa de Meia-Idade , Adulto , Abastecimento de Água , Idoso de 80 Anos ou mais , Legionella pneumophila/isolamento & purificação , Legionella/isolamento & purificaçãoRESUMO
Previously, we showed that Legionella pneumophila secretes rhizoferrin, a polycarboxylate siderophore that promotes bacterial growth in iron-deplete media and the murine lung. Yet, past studies failed to identify a role for the rhizoferrin biosynthetic gene (lbtA) in L. pneumophila infection of host cells, suggesting the siderophore's importance was solely linked to extracellular survival. To test the possibility that rhizoferrin's relevance to intracellular infection was missed due to functional redundancy with the ferrous iron transport (FeoB) pathway, we characterized a new mutant lacking both lbtA and feoB. This mutant was highly impaired for growth on bacteriological media that were only modestly depleted of iron, confirming that rhizoferrin-mediated ferric iron uptake and FeoB-mediated ferrous iron uptake are critical for iron acquisition. The lbtA feoB mutant, but not its lbtA-containing complement, was also highly defective for biofilm formation on plastic surfaces, demonstrating a new role for the L. pneumophila siderophore in extracellular survival. Finally, the lbtA feoB mutant, but not its complement containing lbtA, proved to be greatly impaired for growth in Acanthamoeba castellanii, Vermamoeba vermiformis, and human U937 cell macrophages, revealing that rhizoferrin does promote intracellular infection by L. pneumophila. Moreover, the application of purified rhizoferrin triggered cytokine production from the U937 cells. Rhizoferrin-associated genes were fully conserved across the many sequenced strains of L. pneumophila examined but were variably present among strains from the other species of Legionella. Outside of Legionella, the closest match to the L. pneumophila rhizoferrin genes was in Aquicella siphonis, another facultative intracellular parasite of amoebae.
Assuntos
Amoeba , Legionella pneumophila , Animais , Camundongos , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Sideróforos/metabolismo , Amoeba/metabolismo , Células U937 , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Macrófagos/microbiologia , BiofilmesRESUMO
Legionellosis, notably Legionnaires' disease, is recognized globally and in New Zealand (Aotearoa) as a major cause of community-acquired pneumonia. We analyzed the temporal, geographic, and demographic epidemiology and microbiology of Legionnaires' disease in New Zealand by using notification and laboratory-based surveillance data for 2000â2020. We used Poisson regression models to estimate incidence rate ratios and 95% CIs to compare demographic and organism trends over 2 time periods (2000-2009 and 2010-2020). The mean annual incidence rate increased from 1.6 cases/100,000 population for 2000-2009 to 3.9 cases/100,000 population for 2010-2020. This increase corresponded with a change in diagnostic testing from predominantly serology with some culture to almost entirely molecular methods using PCR. There was also a marked shift in the identified dominant causative organism, from Legionella pneumophila to L. longbeachae. Surveillance for legionellosis could be further enhanced by greater use of molecular typing of isolates.
Assuntos
Legionella pneumophila , Legionelose , Doença dos Legionários , Humanos , Doença dos Legionários/diagnóstico , Doença dos Legionários/epidemiologia , Doença dos Legionários/microbiologia , Nova Zelândia/epidemiologia , Incidência , Legionelose/diagnóstico , Legionelose/epidemiologia , Legionelose/microbiologiaRESUMO
More than 7.15 million cases of domestically acquired infectious waterborne illnesses occurred in the United States in 2014, causing 120,000 hospitalizations and 6,600 deaths. We estimated disease incidence for 17 pathogens according to recreational, drinking, and nonrecreational nondrinking (NRND) water exposure routes by using previously published estimates. In 2014, a total of 5.61 million (95% credible interval [CrI] 2.97-9.00 million) illnesses were linked to recreational water, 1.13 million (95% CrI 255,000-3.54 million) to drinking water, and 407,000 (95% CrI 72,800-1.29 million) to NRND water. Recreational water exposure was responsible for 36%, drinking water for 40%, and NRND water for 24% of hospitalizations from waterborne illnesses. Most direct costs were associated with pathogens found in biofilms. Estimating disease burden by water exposure route helps direct prevention activities. For each exposure route, water management programs are needed to control biofilm-associated pathogen growth; public health programs are needed to prevent biofilm-associated diseases.
Assuntos
Doenças Transmissíveis , Água Potável , Doenças Transmitidas pela Água , Humanos , Estados Unidos/epidemiologia , Doenças Transmissíveis/epidemiologia , Doenças Transmitidas pela Água/epidemiologia , Abastecimento de Água , Microbiologia da ÁguaRESUMO
Switzerland has one of the highest annual Legionnaires' disease (LD) notification rates in Europe (7.8 cases/100,000 population in 2021). The main sources of infection and the cause for this high rate remain largely unknown. This hampers the implementation of targeted Legionella spp. control efforts. The SwissLEGIO national case-control and molecular source attribution study investigates risk factors and infection sources for community-acquired LD in Switzerland. Over the duration of one year, the study is recruiting 205 newly diagnosed LD patients through a network of 20 university and cantonal hospitals. Healthy controls matched for age, sex, and residence at district level are recruited from the general population. Risk factors for LD are assessed in questionnaire-based interviews. Clinical and environmental Legionella spp. isolates are compared using whole genome sequencing (WGS). Direct comparison of sero- and sequence types (ST), core genome multilocus sequencing types (cgMLST), and single nucleotide polymorphisms (SNPs) between clinical and environmental isolates are used to investigate the infection sources and the prevalence and virulence of different Legionella spp. strains detected across Switzerland. The SwissLEGIO study innovates in combining case-control and molecular typing approaches for source attribution on a national level outside an outbreak setting. The study provides a unique platform for national Legionellosis and Legionella research and is conducted in an inter- and transdisciplinary, co-production approach involving various national governmental and national research stakeholders.
Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Doença dos Legionários/epidemiologia , Doença dos Legionários/diagnóstico , Legionella pneumophila/genética , Suíça/epidemiologia , Estudos Prospectivos , Surtos de Doenças , Estudos de Casos e ControlesRESUMO
The evidence for the incubation period of Legionnaires' disease is based on data from a small number of outbreaks. An incubation period of 2-10 days is commonly used for the definition and investigation of cases. In the German LeTriWa study, we collaborated with public health departments to identify evidence-based sources of exposure among cases of Legionnaires' disease within 1-14 days before symptom onset. For each individual, we assigned weights to the numbered days of exposure before symptom onset, giving the highest weight to exposure days of cases with only one possible day of exposure. We then calculated an incubation period distribution where the median was 5 days and the mode was 6 days. The cumulative distribution reached 89% by the 10th day before symptom onset. One case-patient with immunosuppression had a single day of exposure to the likely infection source only 1 day before symptom onset. Overall, our results support the 2- to 10-day incubation period used in case definition, investigation, and surveillance of cases with Legionnaires' disease.
Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Doença dos Legionários/diagnóstico , Doença dos Legionários/epidemiologia , Berlim/epidemiologia , Período de Incubação de Doenças Infecciosas , Surtos de DoençasRESUMO
Since the discovery of Legionnaires' disease (LD), limited progress has been made in understanding the epidemiology of sporadic cases of LD. Outbreaks have confirmed that air conditioning and potable water systems can be sources of community-acquired LD. However, studying the association between water quality and LD incidence has been challenging due to the heterogeneity of water systems across large geographic areas. Furthermore, although seasonal trends in incidence have been linked to increased rainfall and temperatures, the large geographic units have posed similar difficulties. To address this issue, a retrospective ecological study was conducted in Washington, DC, from 2001 to 2019. The study identified aseasonal pattern of LD incidence, with the majority of cases occurring between June and December, peaking in August, October, and November. Increased temperature was found to be associated with LD incidence. In surface water, higher concentrations of manganese, iron, and strontium were positively associated with LD, while aluminum and orthophosphate showed a negative association. Intreatment plant water, higher concentrations of total organic carbon, aluminum, barium, and chlorine were positively associated with LD, while strontium, zinc, and orthophosphate showed a negative association. The results for orthophosphates and turbidity were inconclusive, indicating the need for further research.
Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Doença dos Legionários/epidemiologia , Doença dos Legionários/etiologia , Qualidade da Água , Estudos Retrospectivos , Estações do Ano , Alumínio , District of Columbia/epidemiologia , Microbiologia da Água , Surtos de Doenças , TemperaturaRESUMO
Over the past two decades, the incidence of legionellosis has been steadily increasing in the United States though there is noclear explanation for the main factors driving the increase. While legionellosis is the leading cause of waterborne outbreaks in the US, most cases are sporadic and acquired in community settings where the environmental source is never identified. This scoping review aimed to summarise the drivers of infections in the USA and determine the magnitude of impact each potential driver may have. A total of 1,738 titles were screened, and 18 articles were identified that met the inclusion criteria. Strong evidence was found for precipitation as a major driver, and both temperature and relative humidity were found to be moderate drivers of incidence. Increased testing and improved diagnostic methods were classified as moderate drivers, and the ageing U.S. population was a minor driver of increasing incidence. Racial and socioeconomic inequities and water and housing infrastructure were found to be potential factors explaining the increasing incidence though they were largely understudied in the context of non-outbreak cases. Understanding the complex relationships between environmental, infrastructure, and population factors driving legionellosis incidence is important to optimise mitigation strategies and public policy.
Assuntos
Legionelose , Doença dos Legionários , Estados Unidos/epidemiologia , Humanos , Incidência , Legionelose/epidemiologia , Surtos de Doenças , Temperatura , Doença dos Legionários/epidemiologiaRESUMO
BACKGROUND: Legionnaires' Disease (LD) rarely evolves into pulmonary abscesses. The current systematic review has been designed to explore therapeutical strategies in pulmonary cavitary LD. METHODS: A research strategy was developed and applied to the databases Embase, Pubmed, and Web of Science from the 1st of January 2000 to the 1st of November 2022. Original articles, case series, case reports, and guidelines written in English, French, German, Italian, and Dutch were considered. Furthermore, medical records of patients treated at the University Hospital UZ Brussel for LD cavitary pneumonia, between the 1st of January 2016 to the 1st of January 2022, were reviewed. RESULTS: Two patients were found by the UZ Brussel's medical records investigation. Through the literature review, 23 reports describing 29 patients, and seven guidelines were identified. The overall evidence level was low. RESULT OF SYNTHESIS (CASE REPORTS): The median age was 48 years and 65% were male. A polymicrobial infection was detected in 11 patients (44%) with other aerobic bacteria being the most commonly found. At diagnosis, 52% of patients received combination therapy, and fluoroquinolones were the preferred antimicrobial class. Anaerobic coverage was neglected in 33% of patients. RESULT OF SYNTHESIS (GUIDELINES): Three guidelines favor monotherapy with fluoroquinolones or macrolides, while one suggested an antimicrobial combination in case of severe LD. Four guidelines recommended anaerobic coverage in case of lung abscesses. CONCLUSION: To date, the evidence supporting cavitary LD treatment is low. Monotherapy lowers toxicity and might be as effective as combination therapy. Finally, anaerobes should not be neglected.
Assuntos
Doença dos Legionários , Pneumonia , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Doença dos Legionários/diagnóstico , Doença dos Legionários/tratamento farmacológico , Doença dos Legionários/microbiologia , Antibacterianos/uso terapêutico , Fluoroquinolonas/uso terapêutico , MacrolídeosRESUMO
BACKGROUND: The number of reported cases of Legionnaires' disease (LD) has risen markedly in Switzerland (6.5/100,000 inhabitants in 2021) and abroad over the last decade. Legionella, the causative agent of LD, are ubiquitous in the environment. Therefore, environmental changes can affect the incidence of LD, for example by increasing bacterial concentrations in the environment or by facilitating transmission. OBJECTIVES: The aim of this study is to understand the environmental determinants, in particular weather conditions, for the regional and seasonal distribution of LD in Switzerland. METHODS: We conducted a series of analyses based on the Swiss LD notification data from 2017 to 2021. First, we used a descriptive and hotspot analysis to map LD cases and identify regional clusters. Second, we applied an ecological model to identify environmental determinants on case frequency at the district level. Third, we applied a case-crossover design using distributed lag non-linear models to identify short-term associations between seven weather variables and LD occurrence. Lastly, we performed a sensitivity analysis for the case-crossover design including NO2 levels available for the year 2019. RESULTS: Canton Ticino in southern Switzerland was identified as a hotspot in the cluster analysis, with a standardised notification rate of 14.3 cases/100,000 inhabitants (CI: 12.6, 16.0). The strongest association with LD frequency in the ecological model was found for large-scale factors such as weather and air pollution. The case-crossover study confirmed the strong association of elevated daily mean temperature (OR 2.83; CI: 1.70, 4.70) and mean daily vapour pressure (OR: 1.52, CI: 1.15, 2.01) 6-14 days before LD occurrence. DISCUSSION: Our analyses showed an influence of weather with a specific temporal pattern before the onset of LD, which may provide insights into the effect mechanism. The relationship between air pollution and LD and the interplay with weather should be further investigated.
Assuntos
Poluição do Ar , Doença dos Legionários , Humanos , Doença dos Legionários/epidemiologia , Doença dos Legionários/etiologia , Estudos Cross-Over , Suíça/epidemiologia , Tempo (Meteorologia) , Poluição do Ar/efeitos adversosRESUMO
Legionella longbeachae is an important cause of Legionnaires' disease in Australasia and is associated with exposure to potting soils. Our aim was to identify ways to reduce the load of L. longbeachae in potting soils. Inductively-coupled plasma optical emission spectrometry (ICP-OES) of an all-purpose potting mix showed copper (Cu) concentrations (mg/kg) range from 15.8 to 23.6. Zinc (Zn) and manganese (Mn) were significantly higher than Cu ranging from 88.6-106 to 171-203, respectively. Minimal inhibitory and bactericidal concentrations of 10 salts used in the horticultural industry were determined for Legionella species in buffered yeast extract (BYE) broth. For L. longbeachae (n = 9) the median (range) minimum inhibitory concentration (MIC) (mg/L) of copper sulfate was 31.25 (15.6-31.25), zinc sulfate 31.25 (7.81-31.25), and manganese sulfate 31.25 (7.81-62.5). The MIC and minimum bactericidal concentration (MBC) were within one dilution of each other. Susceptibility to Cu and Zn salts increased as the concentration of pyrophosphate iron in the media decreased. The MIC values for these three metals against Legionella pneumophila (n = 3) and Legionella micdadei (n = 4) were similar. Combinations of Cu, Zn, and Mn were additive. Legionella longbeachae has similar susceptibility to Cu and other metal ions in comparison to L. pneumophila.
Assuntos
Legionella longbeachae , Legionella , Doença dos Legionários , Humanos , Cobre/farmacologia , Manganês/farmacologia , Zinco/farmacologia , Sais , SoloRESUMO
BackgroundThe burden of Legionnaires' disease (LD) in the European Union/European Economic Area (EU/EEA) has increased during the last decade, with notification rates increasing from 1.2 to 1.4/100,000 population in 2012-16, to 1.8-2.2 within 2017-19.AimTo measure weekly excess cases during 2017-19 based on previous trends and determine whether a significant change in trend occurred, and to examine any differences in age, sex or level of imported infections.MethodsWe collated 2012-19 annual surveillance data from The European Surveillance System (TESSy) reported by EU/EEA countries. A retrospective prediction by a dynamic regression model was created from 2012-16 data to assess excess cases in 2017-19. Interrupted time series (ITS) analysis was performed to determine if a significant change in trend occurred in 2017-19 compared with the previous 5 years.ResultsWe found a 33.9% increase in cases in 2017-19 compared with the number predicted. The ITS also found a significant trend increase in 2017-19 compared with 2012-16. A significant trend increase was observed from 2017 most strongly among older age groups (> 60 years) and non-imported cases.ConclusionOur study showed a significant increasing trend in LD cases in the EU/EEA during 2017-19 compared with the previous 5 years. The distribution of cases per week suggests an overall amplification of the seasonal trends. These findings underscore that LD continues to be an infectious disease of public health concern in the EU/EEA, warranting further research into determinants of the increase.