Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
J Neurosci Res ; 102(3): e25302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38515319

RESUMO

Levodopa-induced dyskinesia (LID) is a common complication in patients with advanced Parkinson's disease (PD) undergoing treatment with levodopa. Glutamate receptor antagonists can suppress LID; however, the underlying mechanisms remain unclear. Here, we aimed to evaluate the effect of 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP), a metabotropic glutamate receptor 5 (mGluR5) antagonist, on dyskinesia. We recorded the neuronal activity of the entopeduncular nucleus and examined responses to cortical electric stimulation in the control group (n = 6) and three groups of rats (male PD model). Saline was intraperitoneally administered to dopamine lesioned (DL) rats (n = 6), levodopa/benserazide (L/B) was administered to LID rats (n = 8), and L/B combined with MTEP was administered to MTEP rats (n = 6) twice daily for 14 days. We administered L/B to LID and MTEP rats 48 h after the final administration of MTEP to examine the chronic effect of MTEP. The control and DL groups did not have LID. The MTEP group had less LID than the LID group (p < .01) on day 1 and day 18. The control group had a typical triphasic pattern consisting of early excitation (early-Ex), inhibition, and late excitation (late-Ex). However, the inhibition phase disappeared, was partially observed, and was fully suppressed in the DL, LID, and MTEP groups, respectively. The cortico-striato-entopeduncular pathway is important in the pathophysiology of LID. mGluR5 antagonism suppresses LID progression by preventing physiological changes in the cortico-striato-entopeduncular pathway. Future studies are required to validate these results.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Humanos , Ratos , Masculino , Animais , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Receptor de Glutamato Metabotrópico 5 , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/prevenção & controle , Discinesia Induzida por Medicamentos/metabolismo , Oxidopamina
2.
Mov Disord ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132902

RESUMO

BACKGROUND: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. OBJECTIVES: Our goal was to investigate the effects of genetic variants on risk and time to LID. METHODS: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores (PRS) including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1612 PD patients with and 3175 without LID. RESULTS: We found that GBA1 variants were associated with LID risk (odds ratio [OR] = 1.65; 95% confidence interval [CI], 1.21-2.26; P = 0.0017) and LRRK2 variants with reduced time to LID onset (hazard ratio [HR] = 1.42; 95% CI, 1.09-1.84; P = 0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile = 1.27; 95% CI, 1.03-1.56; P = 0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile = 1.38; 95% CI, 1.07-1.79; P = 0.0128; HRfourth_quartile = 1.38; 95% CI = 1.06-1.78; P = 0.0147). CONCLUSIONS: This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
Eur J Neurol ; 31(2): e16147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975786

RESUMO

BACKGROUND AND PURPOSE: The ventral pallidum (VP) regulates involuntary movements, but it is unclear whether the VP regulates the abnormal involuntary movements in Parkinson's disease (PD) patients who have levodopa-induced dyskinesia (LID). To further understand the role of the VP in PD patients with LID (PD-LID), we explored the structural and functional characteristics of the VP in such patients using multimodal magnetic resonance imaging (MRI). METHODS: Thirty-one PD-LID patients, 39 PD patients without LID (PD-nLID), and 28 healthy controls (HCs) underwent T1-weighted MRI, quantitative susceptibility mapping, multi-shell diffusion MRI, and resting-state functional MRI (rs-fMRI). Different measures characterizing the VP were obtained using a region-of-interest-based approach. RESULTS: The left VP in the PD-LID group showed significantly higher intracellular volume fraction (ICVF) and isotropic volume fraction (IsoVF) compared with the PD-nLID and HC groups. Rs-MRI revealed that, compared with the PD-nLID group, the PD-LID group in the medication 'off' state had higher functional connectivity (FC) between the left VP and the left anterior caudate, left middle frontal gyrus and left precentral gyrus, as well as between the right VP and the right posterior ventral putamen and right mediodorsal thalamus. In addition, the ICVF values of the left VP, the FC between the left VP and the left anterior caudate and left middle frontal gyrus were positively correlated with Unified Dyskinesia Rating Scale scores. CONCLUSION: Our multimodal imaging findings show that the microstructural changes of the VP (i.e., the higher ICVF and IsoVF) and the functional change in the ventral striatum-VP-mediodorsal thalamus-cortex network may be associated with pathophysiological mechanisms of PD-LID.


Assuntos
Prosencéfalo Basal , Discinesia Induzida por Medicamentos , Doença de Parkinson , Humanos , Levodopa/efeitos adversos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Prosencéfalo Basal/patologia , Imageamento por Ressonância Magnética/métodos , Discinesia Induzida por Medicamentos/diagnóstico por imagem
4.
Can J Neurol Sci ; 51(1): 104-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36660782

RESUMO

BACKGROUND: Pathophysiology of levodopa-induced dyskinesia (LID) remains obscure. Increased dopamine metabolism due to prolonged levodopa treatment can exacerbate oxidative damage and neuroinflammatory pathology in Parkinson's disease (PD). Association of novel peripheral markers with LID severity might provide insight into LID pathomechanisms. OBJECTIVE: We aimed to study specific peripheral blood inflammatory-oxidative markers in LID patients and investigate their association with clinical severity of LID. METHOD: Motor, non-motor and cognitive changes in PD with and without LID compared to healthy-matched controls were identified. Within the same cohort, inflammatory marker (sLAG3, TOLLIP, NLRP3 and IL-1ß) levels and antioxidant enzyme activities were determined by ELISA and spectrophotometric methods. RESULTS: LID patients showed distinctly upregulated TOLLIP, IL-1ß levels with significant diminution of antioxidant activity compared to controls. Significant negative association of cognitive markers with oxidative changes was also observed. CONCLUSION: To our understanding, this is the first study that indicates the involvement of toll-like receptor-mediated distinct and low-grade inflammatory activation in LID pathophysiology.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Humanos , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos/uso terapêutico , Discinesia Induzida por Medicamentos/etiologia , Biomarcadores , Estresse Oxidativo
5.
Neurobiol Dis ; 181: 106111, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001610

RESUMO

In the past 25 years, the prevalence of Parkinson's disease (PD) has nearly doubled. Age remains the primary risk factor for PD and as the global aging population increases this trend is predicted to continue. Even when treated with levodopa, the gold standard dopamine (DA) replacement therapy, individuals with PD frequently develop therapeutic side effects. Levodopa-induced dyskinesia (LID), a common side effect of long-term levodopa use, represents a significant unmet clinical need in the treatment of PD. Previously, in young adult (3-month-old) male parkinsonian rats, we demonstrated that the silencing of CaV1.3 (Cacan1d) L-type voltage-gated calcium channels via striatal delivery of rAAV-CaV1.3-shRNA provides uniform protection against the induction of LID, and significant reduction of established severe LID. With the goal of more closely replicating a clinical demographic, the current study examined the effects of CaV1.3-targeted gene therapy on LID escalation in male and female parkinsonian rats of advanced age (18-month-old at study completion). We tested the hypothesis that silencing aberrant CaV1.3 channel activity in the parkinsonian striatum would prevent moderate to severe dyskinesia with levodopa dose escalation. To test this hypothesis, 15-month-old male and female F344 rats were rendered unilaterally parkinsonian and primed with low-dose (3-4 mg/kg) levodopa. Following the establishment of stable, mild dyskinesias, rats received an intrastriatal injection of either the Cacna1d-specific rAAV-CaV1.3-shRNA vector (CAV-shRNA), or the scramble control rAAV-SCR-shRNA vector (SCR-shRNA). Daily (M-Fr) low-dose levodopa was maintained for 4 weeks during the vector transduction and gene silencing window followed by escalation to 6 mg/kg, then to 12 mg/kg levodopa. SCR-shRNA-shRNA rats showed stable LID expression with low-dose levodopa and the predicted escalation of LID severity with increased levodopa doses. Conversely, complex behavioral responses were observed in aged rats receiving CAV-shRNA, with approximately half of the male and female subjects-therapeutic 'Responders'-demonstrating protection against LID escalation, while the remaining half-therapeutic 'Non-Responders'-showed LID escalation similar to SCR-shRNA rats. Post-mortem histological analyses revealed individual variability in the detection of Cacna1d regulation in the DA-depleted striatum of aged rats. However, taken together, male and female therapeutic 'Responder' rats receiving CAV-shRNA had significantly less striatal Cacna1d in their vector-injected striatum relative to contralateral striatum than those with SCR-shRNA. The current data suggest that mRNA-level silencing of striatal CaV1.3 channels maintains potency in a clinically relevant in vivo scenario by preventing dose-dependent dyskinesia escalation in rats of advanced age. As compared to the uniform response previously reported in young male rats, there was notable variability between individual aged rats, particularly females, in the current study. Future investigations are needed to derive the sex-specific and age-related mechanisms which underlie variable responses to gene therapy and to elucidate factors which determine the therapeutic efficacy of treatment for PD.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Ratos , Masculino , Feminino , Animais , Levodopa/efeitos adversos , Regulação para Baixo , Ratos Sprague-Dawley , Ratos Endogâmicos F344 , Discinesia Induzida por Medicamentos/metabolismo , Dopamina , Doença de Parkinson/tratamento farmacológico , RNA Interferente Pequeno , Antiparkinsonianos/farmacologia , Oxidopamina
6.
Mov Disord ; 38(4): 616-625, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36799459

RESUMO

BACKGROUND: Degeneration of the substantia nigra (SN) may contribute to levodopa-induced dyskinesia (LID) in Parkinson's disease (PD), but the exact characteristics of SN in LID remain unclear. OBJECTIVE: To further understand the pathogenesis of patients with PD with LID (PD-LID), we explored the structural and functional characteristics of SN in PD-LID using multimodal magnetic resonance imaging (MRI). METHODS: Twenty-nine patients with PD-LID, 37 patients with PD without LID (PD-nLID), and 28 healthy control subjects underwent T1-weighted MRI, quantitative susceptibility mapping, neuromelanin-sensitive MRI, multishell diffusion MRI, and resting-state functional MRI. Different measures characterizing the SN were obtained using a region of interest-based approach. RESULTS: Compared with patients with PD-nLID and healthy control subjects, the quantitative susceptibility mapping values of SN pars compacta (SNpc) were significantly higher (P = 0.049 and P = 0.00002), and the neuromelanin contrast-to-noise ratio values in SNpc were significantly lower (P = 0.012 and P = 0.000002) in PD-LID. The intracellular volume fraction of the posterior SN in PD-LID was significantly higher compared with PD-nLID (P = 0.037). Resting-state fMRI indicated that PD-LID in the medication off state showed higher functional connectivity between the SNpc and putamen compared with PD-nLID (P = 0.031), and the functional connectivity changes in PD-LID were positively correlated with Unified Dyskinesia Rating Scale total scores (R = 0.427, P = 0.042). CONCLUSIONS: Our multimodal imaging findings highlight greater neurodegeneration in SN and the altered nigrostriatal connectivity in PD-LID. These characteristics provide a new perspective into the role of SN in the pathophysiological mechanisms underlying PD-LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesias , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Levodopa/efeitos adversos , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal
7.
Mov Disord ; 38(10): 1850-1860, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37461292

RESUMO

BACKGROUND: Long-term use of levodopa for Parkinson's disease (PD) treatment is often hindered by development of motor complications, including levodopa-induced dyskinesia (LID). The substantia nigra pars reticulata (SNr) and globus pallidus internal segment (GPi) are the output nuclei of the basal ganglia. Dysregulation of SNr and GPi activity contributes to PD pathophysiology and LID. OBJECTIVE: The objective of this study was to determine whether direct modulation of SNr GABAergic neurons and SNr projections to the pedunculopontine nucleus (PPN) regulates PD symptoms and LID in a mouse model. METHODS: We expressed Cre-recombinase activated channelrhodopsin-2 (ChR2) or halorhodopsin adeno-associated virus-2 (AAV2) vectors selectively in SNr GABAergic neurons of Vgat-IRES-Cre mice in a 6-hydroxydopamine model of PD to investigate whether direct optogenetic modulation of SNr neurons or their projections to the PPN regulates PD symptoms and LID expression. The forepaw stepping task, mouse LID rating scale, and open-field locomotion were used to assess akinesia and LID to test the effect of SNr modulation. RESULTS: Akinesia was improved by suppressing SNr neuron activity with halorhodopsin. LID was significantly reduced by increasing SNr neuronal activity with ChR2, which did not interfere with the antiakinetic effect of levodopa. Optical stimulation of ChR2 in SNr projections to the PPN recapitulated direct SNr stimulation. CONCLUSIONS: Modulation of SNr GABAergic neurons alters akinesia and LID expression in a manner consistent with the rate model of basal ganglia circuitry. Moreover, the projections from SNr to PPN likely mediate the antidyskinetic effect of increasing SNr neuronal activity, identifying a potential novel role for the PPN in LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Parte Reticular da Substância Negra , Camundongos , Animais , Levodopa/efeitos adversos , Halorrodopsinas , Neurônios GABAérgicos , Substância Negra
8.
J Geriatr Psychiatry Neurol ; 36(2): 98-106, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35603896

RESUMO

INTRODUCTION: Long-term levodopa therapy for Parkinson's disease (PD) can cause levodopa induced dyskinesia (LID). Genetic predisposition has a significant role to play in inter-individual heterogeneity in the clinical manifestation of LID. Despite accumulating evidence for the role of COMT gene polymorphism (rs4680) as a genetic basis for LID, to date results have been inconsistent. Early assessment of the Catechol-O-Methyltransferase (COMT) genotype might be helpful to stratify PD patients concerning their individual risk for LID. METHOD: In this meta-analysis, we have used 9 studies, which were selected through online databases. Statistical analysis was performed using R (v-3.6) software. 5 genetic models have been used in the present study: Allele model (A vs. G), Dominant model (AA+AG vs. GG), Homozygote model (AA vs. GG), Co-dominant/heterozygote model (AG vs. GG), and Recessive model (AA vs. AG + GG). RESULTS: The results indicated a significant association between COMT rs4680 (Val158Met) polymorphism and LID risk. The genotype AA of COMT rs4680 is a risk factor for LID in PD patients under the recessive model (AA vs GG+AG) in the random-effect model. Analysis based on ethnicity showed that COMT rs4680 SNP allele A is a risk factor for LID development in Asian PD patients, while GG genotype is a risk factor for LID development in non-Asian PD patients using different genetic models. CONCLUSION: The results of the present meta-analysis support that the COMT Val158Met polymorphism is a risk factor for the development of LID in PD patients having ethnic variations.


Assuntos
Discinesias , Doença de Parkinson , Humanos , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/uso terapêutico , Discinesias/tratamento farmacológico , Predisposição Genética para Doença , Genótipo , Levodopa/efeitos adversos , Levodopa/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único
9.
Neurobiol Dis ; 167: 105686, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35272023

RESUMO

The striatum is densely innervated by mesencephalic dopaminergic neurons that modulate acquisition and vigor of goal-directed actions and habits. This innervation is progressively lost in Parkinson's disease (PD), contributing to the defining movement deficits of the disease. Although boosting dopaminergic signaling with levodopa early in the course of the disease alleviates these deficits, later this strategy leads to the emergence of debilitating dyskinesia. Here, recent advances in our understanding of how striatal cells and circuits adapt to this progressive de-innervation and to levodopa therapy are discussed. First, we discuss how dopamine (DA) depletion triggers cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity but also lead to disruption of the synaptic architecture sculpted by experience. Second, we discuss the roles played by cholinergic and nitric oxide-releasing interneurons in these adaptations. Third, we examine recent work in freely moving mice suggesting that alterations in the spatiotemporal dynamics of striatal ensembles contributes to PD movement deficits. Lastly, we discuss recently published evidence from a progressive model of PD suggesting that contrary to the classical model, striatal pathway imbalance is necessary but not sufficient to produce frank parkinsonism.


Assuntos
Doença de Parkinson , Animais , Corpo Estriado/metabolismo , Dopamina/metabolismo , Interneurônios/fisiologia , Levodopa/farmacologia , Camundongos , Doença de Parkinson/metabolismo
10.
Eur J Neurol ; 29(4): 1044-1055, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34962701

RESUMO

BACKGROUND AND PURPOSE: Levodopa-induced dyskinesia (LID) is a common motor complication in patients with Parkinson's disease (PD). Although amantadine is indicated for LID treatment, it is uncertain whether early treatment with amantadine reduces the risk of LID in patients with PD. We aimed to evaluate the association between amantadine treatment and LID onset in patients with early-stage PD. METHODS: This was a hospital-based retrospective cohort study that used electronic medical records from January 1, 2009 to October 31, 2016. The effect of amantadine on LID onset was compared with those of anticholinergics and monoamine oxidase type B inhibitors in patients with PD. Propensity-score weighting and landmark analysis were used to reduce potential confounding. The time to LID onset was analyzed using Cox models. Sensitivity analyses were performed to determine the robustness of the results. RESULTS: The analyses included 807, 661, and 518 patients at 6-, 12-, and 18-month landmark points, respectively. Amantadine use was associated with delayed LID onset in the 6- and 12-month landmark analyses, with adjusted hazard ratios of 0.65 (95% confidence interval [CI] = 0.49-0.86) and 0.64 (95% CI = 0.47-0.88), respectively. Sensitivity analysis findings were comparable to those of the main analysis. CONCLUSIONS: Early treatment with amantadine may delay LID onset more than treatment with other symptomatic agents. Further studies are needed to elucidate the mechanism of amantadine in LID onset delay and to validate our findings.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Amantadina/efeitos adversos , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/epidemiologia , Discinesia Induzida por Medicamentos/etiologia , Humanos , Levodopa/efeitos adversos , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Estudos Retrospectivos
11.
J Neurosci ; 40(18): 3675-3691, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32238479

RESUMO

The transcription factor Nurr1 has been identified to be ectopically induced in the striatum of rodents expressing l-DOPA-induced dyskinesia (LID). In the present study, we sought to characterize Nurr1 as a causative factor in LID expression. We used rAAV2/5 to overexpress Nurr1 or GFP in the parkinsonian striatum of LID-resistant Lewis or LID-prone Fischer-344 (F344) male rats. In a second cohort, rats received the Nurr1 agonist amodiaquine (AQ) together with l-DOPA or ropinirole. All rats received a chronic DA agonist and were evaluated for LID severity. Finally, we performed single-unit recordings and dendritic spine analyses on striatal medium spiny neurons (MSNs) in drug-naïve rAAV-injected male parkinsonian rats. rAAV-GFP injected LID-resistant hemi-parkinsonian Lewis rats displayed mild LID and no induction of striatal Nurr1 despite receiving a high dose of l-DOPA. However, Lewis rats overexpressing Nurr1 developed severe LID. Nurr1 agonism with AQ exacerbated LID in F344 rats. We additionally determined that in l-DOPA-naïve rats striatal rAAV-Nurr1 overexpression (1) increased cortically-evoked firing in a subpopulation of identified striatonigral MSNs, and (2) altered spine density and thin-spine morphology on striatal MSNs; both phenomena mimicking changes seen in dyskinetic rats. Finally, we provide postmortem evidence of Nurr1 expression in striatal neurons of l-DOPA-treated PD patients. Our data demonstrate that ectopic induction of striatal Nurr1 is capable of inducing LID behavior and associated neuropathology, even in resistant subjects. These data support a direct role of Nurr1 in aberrant neuronal plasticity and LID induction, providing a potential novel target for therapeutic development.SIGNIFICANCE STATEMENT The transcription factor Nurr1 is ectopically induced in striatal neurons of rats exhibiting levodopa-induced dyskinesia [LID; a side-effect to dopamine replacement strategies in Parkinson's disease (PD)]. Here we asked whether Nurr1 is causing LID. Indeed, rAAV-mediated expression of Nurr1 in striatal neurons was sufficient to overcome LID-resistance, and Nurr1 agonism exacerbated LID severity in dyskinetic rats. Moreover, we found that expression of Nurr1 in l-DOPA naïve hemi-parkinsonian rats resulted in the formation of morphologic and electrophysiological signatures of maladaptive neuronal plasticity; a phenomenon associated with LID. Finally, we determined that ectopic Nurr1 expression can be found in the putamen of l-DOPA-treated PD patients. These data suggest that striatal Nurr1 is an important mediator of the formation of LID.


Assuntos
Corpo Estriado/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/toxicidade , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Transtornos Parkinsonianos/metabolismo , Idoso , Animais , Corpo Estriado/efeitos dos fármacos , Discinesia Induzida por Medicamentos/patologia , Feminino , Humanos , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
12.
Mov Disord ; 36(5): 1147-1157, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33458877

RESUMO

BACKGROUND: Similar to some monogenic forms of dystonia, levodopa-induced dyskinesia is a hyperkinetic movement disorder with abnormal nigrostriatal dopaminergic neurotransmission. Molecularly, it is characterized by hyper-induction of phosphorylation of extracellular signal-related kinase in response to dopamine in medium spiny neurons of the direct pathway. OBJECTIVES: The objective of this study was to determine if mouse models of monogenic dystonia exhibit molecular features of levodopa-induced dyskinesia. METHODS: Western blotting and quantitative immunofluorescence was used to assay baseline and/or dopamine-induced levels of the phosphorylated kinase in the striatum in mouse models of DYT1, DYT6, and DYT25 expressing a reporter in dopamine D1 receptor-expressing projection neurons. Cyclic adenosine monophosphate (cAMP) immunoassay and adenylyl cyclase activity assays were also performed. RESULTS: In DYT1 and DYT6 models, blocking dopamine reuptake with cocaine leads to enhanced extracellular signal-related kinase phosphorylation in dorsomedial striatal medium spiny neurons in the direct pathway, which is abolished by pretreatment with the N-methyl-d-aspartate antagonist MK-801. Phosphorylation is decreased in a model of DYT25. Levels of basal and stimulated cAMP and adenylyl cyclase activity were normal in the DYT1 and DYT6 mice and decreased in the DYT25 mice. Oxotremorine induced increased abnormal movements in the DYT1 knock-in mice. CONCLUSIONS: The increased dopamine induction of extracellular signal-related kinase phosphorylation in 2 genetic types of dystonia, similar to what occurs in levodopa-induced dyskinesia, and its decrease in a third, suggests that abnormal signal transduction in response to dopamine in the postsynaptic nigrostriatal pathway might be a point of convergence for dystonia and other hyperkinetic movement disorders, potentially offering common therapeutic targets. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Animais , Corpo Estriado/metabolismo , Dopamina , Distonia/induzido quimicamente , Distonia/genética , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Fosforilação
13.
Neurol Sci ; 42(10): 4085-4094, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34346015

RESUMO

BACKGROUND AND PURPOSE: Polymorphisms of the catechol-O-methyl transferase (COMT) or monoamine oxidase B (MAO-B) genes may affect the occurrence of dyskinesia in Parkinson's disease (PD) patients. However, the findings are inconsistent. Thus, we performed a meta-analysis to assess whether COMT and MAO-B genetic variants are associated with an increased incidence of levodopa-induced dyskinesia (LID) in PD patients. METHODS: A literature search of PubMed, Embase, and Cochrane Library was conducted to identify relevant studies published up to January 2021. The strength of the association between the polymorphisms and LID susceptibility was estimated by odds ratio (OR) and associated 95% confidence interval (CI). The pooled ORs were assessed in different genetic models. RESULTS: Ten studies involving 2385 PD patients were included in the meta-analysis. Analysis of pooled ORs and 95% CIs suggested that the AA genotype of COMT(rs4680) was associated with LID (OR = 1.39, 95%CI: 1.02-1.89, P = 0.039) in the recessive model, and this correlation was more obvious in Brazilian samples in the analysis stratified by ethnicity. For the AG genotype of MAO-B(rs1799836), the pooled OR was 1.66 (95% CI: 1.04-2.65, P = 0.03) in patients with LID versus those without LID in the heterozygote model. CONCLUSIONS: Our meta-analysis implicates the AA genotype of the COMT rs4680 polymorphism as potentially increasing the risk of LID in a recessive genetic model for PD patients. Furthermore, the AG genotype of the MAO-B rs1799836 polymorphism may influence the prevalence of LID in PD patients in the heterozygote model. However, further well-designed studies with larger PD patient cohorts are required to validate these results after adjusting for confounding factors.


Assuntos
Discinesias , Doença de Parkinson , Catecol O-Metiltransferase/genética , Humanos , Levodopa/efeitos adversos , Monoaminoxidase/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética
14.
Eur J Neurol ; 27(10): 1948-1956, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32441832

RESUMO

BACKGROUND AND PURPOSE: As a major antioxidant, uric acid (UA) is known to be associated with the clinical progression of Parkinson's disease (PD). This study investigated whether baseline UA levels are associated with the risk for levodopa-induced dyskinesia (LID) in PD in a sex-dependent manner. METHODS: In all, 152 patients with de novo PD (78 males and 74 females) who were followed up for >2 years were enrolled. The effect of baseline serum UA levels on LID-free survival was assessed by Cox regression, separately for sex, whilst being adjusted for potential confounding factors. The optimal UA level cut-off value to determine the high-risk group for LID was set using Contal and O'Quigley's method. RESULTS: Levodopa-induced dyskinesia developed in 23 (29.5%) male patients and 30 (40.5%) female patients. Cox regression showed a significant interaction between UA level and sex. Higher UA levels were associated with a higher risk for LID in male PD patients (hazard ratio 1.380; 95% confidence interval 1.038-1.835; P = 0.027), although this relationship was not observed in female PD patients. The optimal UA level cut-off for LID in male PD was 7.2 mg/dl, and the high UA group had a 5.7-fold higher risk of developing LID than the low UA group. CONCLUSIONS: Contrary to a presumptive beneficial role of UA, the present study demonstrated that higher UA levels are associated with increased risk of LID occurrence in male patients with PD, suggesting a sex-dependent role of UA in LID.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/etiologia , Feminino , Humanos , Levodopa/efeitos adversos , Masculino , Doença de Parkinson/tratamento farmacológico , Ácido Úrico
15.
Neurobiol Dis ; 121: 338-349, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30261285

RESUMO

In the striatum, specific N-methyl-d-aspartate receptor (NMDAR) subtypes are found in different neuronal cells. Spiny projection neurons (SPNs) are characterized by NMDARs expressing GluN2A and GluN2B subunits, while GluN2D is exclusively detected in striatal cholinergic interneurons (ChIs). In Parkinson's disease (PD), dopamine depletion and prolonged treatment with levodopa (L-DOPA) trigger adaptive changes in the glutamatergic transmission from the cortex to the striatum, also resulting in the aberrant function of striatal NMDARs. While modifications of GluN2A- and GluN2B-NMDARs in SPNs have been extensively documented, only few studies report GluN2D dysfunction in PD and no data are available in L-DOPA-induced dyskinesia (LID). Here we investigate the contribution of a specific NMDAR subtype (GluN2D-NMDAR) to PD and LID, and whether this receptor could represent a candidate for future pharmacological interventions. Our results show that GluN2D synaptic abundance is selectively augmented in the striatum of L-DOPA-treated male parkinsonian rats displaying a dyskinetic phenotype. This event is associated to a dramatic increase in GluN2D binding to the postsynaptic protein scaffold PSD-95. Moreover, immunohistochemistry and electrophysiology experiments reveal that GluN2D-NMDARs are expressed not only by striatal ChIs but also by SPNs in dyskinetic rats. Notably, in vivo treatment with a well-characterized GluN2D antagonist ameliorates the severity of established dyskinesia in L-DOPA-treated animals. Our findings support a role for GluN2D-NMDARs in LID, and they confirm that cell-type and subunit specific modifications of NMDARs underlie the pathophysiology of LID.


Assuntos
Corpo Estriado/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Interneurônios/metabolismo , Levodopa/administração & dosagem , Macaca mulatta , Masculino , Ratos Sprague-Dawley , Sinapses/metabolismo
16.
J Neural Transm (Vienna) ; 126(4): 411-422, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30937538

RESUMO

The striatum is richly innervated by mesencephalic dopaminergic neurons that modulate a diverse array of cellular and synaptic functions that control goal-directed actions and habits. The loss of this innervation has long been thought to be the principal cause of the cardinal motor symptoms of Parkinson's disease (PD). Moreover, chronic, pharmacological overstimulation of striatal dopamine (DA) receptors is generally viewed as the trigger for levodopa-induced dyskinesia (LID) in late-stage PD patients. Here, we discuss recent advances in our understanding of the relationship between the striatum and DA, particularly as it relates to PD and LID. First, it has become clear that chronic perturbations of DA levels in PD and LID bring about cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity. Second, perturbations in DA signaling also bring about non-homeostatic aberrations in synaptic plasticity that contribute to disease symptoms. Third, it has become evident that striatal interneurons are major determinants of network activity and behavior in PD and LID. Finally, recent work examining the activity of SPNs in freely moving animals has revealed that the pathophysiology induced by altered DA signaling is not limited to imbalance in the average spiking in direct and indirect pathways, but involves more nuanced disruptions of neuronal ensemble activity.


Assuntos
Corpo Estriado/fisiopatologia , Dopamina/metabolismo , Discinesia Induzida por Medicamentos/fisiopatologia , Doença de Parkinson/fisiopatologia , Animais , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Humanos , Levodopa/efeitos adversos , Doença de Parkinson/metabolismo
17.
J Neural Transm (Vienna) ; 126(6): 789-793, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31098725

RESUMO

We tested in a translational approach the usefulness of plasma creatine kinase (CK) as an objective biomarker for levodopa-induced dyskinesia (LID). Plasma CK levels were measured in five dyskinetic parkinsonian non-human primates (NHP) and in ten PD patients with LID who participated in a treatment trial with simvastatin. Plasma CK levels were increased in dyskinetic NHP and correlated with LID severity while they were not affected by LID severity in PD patients.


Assuntos
Antiparkinsonianos/efeitos adversos , Creatina Quinase/sangue , Discinesia Induzida por Medicamentos/sangue , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Idoso , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/fisiopatologia , Humanos , Macaca , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Índice de Gravidade de Doença
18.
Neurobiol Dis ; 118: 64-75, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29936234

RESUMO

Management of levodopa-induced dyskinesias (LID) is one of the main challenges in the treatment of Parkinson's disease patients. Mechanisms involved in the appearance of these involuntary movements are not well known but modifications in the activity of different neurotransmitter pathways seem to play an important role. The objective of this study was to determine differences in the expression levels of the endocannabinoid system (ECS) elements that would support a role in LID. The basal ganglia nuclei, putamen, external segment of the globus pallidus (GPe), internal segment of the globus pallidus (GPi), subthalamic nucleus (STN) and substantia nigra (SN) were dissected out from cryostat sections obtained from two groups of parkinsonian monkeys treated with levodopa to induce dyskinesias. One group of dyskinetic animals was sacrificed under the effect of levodopa, during the active phase of LID, and the other group 24 h after the last levodopa dose (OFF levodopa). Biochemical analysis by real-time PCR for ECS elements was performed. CB1 receptor expression was upregulated in the putamen, GPe and STN during the active phase of dyskinesia and downregulated in the same nuclei and in the SN when dyskinetic animals were OFF levodopa. Changes in the 2-arachidonoyl glycerol (2-AG) synthesizing/degrading enzymes affecting the pallidal-subthalamic projections in dyskinetic animals OFF levodopa would suggest that 2-AG may play a role in LID. Anandamide (AEA) synthesizing/degrading enzymes were altered specifically in the GPe of untreated parkinsonian monkeys, suggesting that increased AEA levels may be a compensatory mechanism. These results indicate that the expression of the ECS elements is influenced by alterations in dopaminergic neurotransmission. On one hand, changes in CB1 receptor expression and in the 2-AG synthesizing/degrading enzymes suggest that they could be a therapeutic target for the active phase of LID. On the other hand, AEA metabolism could provide a non-dopaminergic target for symptomatic relief. However, further research is needed to unravel the mechanism of action of the ECS and how they could be modulated for a therapeutic purpose.


Assuntos
Ácidos Araquidônicos/biossíntese , Gânglios da Base/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Endocanabinoides/biossíntese , Glicerídeos/biossíntese , Levodopa/toxicidade , Receptor CB1 de Canabinoide/biossíntese , Animais , Ácidos Araquidônicos/genética , Gânglios da Base/efeitos dos fármacos , Discinesia Induzida por Medicamentos/genética , Endocanabinoides/genética , Feminino , Expressão Gênica , Glicerídeos/genética , Macaca fascicularis , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Receptor CB1 de Canabinoide/genética
19.
BMC Neurosci ; 19(1): 77, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497382

RESUMO

BACKGROUND: The treatment of Parkinson's disease is often complicated by levodopa-induced dyskinesia (LID). Nicotinic acetylcholine receptor agonists can alleviate LID in animal models but may be less effective in conditions of severe dopaminergic denervation. While the mechanisms of LID remain incompletely understood, elevated corticostriatal levels of the brain-derived neurotrophic factor (BDNF) have been suggested to play a role. Here, female mice with near-total unilateral 6-hydroxydopamine-induced nigrostriatal lesions were chronically treated with levodopa, and the effects of the α7 nicotinic receptor partial agonist AZD0328 and nicotine on LID were assessed. At the end of the experiment, BDNF protein levels in the prefrontal cortex and striatum were measured. RESULTS: Five-day treatments with three escalating doses of AZD0328 and a 10-week treatment with nicotine failed to alleviate LID. BDNF levels in the lesioned striatum correlated positively with LID severity, but no evidence was found for a levodopa-induced elevation of corticostriatal BDNF in the lesioned hemisphere. The nicotine treatment decreased BDNF levels in the prefrontal cortex but had no effect on striatal BDNF. CONCLUSIONS: The findings suggest that treatment of LID with nicotinic agonists may lose its effectiveness as the disease progresses, represent further evidence for a role for BDNF in LID, and expand previous knowledge on the effects of long-term nicotine treatment on BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopaminérgicos/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Agonistas Nicotínicos/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Dopamina/deficiência , Dopaminérgicos/efeitos adversos , Discinesia Induzida por Medicamentos/patologia , Feminino , Furanos/farmacologia , Levodopa/efeitos adversos , Levodopa/farmacologia , Camundongos Endogâmicos C57BL , Nicotina/farmacologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Quinuclidinas/farmacologia , Distribuição Aleatória , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
20.
Eur J Nucl Med Mol Imaging ; 45(3): 423-431, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29075830

RESUMO

PURPOSE: Reduced presynaptic dopaminergic activity plays an important role in the development of levodopa-induced dyskinesia (LID) in Parkinson's disease (PD). In this study, we investigated whether dopaminergic function in the nigrostriatal system is associated with the timing of LID onset. METHODS: From among 412 drug-naive PD patients who underwent a dopamine transporter (DAT) PET scan during their baseline evaluation, we enrolled 65 patients who developed LID during a follow-up period of >2 years. Based on the time from PD onset, LID was classified as early, intermediate or late onset. We then compared DAT availability in the striatal subregions of the patients in the three groups. RESULTS: The demographic characteristics did not differ among the three patient groups except for earlier intervention of levodopa therapy in the early LID onset group (p = 0.001). After adjusting for age at PD onset, gender, timing of levodopa therapy from PD onset, and the severity of PD motor symptoms, DAT activity in the posterior putamen was found to be significantly lower in the early LID onset group than in the late LID onset group (p = 0.017). Multivariate linear regression analysis showed that low DAT activity in the posterior putamen was significantly associated with the early appearance of LID in the early LID onset group (ß = 16.039, p = 0.033). CONCLUSION: This study demonstrated that low DAT activity in the posterior putamen at baseline is a major risk factor for the early onset of LID in patients with PD, suggesting that the degree of presynaptic dopaminergic denervation plays an important role in determining the timing of LID onset.


Assuntos
Dopamina/deficiência , Discinesias/etiologia , Discinesias/metabolismo , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Sinapses/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Discinesias/diagnóstico por imagem , Discinesias/patologia , Feminino , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Sinapses/metabolismo , Fatores de Tempo , Tropanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA