Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687379

RESUMO

Identifying cultivars of leguminous crops exhibiting drought resistance has become crucial in addressing water scarcity issues. This investigative study aimed to select soybean and cowpea cultivars with enhanced potential to grow under water restriction during the vegetative stage. Two parallel trials were conducted using seven soybean (AS3810IPRO, M8644IPRO, TMG1180RR, NS 8338IPRO, BMX81I81IPRO, M8808IPRO, and BÔNUS8579IPRO) and cowpea cultivars (Aracê, Novaera, Pajeú, Pitiúba, Tumucumaque, TVU, and Xique-xique) under four water levels (75, 60, 45, and 30% field capacity-FC) over 21 days. Growth, water content, membrane damage, photosynthetic pigments, organic compounds, and proline levels were analyzed. Drought stress significantly impacted the growth of both crops, particularly at 45 and 30% FC for soybean and 60 and 45% FC for cowpea plants. The BÔNUS8579IPRO and TMG1180RR soybean cultivars demonstrated the highest performance under drought, a response attributed to increased amino acids and proline contents, which likely help to mitigate membrane damage. For cowpea, the superior performance of the drought-stressed Xique-xique cultivar was associated with the maintenance of water content and elevated photosynthetic pigments, which contributed to the preservation of the photosynthetic efficiency and carbohydrate levels. Our findings clearly indicate promising leguminous cultivars that grow under water restriction, serving as viable alternatives for cultivating in water-limited environments.

2.
Plants (Basel) ; 11(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35890499

RESUMO

Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.

3.
Pak J Biol Sci ; 23(10): 1276-1284, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32981261

RESUMO

BACKGROUND AND OBJECTIVE: Trichoderma species are of utmost importance in agro-biotechnological applications because, in their interactions with plant hosts, they out-compete most pathogenic microorganisms. This study aimed at exploiting the potential of Trichoderma harzianum together with Glomus versiforme and its mutants, in inhibiting cowpea leaf spot rot induced due to Cercospora canescens infestation and improving agronomic growth parameter in a screen house experiment. MATERIALS AND METHODS: The experiment was designed using single and co-inoculation of the bioagents: in all, eleven treatments were applied, consisting of Glom_verwild, Glom_ver30, Glom_ver60, Glom_ver90, Trich_h, Glom_verwild+Trich_h, Glom_ver30+Trich_h, Glom_ver60+Trich_h, Glom_ver90+Trich_h, Pathogen alone and control. Cowpea growth yield parameters and disease severity were assessed after 7 weeks. RESULTS: The deployed treatments improved agronomic growth parameters substantially (p<0.05) relative to control. Glom_ver 60+Trich_h treatment exerted the highest agronomic growth improvement yield. In addition, the best reduction in the incidence and severity of cowpea leaf spot disease was obtained using Glom_ver 60+Trich_h. A significantly higher germination rate in seeding, confirms both inhibitory and growth improvement potency of the bio inoculants treatment. CONCLUSION: This study's findings confirmed the beneficial impacts of the treatment of seed and soil with dual T. harzianum and G. versiforme, in improving the immunity of cowpea to Cercospora canescens leaf spot infection and improve cowpea growth.


Assuntos
Agricultura/métodos , Cercospora/metabolismo , Fungos/metabolismo , Germinação , Hypocreales/fisiologia , Doenças das Plantas , Folhas de Planta/metabolismo , Solo , Vigna/metabolismo , Mutação , Nigéria , Controle Biológico de Vetores , Raízes de Plantas/crescimento & desenvolvimento
4.
J Virol Methods ; 249: 117-120, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28866364

RESUMO

Bean common mosaic necrosis virus (BCMNV) is a plant pathogenic virus that can infect leguminous crops such as kidney beans, sunn hemp, red beans, and mung beans. BCMNV has not been reported in Korea and is classified as a quarantine plant virus. Currently, the standard diagnostic method for diagnosis of BCMNV is reverse transcription (RT)-nested PCR system. However a more rapid monitoring system is needed to enable the testing of more samples. The use of highly efficient loop-mediated isothermal amplification (LAMP) assay for its detection has not yet been reported, and development of LAMP for detecting BCMNV in this study. In addition, confirmation of LAMP amplification can be achieved using restriction enzyme Mse I (T/TAA). The developed technique could be used for more rapid, specific and sensitive monitoring of BCMNV in leguminous crops than conventional nested RT-PCR.


Assuntos
Fabaceae/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Potyvirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Primers do DNA , Reação em Cadeia da Polimerase , Potyvirus/genética , República da Coreia , Sensibilidade e Especificidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA