Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
BMC Genomics ; 25(1): 282, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493105

RESUMO

BACKGROUND: Blood transcriptomic analysis is widely used to provide a detailed picture of a physiological state with potential outcomes for applications in diagnostics and monitoring of the immune response to vaccines. However, multi-species transcriptomic analysis is still a challenge from a technological point of view and a standardized workflow is urgently needed to allow interspecies comparisons. RESULTS: Here, we propose a single and complete total RNA-Seq workflow to generate reliable transcriptomic data from blood samples from humans and from animals typically used in preclinical models. Blood samples from a maximum of six individuals and four different species (rabbit, non-human primate, mouse and human) were extracted and sequenced in triplicates. The workflow was evaluated using different wet-lab and dry-lab criteria, including RNA quality and quantity, the library molarity, the number of raw sequencing reads, the Phred-score quality, the GC content, the performance of ribosomal-RNA and globin depletion, the presence of residual DNA, the strandness, the percentage of coding genes, the number of genes expressed, and the presence of saturation plateau in rarefaction curves. We identified key criteria and their associated thresholds to be achieved for validating the transcriptomic workflow. In this study, we also generated an automated analysis of the transcriptomic data that streamlines the validation of the dataset generated. CONCLUSIONS: Our study has developed an end-to-end workflow that should improve the standardization and the inter-species comparison in blood transcriptomics studies. In the context of vaccines and drug development, RNA sequencing data from preclinical models can be directly compared with clinical data and used to identify potential biomarkers of value to monitor safety and efficacy.


Assuntos
Perfilação da Expressão Gênica , Vacinas , Humanos , Animais , Camundongos , Coelhos , Fluxo de Trabalho , Transcriptoma , RNA , Sequenciamento de Nucleotídeos em Larga Escala
2.
Plant Biotechnol J ; 21(11): 2241-2253, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37593840

RESUMO

We present an easy-to-reproduce manual miniaturized full-length RNA sequencing (RNAseq) library preparation workflow that does not require the upfront investment in expensive lab equipment or long setup times. With minimal adjustments to an established commercial protocol, we were able to manually miniaturize the RNAseq library preparation by a factor of up to 1:8. This led to cost savings for miniaturized library preparation of up to 86.1% compared to the gold standard. The resulting data were the basis of a rigorous quality control analysis that inspected: sequencing quality metrics, gene body coverage, raw read duplications, alignment statistics, read pair duplications, detected transcripts and sequence variants. We also included a deep dive data analysis identifying rRNA contamination and suggested ways to circumvent these. In the end, we could not find any indication of biases or inaccuracies caused by the RNAseq library miniaturization. The variance in detected transcripts was minimal and not influenced by the miniaturization level. Our results suggest that the workflow is highly reproducible and the sequence data suitable for downstream analyses such as differential gene expression analysis or variant calling.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/metabolismo , Biblioteca Gênica , Análise de Sequência de RNA/métodos , Miniaturização
3.
Crit Rev Biotechnol ; : 1-19, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731336

RESUMO

Shotgun metagenomics is an increasingly cost-effective approach for profiling environmental and host-associated microbial communities. However, due to the complexity of both microbiomes and the molecular techniques required to analyze them, the reliability and representativeness of the results are contingent upon the field, laboratory, and bioinformatic procedures employed. Here, we consider 15 field and laboratory issues that critically impact downstream bioinformatic and statistical data processing, as well as result interpretation, in bacterial shotgun metagenomic studies. The issues we consider encompass intrinsic properties of samples, study design, and laboratory-processing strategies. We identify the links of field and laboratory steps with downstream analytical procedures, explain the means for detecting potential pitfalls, and propose mitigation measures to overcome or minimize their impact in metagenomic studies. We anticipate that our guidelines will assist data scientists in appropriately processing and interpreting their data, while aiding field and laboratory researchers to implement strategies for improving the quality of the generated results.

4.
Virol J ; 20(1): 44, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890572

RESUMO

BACKGROUND: Previously developed TaME-seq method for deep sequencing of HPV, allowed simultaneous identification of the human papillomavirus (HPV) DNA consensus sequence, low-frequency variable sites, and chromosomal integration events. The method has been successfully validated and applied to the study of five carcinogenic high-risk (HR) HPV types (HPV16, 18, 31, 33, and 45). Here, we present TaME-seq2 with an updated laboratory workflow and bioinformatics pipeline. The HR-HPV type repertoire was expanded with HPV51, 52, and 59. As a proof-of-concept, TaME-seq2 was applied on SARS-CoV-2 positive samples showing the method's flexibility to a broader range of viruses, both DNA and RNA. RESULTS: Compared to TaME-seq version 1, the bioinformatics pipeline of TaME-seq2 is approximately 40× faster. In total, 23 HPV-positive samples and seven SARS-CoV-2 clinical samples passed the threshold of 300× mean depth and were submitted to further analysis. The mean number of variable sites per 1 kb was ~ 1.5× higher in SARS-CoV-2 than in HPV-positive samples. Reproducibility and repeatability of the method were tested on a subset of samples. A viral integration breakpoint followed by a partial genomic deletion was found in within-run replicates of HPV59-positive sample. Identified viral consensus sequence in two separate runs was > 99.9% identical between replicates, differing by a couple of nucleotides identified in only one of the replicates. Conversely, the number of identical minor nucleotide variants (MNVs) differed greatly between replicates, probably caused by PCR-introduced bias. The total number of detected MNVs, calculated gene variability and mutational signature analysis, were unaffected by the sequencing run. CONCLUSION: TaME-seq2 proved well suited for consensus sequence identification, and the detection of low-frequency viral genome variation and viral-chromosomal integrations. The repertoire of TaME-seq2 now encompasses seven HR-HPV types. Our goal is to further include all HR-HPV types in the TaME-seq2 repertoire. Moreover, with a minor modification of previously developed primers, the same method was successfully applied for the analysis of SARS-CoV-2 positive samples, implying the ease of adapting TaME-seq2 to other viruses.


Assuntos
COVID-19 , Infecções por Papillomavirus , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Papillomaviridae/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA Viral/genética , Teste para COVID-19
5.
Chromosome Res ; 30(4): 401-414, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35781769

RESUMO

The human genome is divided into functional units that replicate at specific times during S-phase. This temporal program is known as replication timing (RT) and is coordinated with the spatial organization of the genome and transcriptional activity. RT is also cell type-specific, dynamically regulated during development, and alterations in RT are observed in multiple diseases. Thus, the precise measure of RT is critical to understand the role of RT in gene function regulation. Distinct methods for assaying the RT program exist; however, conventional methods require thousands of cells as input, prohibiting its applicability to samples with limited cell numbers such as those from disease patients or from early developing embryos. Although single-cell RT analyses have been developed, these methods are low throughput, require generation of numerous libraries, increased sequencing costs, and produce low resolution data. Here, we developed an improved method to measure RT genome-wide that enables high-resolution analysis of low input samples. This method incorporates direct cell sorting into lysis buffer, as well as DNA fragmentation and library preparation in a single tube, resulting in higher yields, increased quality, and reproducibility with decreased costs. We also performed a systematic data processing analysis to provide standardized parameters for RT measurement. This optimized method facilitates RT analysis and will enable its application to a broad range of studies investigating the role of RT in gene expression, nuclear architecture, and disease.


Assuntos
Período de Replicação do DNA , Genoma Humano , Humanos , Reprodutibilidade dos Testes , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Replicação do DNA
6.
Parasitol Res ; 122(12): 3243-3256, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940706

RESUMO

We recently described a targeted amplicon deep sequencing (TADS) strategy that utilizes a nested PCR targeting the 18S rDNA gene of blood-borne parasites. The assay facilitates selective digestion of host DNA by targeting enzyme restriction sites present in vertebrates but absent in parasites. This enriching of parasite-derived amplicon drastically reduces the proportion of host-derived reads during sequencing and results in the sensitive detection of several clinically important blood parasites including Plasmodium spp., Babesia spp., kinetoplastids, and filarial nematodes. Despite these promising results, high costs and the laborious nature of metagenomics sequencing are prohibitive to the routine use of this assay in most laboratories. We describe and evaluate a new metagenomic approach that utilizes a set of primers modified from our original assay that incorporates Illumina barcodes and adapters during the PCR steps. This modification makes amplicons immediately compatible with sequencing on the Illumina MiSeq platform, removing the need for a separate library preparation, which is expensive and time-consuming. We compared this modified assay to our previous nested TADS assay in terms of preparation speed, limit of detection (LOD), and cost. Our modifications reduced assay turnaround times from 7 to 5 days. The cost decreased from approximately $40 per sample to $11 per sample. The modified assay displayed comparable performance in the detection and differentiation of human-infecting Plasmodium spp., Babesia spp., kinetoplastids, and filarial nematodes in clinical samples. The LOD of this modified approach was determined for malaria parasites and remained similar to that previously reported for our earlier assay (0.58 Plasmodium falciparum parasites/µL of blood). These modifications markedly reduced costs and turnaround times, making the assay more amenable to routine diagnostic applications.


Assuntos
Babesia , Parasitos , Plasmodium , Animais , Humanos , Parasitos/genética , Análise Custo-Benefício , Plasmodium/genética , Plasmodium falciparum/genética , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Babesia/genética
7.
BMC Biol ; 20(1): 257, 2022 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-36372875

RESUMO

BACKGROUND: RNA G-quadruplexes (rG4s) are non-canonical structural motifs that have diverse functional and regulatory roles, for instance in transcription termination, alternative splicing, mRNA localization and stabilization, and translational process. We recently developed the RNA G-quadruplex structure sequencing (rG4-seq) technique and described rG4s in both eukaryotic and prokaryotic transcriptomes. However, rG4-seq suffers from a complicated gel purification step and limited PCR product yield, thus requiring a high amount of RNA input, which limits its applicability in more physiologically or clinically relevant studies often characterized by the limited availability of biological material and low RNA abundance. Here, we redesign and enhance the workflow of rG4-seq to address this issue. RESULTS: We developed rG4-seq 2.0 by introducing a new ssDNA adapter containing deoxyuridine during library preparation to enhance library quality with no gel purification step, less PCR amplification cycles and higher yield of PCR products. We demonstrate that rG4-seq 2.0 produces high-quality cDNA libraries that support reliable and reproducible rG4 identification at varying RNA inputs, including RNA mounts as low as 10 ng. rG4-seq 2.0 also improved the rG4-seq calling outcome and nucleotide bias in rG4 detection persistent in rG4-seq 1.0. We further provide in vitro mapping of rG4 in the HEK293T cell line, and recommendations for assessing RNA input and sequencing depth for individual rG4 studies based on transcript abundance. CONCLUSIONS: rG4-seq 2.0 can improve the identification and study of rG4s in low abundance transcripts, and our findings can provide insights to optimize cDNA library preparation in other related methods.


Assuntos
Quadruplex G , Humanos , RNA/química , Transcriptoma , Células HEK293 , Análise de Sequência de RNA/métodos
8.
BMC Biol ; 20(1): 225, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209213

RESUMO

BACKGROUND: Shotgun metagenomic sequencing has greatly expanded the understanding of microbial communities in various biological niches. However, it is still challenging to efficiently convert sub-nanogram DNA to high-quality metagenomic libraries and obtain high-fidelity data, hindering the exploration of niches with low microbial biomass. RESULTS: To cope with this challenge comprehensively, we evaluated the performance of various library preparation methods on 0.5 pg-5 ng synthetic microbial community DNA, characterized contaminants, and further applied different in silico decontamination methods. First, we discovered that whole genome amplification prior to library construction led to worse outcomes than preparing libraries directly. Among different non-WGA-based library preparation methods, we found the endonuclease-based method being generally good for different amounts of template and the tagmentation-based method showing specific advantages with 0.5 pg template, based on evaluation metrics including fidelity, proportion of designated reads, and reproducibility. The load of contaminating DNA introduced by library preparation varied from 0.01 to 15.59 pg for different kits and accounted for 0.05 to 45.97% of total reads. A considerable fraction of the contaminating reads were mapped to human commensal and pathogenic microbes, thus potentially leading to erroneous conclusions in human microbiome studies. Furthermore, the best performing in silico decontamination method in our evaluation, Decontam-either, was capable of recovering the real microbial community from libraries where contaminants accounted for less than 10% of total reads, but not from libraries with heavy and highly varied contaminants. CONCLUSIONS: This study demonstrates that high-quality metagenomic data can be obtained from samples with sub-nanogram microbial DNA by combining appropriate library preparation and in silico decontamination methods and provides a general reference for method selection for samples with varying microbial biomass.


Assuntos
Descontaminação , Metagenômica , DNA/genética , Endonucleases/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenômica/métodos , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos
9.
BMC Genomics ; 23(1): 187, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255806

RESUMO

BACKGROUND: A variety of protocols exist for producing whole genome run-on transcription datasets. However, little is known about how differences between these protocols affect the signal within the resulting libraries. RESULTS: Using run-on transcription datasets generated from the same biological system, we show that a variety of GRO- and PRO-seq preparation methods leave identifiable signatures within each library. Specifically we show that the library preparation method results in differences in quality control metrics, as well as differences in the signal distribution at the 5 ' end of transcribed regions. These shifts lead to disparities in eRNA identification, but do not impact analyses aimed at inferring the key regulators involved in changes to transcription. CONCLUSIONS: Run-on sequencing protocol variations result in technical signatures that can be used to identify both the enrichment and library preparation method of a particular data set. These technical signatures are batch effects that limit detailed comparisons of pausing ratios and eRNAs identified across protocols. However, these batch effects have only limited impact on our ability to infer which regulators underlie the observed transcriptional changes.


Assuntos
Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Controle de Qualidade , Transcrição Gênica
10.
BMC Genomics ; 23(1): 92, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105301

RESUMO

BACKGROUND: Novel commercial kits for whole genome library preparation for next-generation sequencing on Illumina platforms promise shorter workflows, lower inputs and cost savings. Time savings are achieved by employing enzymatic DNA fragmentation and by combining end-repair and tailing reactions. Fewer cleanup steps also allow greater DNA input flexibility (1 ng-1 µg), PCR-free options from 100 ng DNA, and lower price as compared to the well-established sonication and tagmentation-based DNA library preparation kits. RESULTS: We compared the performance of four enzymatic fragmentation-based DNA library preparation kits (from New England Biolabs, Roche, Swift Biosciences and Quantabio) to a tagmentation-based kit (Illumina) using low input DNA amounts (10 ng) and PCR-free reactions with 100 ng DNA. With four technical replicates of each input amount and kit, we compared the kits' fragmentation sequence-bias as well as performance parameters such as sequence coverage and the clinically relevant detection of single nucleotide and indel variants. While all kits produced high quality sequence data and demonstrated similar performance, several enzymatic fragmentation methods produced library insert sizes which deviated from those intended. Libraries with longer insert lengths performed better in terms of coverage, SNV and indel detection. Lower performance of shorter-insert libraries could be explained by loss of sequence coverage to overlapping paired-end reads, exacerbated by the preferential sequencing of shorter fragments on Illumina sequencers. We also observed that libraries prepared with minimal or no PCR performed best with regard to indel detection. CONCLUSIONS: The enzymatic fragmentation-based DNA library preparation kits from NEB, Roche, Swift and Quantabio are good alternatives to the tagmentation based Nextera DNA flex kit from Illumina, offering reproducible results using flexible DNA inputs, quick workflows and lower prices. Libraries with insert DNA fragments longer than the cumulative sum of both read lengths avoid read overlap, thus produce more informative data that leads to strongly improved genome coverage and consequently also increased sensitivity and precision of SNP and indel detection. In order to best utilize such enzymatic fragmentation reagents, researchers should be prepared to invest time to optimize fragmentation conditions for their particular samples.


Assuntos
Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Biblioteca Gênica , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
11.
BMC Genomics ; 23(1): 653, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104659

RESUMO

BACKGROUND: Caenorhabditis elegans is an excellent research model whose populations have been used in many studies to address various biological questions. Although worm-to-worm phenotypic variations in isogenic populations have been persistently observed, they are not well understood and are often ignored or averaged out in studies, masking the impacts of such variations on data collection and interpretation. Single-worm RNA sequencing that profiles the transcriptomes of individual animals has the power to examine differences between individuals in a worm population, but this approach has been understudied. The integrity of the starting RNA, the quality of the library and sequence data, as well as the transcriptome-profiling effectiveness of single-worm RNA-seq remain unclear. Therefore, more studies are needed to improve this technique and its application in research. RESULTS: In this study, we aimed to develop a single-worm RNA-seq method that includes five steps: worm lysis and RNA extraction, cDNA synthesis, library preparation, sequencing, and sequence data analysis. We found that the mechanical lysis of worms using a Qiagen TissueLyser maintained RNA integrity and determined that the quality of our single-worm libraries was comparable to that of standard RNA-seq libraries based on assessments of a variety of parameters. Furthermore, analysis of pathogen infection-induced gene expression using single-worm RNA-seq identified a core set of genes and biological processes relating to the immune response and metabolism affected by infection. These results demonstrate the effectiveness of our single-worm RNA-seq method in transcriptome profiling and its usefulness in addressing biological questions. CONCLUSIONS: We have developed a single-worm RNA-seq method to effectively profile gene expression in individual C. elegans and have applied this method to study C. elegans responses to pathogen infection. Key aspects of our single-worm RNA-seq libraries were comparable to those of standard RNA-seq libraries. The single-worm method captured the core set of, but not all, infection-affected genes and biological processes revealed by the standard method, indicating that there was gene regulation that is not shared by all individuals in a population. Our study suggests that combining single-worm and standard RNA-seq approaches will allow for detecting and distinguishing shared and individual-specific gene activities in isogenic populations.


Assuntos
Caenorhabditis elegans , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Caenorhabditis elegans/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/genética , Análise de Sequência de RNA/métodos
12.
Curr Issues Mol Biol ; 44(5): 2186-2193, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35678677

RESUMO

RNA sequencing (RNA-Seq) appears as a great tool with huge clinical potential, particularly in oncology. However, sufficient sample size is often a limiting factor and the vast majority of samples from patients with cancer are formalin-fixed paraffin-embedded (FFPE). To date, several sequencing kits are proposed for FFPE samples yet no comparison on low quantities were performed. To select the most reliable, cost-effective, and relevant RNA-Seq approach, we applied five FFPE-compatible kits (based on 3' capture, exome-capture and ribodepletion approaches) using 8 ng to 400 ng of FFPE-derived RNA and compared them to Nanostring on FFPE samples and to a reference PolyA (Truseq) approach on flash-frozen samples of the same tumors. We compared gene expression correlations and reproducibility. The Smarter Pico V3 ribodepletion approach appeared systematically the most comparable to Nanostring and Truseq (p < 0.001) and was a highly reproducible technique. In comparison with exome-capture and 3' kits, the Smarter appeared more comparable to Truseq (p < 0.001). Overall, our results suggest that the Smarter is the most robust RNA-Seq technique to study small FFPE samples and 3' Lexogen presents an interesting quality−price ratio for samples with less limiting quantities.

13.
Exp Mol Pathol ; 126: 104771, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35427578

RESUMO

Formalin-fixed paraffin-embedded (FFPE) tissue remains the most common source for DNA extraction from human tissue both in research and routine clinical practice. FFPE DNA can be considerably fragmented, and the amount of DNA measured in nanograms may not represent the amount of amplifiable DNA available for next-generation sequencing (NGS). Two samples with similar input DNA amounts in nanograms can yield NGS analyses of considerably different quality. Nevertheless, many protocols for NGS library preparation from FFPE DNA describe input DNA in nanograms without indication of a minimum requirement of amplifiable genome equivalent DNA. An important NGS quality metric is the library complexity, reflecting the number of DNA fragments from the original specimen represented in the final library. Aiming to illustrate the relationship between DNA fragmentation degree and library complexity, we assessed the fragmentation degree of 116 lung cancer FFPE DNA samples to calculate the amount of amplifiable input DNA used for library preparation. Mean unique coverage, coverage uniformity, and mean number of PCR duplicates with the same unique molecular identifier were used to evaluate library complexity. We showed that the amount of amplifiable input DNA predicted library complexity better than the input measured in nanograms. The frequent discrepancy between DNA amount in nanograms and the amount of amplifiable DNA indicate that the fragmentation degree should be considered when performing NGS of FFPE DNA. Importantly, the fragmentation assessment may help when interpreting NGS data and be a useful tool for evaluating library complexity in the absence of unique molecular identifiers.


Assuntos
Formaldeído , Sequenciamento de Nucleotídeos em Larga Escala , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Inclusão em Parafina , Fixação de Tecidos/métodos
14.
RNA Biol ; 19(1): 774-780, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653374

RESUMO

High-throughput RNA sequencing offers a comprehensive analysis of transcriptome complexity originated from regulatory events, such as differential gene expression, alternative polyadenylation and others, and allows the increase in diagnostic capacity and precision. For gene expression profiling applications that do not specifically require information on alternative splicing events, the mRNA 3' termini counting approach is a cost-effective alternative to whole transcriptome sequencing. Here, we report MTAS-seq (mRNA sequencing via terminator-assisted synthesis) - a novel RNA-seq library preparation method directed towards mRNA 3' termini. We demonstrate the specific enrichment for 3'-terminal regions by simple and quick single-tube protocol with built-in molecular barcoding to enable accurate estimation of transcript abundance. To achieve that, we synthesized oligonucleotide-modified dideoxynucleotides which enable the generation of cDNA libraries at the reverse transcription step. We validated the performance of MTAS-seq on well-characterized reference bulk RNA and further tested it with eukaryotic cell lysates.


Assuntos
Oligonucleotídeos , Transcriptoma , DNA Complementar/genética , Oligonucleotídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/métodos
15.
Proc Natl Acad Sci U S A ; 116(31): 15610-15615, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308224

RESUMO

The Forbes' Quarry and Devil's Tower partial crania from Gibraltar are among the first Neanderthal remains ever found. Here, we show that small amounts of ancient DNA are preserved in the petrous bones of the 2 individuals despite unfavorable climatic conditions. However, the endogenous Neanderthal DNA is present among an overwhelming excess of recent human DNA. Using improved DNA library construction methods that enrich for DNA fragments carrying deaminated cytosine residues, we were able to sequence 70 and 0.4 megabase pairs (Mbp) nuclear DNA of the Forbes' Quarry and Devil's Tower specimens, respectively, as well as large parts of the mitochondrial genome of the Forbes' Quarry individual. We confirm that the Forbes' Quarry individual was a female and the Devil's Tower individual a male. We also show that the Forbes' Quarry individual is genetically more similar to the ∼120,000-y-old Neanderthals from Scladina Cave in Belgium (Scladina I-4A) and Hohlenstein-Stadel Cave in Germany, as well as to a ∼60,000- to 70,000-y-old Neanderthal from Russia (Mezmaiskaya 1), than to a ∼49,000-y-old Neanderthal from El Sidrón (El Sidrón 1253) in northern Spain and other younger Neanderthals from Europe and western Asia. This suggests that the Forbes' Quarry fossil predates the latter Neanderthals. The preservation of archaic human DNA in the warm coastal climate of Gibraltar, close to the shores of Africa, raises hopes for the future recovery of archaic human DNA from regions in which climatic conditions are less than optimal for DNA preservation.


Assuntos
DNA Antigo , Homem de Neandertal/genética , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Gibraltar , História Antiga , Humanos
16.
BMC Biol ; 19(1): 225, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649537

RESUMO

BACKGROUND: Cell-free DNA (cfDNA), which is extracellular DNA present in the circulating plasma and other body fluids, is currently investigated as a minimally invasive, highly informative biomarker. While nucleosome-sized cfDNA fragments have been investigated intensively, shorter DNA fragments in the plasma have not been studied due to several technical limitations. RESULTS: We aimed to investigate the existence of shorter cfDNA fragments in the blood. Using an improved cfDNA purification protocol and a 3'-end-labeling method, we found DNA fragments of approximately 50 nucleotides in length in the human plasma, present at a molar concentration comparable to that of nucleosome-sized fragments. Unfortunately, these short fragments cannot be recovered by widely used cfDNA isolation methods. In addition, they are composed of single-stranded DNA (ssDNA), thus escaping detection in previous studies. Therefore, we established a library-preparation protocol based on our unique ssDNA ligation technique and applied it to the isolated cfDNA. Deep sequencing of these libraries revealed that the short fragments are derived from hundreds of thousands of genomic sites in open chromatin regions and enriched with transcription factor-binding sites. Remarkably, antisense strands of putative G-quadruplex motifs occupy as much as one-third of the peaks by these short fragments. CONCLUSIONS: We propose a new class of plasma cfDNA composed of short single-stranded fragments that potentially form non-canonical DNA structures.


Assuntos
Ácidos Nucleicos Livres , DNA de Cadeia Simples , Ácidos Nucleicos Livres/genética , DNA/genética , DNA de Cadeia Simples/genética , Biblioteca Gênica , Humanos , Nucleossomos/genética
17.
Foodborne Pathog Dis ; 19(8): 569-578, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35861967

RESUMO

Enzymatic library preparation kits are increasingly used for bacterial whole genome sequencing. While they offer a rapid workflow, the transposases used in the kits are recognized to be somewhat biased. The aim of this study was to optimize and validate a protocol for the Illumina DNA Prep kit (formerly Nextera DNA Flex) for sequencing enteric pathogens and compare its performance against the Nextera XT kit. One hundred forty-three strains of Campylobacter, Escherichia, Listeria, Salmonella, Shigella, and Vibrio were prepared with both methods and sequenced on the Illumina MiSeq using 300 and/or 500 cycle chemistries. Sequences were compared using core genome multilocus sequence typing (cgMLST), 7-gene multilocus sequence typing (MLST), and detection of markers encoding serotype, virulence, and antimicrobial resistance. Sequences for one Escherichia strain were downsampled to determine the minimum coverage required for the analyses. While organism-specific differences were observed, the Prep libraries generated longer average read lengths and less fragmented assemblies compared to the XT libraries. In downstream analysis, the most notable difference between the kits was observed for Escherichia, particularly for the 300 cycle sequences. The O group was not predicted in 32% and 4% of XT sequences when using blast and kmer algorithms, respectively, while the O group was predicted from all Prep sequences regardless of the algorithm. In addition, the ehxA gene was not detected in 6% of XT sequences and 34% were missing one or more of the type III secretion systems and/or plasmid-associated genes, which were detected in the Prep sequences. The coverage downsampling revealed that acceptable assembly quality and allele detection was achieved at 30 × coverage with the Prep libraries, whereas 40-50 × coverage was required for the XT libraries. The better performance of the Prep libraries was attributed to more even coverage, particularly in genome regions low in GC content.


Assuntos
Microbioma Gastrointestinal , Genoma Bacteriano , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Tipagem de Sequências Multilocus
18.
J Appl Microbiol ; 131(2): 1007-1016, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33440055

RESUMO

AIMS: Metagenomic next-generation sequencing (mNGS) has been utilized for diagnosing infectious diseases. It is a culture-free and hypothesis-free nucleic acid test for diagnosing all pathogens with known genomic sequences, including bacteria, fungi, viruses and parasites. While this technique greatly expands the clinical capacity of pathogen detection, it is a second-line choice due to lengthy procedures and microbial contaminations introduced from wet-lab processes. As a result, we aimed to reduce the hands-on time and exogenous contaminations in mNGS. METHODS AND RESULTS: We developed a device (NGSmaster) that automates the wet-lab workflow, including nucleic acid extraction, PCR-free library preparation and purification. It shortens the sample-to-results time to 16 and 18·5 h for DNA and RNA sequencing respectively. We used it to test cultured bacteria for validation of the workflow and bioinformatic pipeline. We also compared PCR-free with PCR-based library prep and discovered no differences in microbial reads. Moreover we analysed results by automation and manual testing and found that automation can significantly reduce microbial contaminations. Finally, we tested artificial and clinical samples and showed mNGS results were concordant with traditional culture. CONCLUSION: NGSmaster can fulfil the microbiological diagnostic needs in a variety of sample types. SIGNIFICANCE AND IMPACT OF THE STUDY: This study opens up an opportunity of performing in-house mNGS to reduce turnaround time and workload, instead of transferring potentially contagious specimen to a third-party laboratory.


Assuntos
Metagenoma , Metagenômica , Bactérias/genética , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sensibilidade e Especificidade
19.
BMC Genomics ; 21(1): 85, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992180

RESUMO

BACKGROUND: Next generation sequencing (NGS) has become a universal practice in modern molecular biology. As the throughput of sequencing experiments increases, the preparation of conventional multiplexed libraries becomes more labor intensive. Conventional library preparation typically requires quality control (QC) testing for individual libraries such as amplification success evaluation and quantification, none of which occur until the end of the library preparation process. RESULTS: In this study, we address the need for a more streamlined high-throughput NGS workflow by tethering real-time quantitative PCR (qPCR) to conventional workflows to save time and implement single tube and single reagent QC. We modified two distinct library preparation workflows by replacing PCR and quantification with qPCR using SYBR Green I. qPCR enabled individual library quantification for pooling in a single tube without the need for additional reagents. Additionally, a melting curve analysis was implemented as an intermediate QC test to confirm successful amplification. Sequencing analysis showed comparable percent reads for each indexed library, demonstrating that pooling calculations based on qPCR allow for an even representation of sequencing reads. To aid the modified workflow, a software toolkit was developed and used to generate pooling instructions and analyze qPCR and melting curve data. CONCLUSIONS: We successfully applied fluorescent amplification for next generation sequencing (FA-NGS) library preparation to both plasmids and bacterial genomes. As a result of using qPCR for quantification and proceeding directly to library pooling, the modified library preparation workflow has fewer overall steps. Therefore, we speculate that the FA-NGS workflow has less risk of user error. The melting curve analysis provides the necessary QC test to identify and troubleshoot library failures prior to sequencing. While this study demonstrates the value of FA-NGS for plasmid or gDNA libraries, we speculate that its versatility could lead to successful application across other library types.


Assuntos
Corantes Fluorescentes , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Amplificação de Ácido Nucleico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Plasmídeos , Reação em Cadeia da Polimerase em Tempo Real
20.
Mol Cell Probes ; 49: 101480, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31711827

RESUMO

Circulating tumor DNA (ctDNA) is tumor-derived, fragmented DNA that circulates freely in body fluids, predominantly in the peripheral blood. Recently, ctDNA analysis has been suggested as a complement to tissue biopsy in the detection and treatment of cancer. Genetic and epigenetic information specific to tumor cells, including single nucleotide variations, copy number variations, and modified methylation patterns, can be detected in ctDNA. Importantly, mutations in heterogenous tumors that could impart therapeutic resistance could be identified in ctDNA, which would aid in cancer diagnosis, prognosis, and real-time monitoring, and inform treatment with targeted therapies. However, ctDNA is still not a routinely used method for this purpose, because its detection techniques lack adequate sensitivity for reliable use in scientific studies and clinical trials. This review provides an up-to-date summary of ctDNA mutation detection methods based on next generation sequencing, highlighting their advantages and limitations, and focusing in particular on several optimized library preparation methods for improved sensitivity and specificity of ctDNA detection.


Assuntos
DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Computacional , Análise Mutacional de DNA , Biblioteca Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA