Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Sensors (Basel) ; 19(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791531

RESUMO

Adding fibers is highly effective to enhance the deflection and ductility of fiber-reinforced polymer (FRP)-reinforced beams. In this study, the stress and strain conditions of FRP-reinforced lightweight aggregate concrete (LWC) beams with and without fibers at ultimate load level were specified. Based on the sectional analyses, alternative equations to predict the balanced reinforcement ratio and flexural capacity for beams failed by balanced failure and concrete crushing were established. A rational equation for estimating the short-term stiffness of FRP⁻LWC beams at service-load levels was suggested based on Zhu's model. In addition, the contribution of the steel fibers on the short-term stiffness was quantified incorporating the effects of FRP reinforcement ratio. The proposed short-term stiffness model was validated with measured deflections from an experimental database for fiber-reinforced normal weight concrete (FNWC) beams reinforced with FRP bars. Furthermore, six glass fiber-reinforced polymer (GFRP)-reinforced LWC beams with and without steel fibers were tested under four-point bending. Based on the test results, the proposed models and procedures according to current design codes ACI 440.1R, ISIS-M03, GB 50608, and CSA S806 were linked together by comparing their predictions. The results showed that increasing the reinforcement ratio and adding steel fibers decreased the strain of the FRP bars. The flexural capacity of the LWC beams with and without steel fibers was generally underestimated by the design codes, while the proposed model provided accurate ultimate moment predictions. Moreover, the proposed short-term stiffness model yielded reasonable estimations of deflection for both steel fiber-reinforced lightweight aggregate concrete (SFLWC) and FNWC beams.

2.
J Environ Manage ; 231: 232-240, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30342336

RESUMO

The development of technologies for unconventional hydrocarbon exploration requires designing procedures to manage drilling waste that are consistent with the waste management hierarchy. In view of this, the possibility to apply shale drill cuttings as a prospective additive (replacing bentonite) to fly ash used for the production of lightweight aggregates (LWAs) was investigated. Moreover, a facile, waste-free method of LWAs production with using shales was proposed. Cuttings were characterized in terms of their mineralogical and elemental composition (XRD and XRF) as well as thermophysical behavior (TG-DTA and fusibility test). The sintered product, in turn, was assessed taking into account its structure, physicochemical and mechanical properties. It was found that the composition of the shale drill cuttings meets the conditions required for the bloating (as expressed by the SiO2/ΣFlux and Al2O3/SiO2 ratios) and binding processes (Al2O3 content), essential for the aggregates production. In comparison to bentonite, shales provided an additional source of kaolinite, which thermal transformation to mullite is crucial for the formation of mechanically durable structure of the aggregate. Moreover, the bulk density of the sintered product was found to be less than 1200 kg/m3, and the dry particle density below 2000 kg/m3, confirming that the obtained porous material belong to lightweight aggregates with accordance to European standard (UNE-EN-13055-1). The porosity of LWA was found to be higher (even up to 50%), thus the apparent density lower, compared with the reference product containing bentonite. These properties were accompanied by the relatively high crushing resistance which was up to 4.4 N/mm2. Hereby, usefulness of shale drill cuttings for LWAs production was confirmed.


Assuntos
Dióxido de Silício , Gerenciamento de Resíduos , Bentonita , Cinza de Carvão , Estudos Prospectivos
3.
Sensors (Basel) ; 18(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340427

RESUMO

The realization of reducing concrete self-weight is mainly to replace ordinary aggregates with lightweight aggregates; such replacement usually comes with some intrinsic disadvantages in concrete, such as high brittleness and lower mechanical properties. However, these shortages can be effectively remedied by external confinement such as fiber reinforced polymer (FRP) jacketing. To accurately predict the stress-strain behavior of lightweight concrete with lateral confinement, it is necessary to properly understand the coupling effects that are caused by diverse aggregates types and confinement level. In this study, FRP-confined lightweight concrete cylinder with varying aggregate types were tested under axial compression. Strain gauges and linear variable displacement transducers were used for monitoring the lateral and axial deformation of specimens during the tests. By sensing the strain and deformation data for the specimens under the tri-axial loads, the results showed that the lateral to axial strain relation is highly related to the aggregate types and confinement level. In addition, when compared with FRP-confined normal weight aggregate concrete, the efficiency of FRP confinement for lightweight concrete is gradually reduced with the increase of external pressure. Replace ordinary fine aggregate by its lightweight counterparts can be significantly improved the deformation capacity of FRP-confined lightweight concrete, meanwhile does not lead to the reduction of compressive strength. Plus, this paper modified a well-established stress-strain model for an FRP-confined lightweight concrete column, involving the effect of aggregate types. More accurate expressions pertaining to the deformation capacity and the stress-strain relation were proposed with reasonable accuracy.

4.
J Environ Manage ; 200: 229-242, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28582746

RESUMO

Three different wastes have been assessed for lightweight aggregate (LWA) manufacturing: granite and marble sludge (COR), sepiolite rejections (SEP) and polyethylene-hexene thermoplastics (P). A preliminary study of the physical and chemical properties of the raw materials was carried out to design proper batches. It was mixed 10% SEP with 90% COR to confer plasticity, and in turn, 0, 2.5, 5 and 10% (w/w) of P was added to check its suitability as a bloating agent. The mixtures were milled, kneaded with water, extruded, shaped into pellets, oven-dried and finally fired at 1100, 1125 and 1150 °C for 4, 8 and 16 min. The main technological properties of the aggregates related to bloating, density, porosity, loss on ignition, water absorption and compressive strength were measured. Scanning Electron Microscopy was used to study the microstructure of some LWAs. 23 out of 29 types of aggregate were lightweight, although neither bloating effect was observed, nor the typical cellular structure comprised of shell and core with relatively large pores was obtained, but a structure consisting of micropores and microchannels. The increase of temperature and time of firing involved a greater sintering, which in turn was translated into higher shrinkage, density and compressive strength values, but less porosity and water absorption. The addition of P did not involve any improvement, indeed it caused a significant decrease in compressive strength. The LWA sintered without P at the minimum time (4 min) and temperature of firing (1100 °C) was selected to assess its water suction capability. The results pointed out that this LWA could be suitable in hydroponics and/or water filtration systems, even better than the commercial LWA Arlita G3. A new and most environment-friendly perspective in LWA industry arises from here, promoting LWA production at relative low temperatures (prior to significant sintering occurs) and using non-plastic silty wastes instead of clays as major components.


Assuntos
Silicatos de Magnésio , Plásticos , Esgotos , Agricultura , Materiais de Construção , Monitoramento Ambiental , Temperatura
5.
Int J Mol Sci ; 16(5): 11629-47, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26006238

RESUMO

This paper presents the mechanical function and characterization of an artificial lightweight geopolymer aggregate (ALGA) using LUSI (Sidoarjo mud) and alkaline activator as source materials. LUSI stands for LU-Lumpur and SI-Sidoarjo, meaning mud from Sidoarjo which erupted near the Banjarpanji-1 exploration well in Sidoarjo, East Java, Indonesia on 27 May 2006. The effect of NaOH molarity, LUSI mud/Alkaline activator (LM/AA) ratio, and Na2SiO3/NaOH ratio to the ALGA are investigated at a sintering temperature of 950 °C. The results show that the optimum NaOH molarity found in this study is 12 M due to the highest strength (lowest AIV value) of 15.79% with lower water absorption and specific gravity. The optimum LUSI mud/Alkaline activator (LM/AA) ratio of 1.7 and the Na2SiO3/NaOH ratio of 0.4 gives the highest strength with AIV value of 15.42% with specific gravity of 1.10 g/cm3 and water absorption of 4.7%. The major synthesized crystalline phases were identified as sodalite, quartz and albite. Scanning Electron Microscope (SEM) image showed more complete geopolymer matrix which contributes to highest strength of ALGA produced.


Assuntos
Polímeros/química , Silicatos/química , Hidróxido de Sódio/química , Cristalização , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X
6.
Waste Manag Res ; 32(3): 221-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24616344

RESUMO

Thermal treatment of sewage sludge produces fly ash, also known as the air pollution control residue (APCR), which may be recycled as a component of artificial lightweight aggregates (ALWA). Properties of APCR are typical: high content of Ca, Mg, P2O5, as well as potential to induce alkaline reactions. These properties indicate that ALWA prepared with a high content of APCR may remove heavy metals, phosphorus, and ammonium nitrogen from wastewater with high efficiency. The aim of this preliminary study was to determine the optimal composition of ALWA for potential use as a filter media in wastewater treatment systems. Five kinds of ALWA were produced, with different proportions of ash (shown as percentages in subscripts) in mixture with bentonite: ALWA0 (reference), ALWA12.5, ALWA25, ALWA50, and ALWA100. The following parameters of ALWA were determined: density, bulk density, compressive strength, hydraulic conductivity, and removal efficiency of ions Zn(2+), NH4 (+), and PO4 (3-). Tests showed that ALWA had good mechanical and hydraulic properties, and might be used in wastewater filtering systems. Phosphates and zinc ions were removed with high efficiency (80-96%) by ALWA25-100 in static (batch) conditions. The efficiency of ammonium nitrogen removal was low, <18%. Artificial wastewater treatment performance in dynamic conditions (through-flow), showed increasing removal efficiency of Zn(2+), PO4 (3-) with a decrease in flow rate.


Assuntos
Cinza de Carvão/química , Reciclagem , Eliminação de Resíduos Líquidos/métodos , Compostos de Amônio , Filtração , Metais Pesados/química , Nitrogênio/análise , Fósforo/análise , Fósforo/química , Polônia , Esgotos/análise
7.
Materials (Basel) ; 17(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591578

RESUMO

Climate change is compelling countries to alter their construction and urbanization policies to minimize their impact on the environment. The European Union has set a goal to reduce greenhouse gas emissions by 55%, recognizing that 50% of its emissions originate from maintaining thermal comfort within buildings. As a response, the EU has developed comprehensive legislation on energy efficiency. In this article, special mortars using aerogel, perlite, and vermiculite as lightweight aggregates were prepared and studied to enhance the thermal properties of the mortar. Their thermal properties were examined and, using a solar simulator for both hot and cold conditions, it was found that varying proportions of these lightweight aggregates resulted in a mortar that provided insulation from the exterior up to 7 °C more than the reference mortar in warm conditions and up to 4.5 °C in cold conditions.

8.
Materials (Basel) ; 17(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399042

RESUMO

Rigid pavements at military airfields experience surface deterioration within 6-18 months of construction. The cause of this degradation is mainly due to combined exposure to repeated heat shocks from jet engine exhaust and spilled aviation oils (hydrocarbons). Surface degradation occurs in the form of disintegration of aggregates and cement paste into small pieces that pose severe risks of physical injury to maintenance crews or damage to an aircraft engine. Since coarse aggregates typically occupy 60-80% of the concrete volume, aggregates' thermal properties and microstructure should play a crucial role in the degrading mechanism. At high temperatures, concrete with lightweight aggregates is reported to have better performance compared to concrete with normal-weight aggregate. Thus, the present study carried out a detailed investigation of the mechanical and thermal performance of lightweight aggregate concrete exposed to the combined effects of high temperatures and hydrocarbon oils simultaneously. To replicate harsh airfield operating conditions, standard-sized concrete cylinders were exposed to elevated temperatures using an electric oven. Additionally, a mixture of equal parts of aircraft engine oil, hydraulic oil, and kerosene was applied before each exposure to high temperatures. To identify the resistance of different concrete with various lightweight coarse aggregates, pumice, perlite, lytag (sintered fly ash), and crushed brick were used as lightweight coarse aggregates in concrete. Also, basalt aggregate concrete was used as a reference. After curing, cylinders were tested for the ultimate strength. Later, after every 20 cyclic exposures, three cylinders from each aggregate type were tested for residual comprehensive strength, thermal, chemical, and microstructural (SEM) properties. Overall, concrete with crushed brick aggregate and lytag used in this study showed superior resistance to the simulated airfield conditions. The findings of this study will provide valuable insights to select an appropriate coarse aggregate type for military airfield pavement construction, aiming to effectively minimize surface spalling.

9.
Materials (Basel) ; 17(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793431

RESUMO

Global concrete production, reaching 14×1013m3/year, raises environmental concerns due to the resource-intensive nature of ordinary Portland cement (OPC) manufacturing. Simultaneously, 32.7×109 kg/year of expanded polystyrene (EPS) waste poses ecological threats. This research explores the mechanical behavior of lightweight concrete (LWAC) using recycled EPS manufactured with a hybrid cement mixture (OPC and alkali-activated cement). These types of cement have been shown to improve the compressive strength of concrete, while recycled EPS significantly decreases concrete density. However, the impact of these two materials on the LWAC mechanical behavior is unclear. LWAC comprises 35% lightweight aggregates (LWA)-a combination of EPS and expanded clays (EC) - and 65% normal-weight aggregates. As a cementitious matrix, this LWAC employs 30% OPC and 70% alkaline-activated cement (AAC) based on fly ash (FA) and lime. Compressive strength tests after 28 curing days show a remarkable 48.8% improvement, surpassing the ACI 213R-03 standard requirement, which would allow this sustainable hybrid lightweight aggregate concrete to be used as structural lightweight concrete. Also obtained was a 21.5% reduction in density; this implies potential cost savings through downsizing structural elements and enhancing thermal and acoustic insulation. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy reveal the presence of C-S-H, C-(A)-S-H, and N-A-S-H gels. However, anhydrous products in the hybrid LWAC suggest a slower reaction rate. Further investigation into activator solution dosage and curing temperature is recommended for improved mechanical performance on the 28th day of curing. This research highlights the potential for sustainable construction incorporating waste and underscores the importance of refining activation parameters for optimal performance.

10.
Materials (Basel) ; 17(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124532

RESUMO

Lightweight concrete offers numerous advantages for modular construction, including easier construction planning and logistics, and the ability to offset additional dead loads induced by double-wall and double-slab features. In a previous study, authors proposed incorporating lightweight aggregate into foamed concrete instead of adding extra foam to achieve lower density, resulting in lightweight concrete with an excellent strength-to-density ratio. This paper further investigated the performance aspects of foamed concrete with lightweight aggregate beyond mechanical strength. To evaluate the effect of aggregate type and foam content, three mix compositions were designed for the lightweight concrete. Specimens were prepared for experimental tests on thermal conductivity and drying shrinkage of lightweight concrete. Results showed that while both the increase in foam volume and the incorporation of lightweight aggregate led to higher drying shrinkage, they also contributed to improved insulating properties and reduced potential of cracking. Using typical multi-storey modular residential buildings in Hong Kong and three other Chinese cities as case studies, simulations were performed to assess potential savings in annual cooling and heating loads by employing the proposed lightweight concrete. These findings demonstrate the practical benefits of using foamed concrete with lightweight aggregate in modular construction and provide valuable insights for further optimization and implementation.

11.
Heliyon ; 10(15): e34887, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170397

RESUMO

The partial replacement of conventional natural coarse aggregate (NCA) with artificial light weight aggregate (LWA) manufactured from local clay and solid waste to develop a lightweight aggregate concrete (LWAC) for the structural use was studied in this paper. Red clay and Savar clay were used individually with solid wastes like rice husk ash (RHA) and waste glass to produce LWA. The suitability of raw materials and LWA was evaluated by investigating various properties. The mechanical, thermal and durability properties of manufactured LWAC were explored. The results of physical, chemical, thermal and geotechnical properties revealed that Red clay is better than Savar clay for the preparation of LWA. All the physical and mechanical properties of LWA prepared from Red clay are suitable for the preparation of LWAC compared to Savar clay. The test results demonstrated that the concrete manufactured by replacing 30 % of NCA with LWA produced a concrete of lightweight properties. The compressive strength of LWAC for 7 and 28 days was observed as 28 and 48 MPa, respectively. The results of modulus of elasticity, splitting tensile strength, flexural deformation, and creep test of LWAC revealed that these mechanical properties meet the requirements for the structural concrete. The RCP test proves that chlorine permeability of LWAC is comparable with NCA. It was observed that the superior performance of LWAC can be achieved only when the optimized mix designed is followed strictly. The suitability of the replacement of natural aggregate by LWA may be helpful for Bangladesh due to the scarcity of natural coarse aggregate and reusability of solid waste materials.

12.
Sci Rep ; 14(1): 16880, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043793

RESUMO

Lightweight aggregates are a material used in many industries. A huge amount of this material is used in construction and architecture. For the most part, lightweight construction aggregates are obtained from natural resources such as clay raw materials that have the ability to swell at high temperatures. Resources of these clays are limited and not available everywhere. Therefore, opportunities are being sought to produce lightweight artificial aggregates that have interesting performance characteristics due to their properties. For example, special preparation techniques can reduce or increase the water absorption of such an aggregate depending on the needs and application. The production of artificial lightweight aggregate using various types of waste materials is environmentally friendly as it reduces the depletion of natural resources. Therefore, this article proposes a method of obtaining artificial lightweight aggregate consolidated using two methods: drum and dynamic granulation. Hardening was achieved using combined methods: sintering and hydration, trying to maintain the highest possible porosity. Waste materials were used, such as dust from construction rubble and residues from the processing of PET bottles, as well as clay from the Belchatów mine as a raw material accompanying the lignite overburden. High open porosity of the aggregates was achieved, above 30%, low apparent density of 1.23 g/cm3, low leachability of approximately 250 µS. The produced lightweight aggregates could ultimately be used in green roofs.

13.
Materials (Basel) ; 17(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793296

RESUMO

Ceramisite lightweight concrete has excellent performance and relatively light self-weight characteristics. At the same time, the recent development of green high-performance concrete and prefabricated components has also brought the abundant utilization of these mineral mixture. An interfacial transition zone exists between the hardened cement paste and the aggregate, which is the weakest part of the concrete, characterized by high porosity and low strength. In order to study the effect of slag content on the interfacial transition zone in lightweight high-strength concrete, experiments were designed to replace cement with slag at different contents (0%, 5%, 10%, 15%). A series of studies was conducted on its macro-strength, microstructure, and composition. The results indicated that the addition of slag improved the porosity and width of the interfacial transition zone. Adding slag did not reduce the thickness of the concrete interfacial transition zone significantly at 3 d, but it led to significant improvement in the thickness of the interfacial transition zone at 28 d, and the thickness of the interfacial zone at 28 d was reduced from 19 µm to 8.5 µm, a reduction of 55%. The minimum value of microhardness in the slurry region of the interfacial specimens also increased from 19 MPa to 26 MPa, an increase of 36%. In addition, the structural density of the interfacial region was further increased, resulting in varying degrees of improvement in the macroscopic anti-splitting strength. One of the important reasons for this phenomenon is that the addition of slag optimizes the chemical composition of the interface and promotes the continuation of the pozzolanic reactivity, which further enhances the hydration at the interface edge.

14.
Sci Rep ; 14(1): 8818, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627578

RESUMO

Recent and past studies mainly focus on reducing the dead weight of structure; therefore, they considered lightweight aggregate concrete (LWAC) which reduces the dead weight but also affects the strength parameters. Therefore, the current study aims to use varied steel wire meshes to investigate the effects of LWAC on mechanical properties. Three types of steel wire mesh are used such as hexagonal (chicken), welded square, and expanded metal mesh, in various layers and orientations in LWAC. Numerous mechanical characteristics were examined, including energy absorption (EA), compressive strength (CS), and flexural strength (FS). A total of ninety prisms and thirty-three cubes were made. For the FS test, forty-five 100 × 100 × 500 mm prism samples were poured, thirty-three 150 × 150 × 150 mm cube samples were made, and forty-five 400 × 300 × 75 mm EA specimens were costed for fourteen days of curing. The experimental findings demonstrate that the FS was enhanced by adding additional forces that spread the forces over the section. One layer of chicken, welded, and expanded metal mesh enhances the FS by 52.96%, 23.76%, and 22.2%, respectively. In comparison to the remaining layers, the FS in a single-layer hexagonal wire mesh has the maximum strength, 29.49 MPa. The hexagonal wire mesh with a single layer had the greatest CS, measuring 36.56 MPa. When all three types of meshes are combined, the CS does not vary in this way and is estimated to be 29.79 MPa. In the combination of three layers, the chicken and expanded wire mesh had the most energy recorded prior to final failure, which was 1425.6 and 1108.7 J, whereas it was found the highest 752.3 J for welded square wire mesh. The energy absorption for the first layer with hexagonal wire mesh increased by 82.81% prior to the crack and by 88.34% prior to the ultimate failure. Overall, it was determined and suggested that hexagonal wire mesh works better than expanded and welded wire meshes.

15.
Environ Sci Pollut Res Int ; 31(10): 15078-15090, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286931

RESUMO

Green and low-carbon materialization for dredged sediment (DS) is limited due to its low pozzolanic activity. In this study, a novel DS-based non-sintered lightweight aggregate (LWA) is developed by steel slag (SS) and fly ash (FA) activation. Process optimization is performed by the response surfaces, and the basic properties and characterization of the optimal product are investigated. Results indicated that the optimized design ceramic aggregate (ODCA) was prepared as follows: raw pellets comprising of 59.2% DS, 5% SS, 35.8% FA, 5% MK, 5% H2O2, and 2‰ foam stabilizer were activated by alkali activator (1.5 weight ratio of 14 M NaOH to water glass) and then cured at 80 °C and 95% humidity for 24 h. The basic and environmental performances of ODCA were in accordance with standards, whose bulk density was as low as 665.8 kg/m3, the high cylinder compressive strength was 6.143 MPa, and leaching concentrations of heavy metals were controllable. The regulation mechanism of LWA performances could be summarized as follows. SS and FA additives played the role for the mechanical strength enhancement and passivation of heavy metals, which promoted the formation of sillimanite, chabazite, and C-S-H / C-S-A-H gels in ODCA. The bulk density of ODCA was greatly reduced by H2O2 addition, where ODCA had an open-pore structure with a median pore size of 4969.75 nm. Note that C-S-H/C-S-A-H were the key hydration products to give ODCA light density and high mechanical strength, simultaneously.


Assuntos
Cinza de Carvão , Misturas Complexas , Metais Pesados , Cinza de Carvão/química , Resíduos Industriais/análise , Aço , Peróxido de Hidrogênio , Metais Pesados/química
16.
Materials (Basel) ; 17(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38541431

RESUMO

This study presents a novel construction method for prefabricated wall elements by integrating a framework made of thin-walled sheet steel profiles into an optimized thermally insulating lightweight aggregate concrete (LAC) building envelope. The load-bearing function of the framework is provided by cold-formed Sigma-profiles, which are spot-welded to non-load-bearing U-profiles at the vertical ends. The LAC shapes the wall and stabilizes the thin-walled steel profiles against buckling, but has no further load-bearing function, thus allowing the reduction of its necessary compressive strength and subsequently minimizing its density. As a result, the LAC exhibits strength and density values well beyond existing standards, providing highly competitive thermal conductivity values that meet today's energy requirements without the need for additional insulation materials. Tailored composite specimens verify the stabilization of load-bearing sheet steel profiles by the LAC, which not only prevents buckling but also increases the load-bearing capacity of the overall system. The feasibility of this approach is validated by the production of two prototypes, each comprising a full-sized wall, in two different precast plants using distinct process technologies.

17.
Materials (Basel) ; 17(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399038

RESUMO

To improve the durability of pumice lightweight aggregate concrete applied in cold and drought areas, sodium silicate-modified waste tire rubber powder is used to treat the pumice lightweight aggregate concrete. The pumice lightweight aggregate concrete studied is mainly used in river lining structures. It will be eroded by water flow and the impact of ice and other injuries, resulting in reduced durability, and the addition of modified rubber will reduce the damage. The durability, including mass loss rate and relative dynamic elastic modulus of pumice lightweight aggregate concrete with different sodium silicate dosages and rubber power particle sizes, is analyzed under freeze-thaw cycles, and the microstructure is further characterized by using microscopic test methods such as nuclear magnetic resonance tests, ultra-depth 3D microscope tests, and scanning electron microscopy tests. The results showed that the durability of pumice lightweight aggregate concrete is significantly improved by the addition of modified waste tire rubber powder, and the optimum durability is achieved when using 2 wt% sodium silicate modified rubber power with a particle size of 20, and then the mass loss rate decreased from 4.54% to 0.77% and the relative dynamic elastic modulus increased from 50.34% to 64.87% after 300 freeze-thaw cycles compared with other samples. The scanning electron microscopy test result showed that the surface of rubber power is cleaner after the modification of sodium silicate, so the bonding ability between rubber power and cement hydration products is improved, which further improved the durability of concrete under the freeze-thaw cycle. The results of the nuclear magnetic resonance test showed that the pore area increased with the number of freeze-thaw cycles, and the small pores gradually evolved into large pores. The effect of sodium silicate on the modification of rubber power with different particle sizes is different. After the treatment of 2 wt% sodium silicate, the relationship between the increased rate of pore area and the number of freezing-thawing cycles is 23.8/times for the pumice lightweight aggregate concrete containing rubber power with a particle size of 20 and 35.3/times for the pumice lightweight aggregate concrete containing a particle size of 80 rubber power, respectively.

18.
Materials (Basel) ; 16(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37049121

RESUMO

To improve the interfacial compatibility between cement matrix and expanded polystyrene (EPS) in core-shell lightweight aggregates (CSLA), the effects of sodium silicate, polyvinyl acetate (PVA) emulsion, vinyl acetate-ethylene (VAE) emulsion, acrylic acid, and acetic acid on the cement-EPS interface were investigated. The density of the interface was studied by scanning electron microscopy (SEM), and the effect of interfacial agents on the hydration process of cement was studied by the heat of hydration and induction resistivity. The macroscopic properties of the interface of the CSLA were characterized by the "leak-white" rate, drop resistance, and numerical crushing strength. The results show that the sodium silicate densifies the interface by generating hydration products on the EPS surface. At the same time, organic acid enhances the interfacial properties of EPS and cement by increasing the surface roughness, and allowing hydration products to grow in the surface micropores. In terms of the cement hydration process, both interfacial agents delay the cement hydration. Above all, with comprehensive interface properties, "leak-white" rate, and mechanical properties, VAE emulsion and sodium silicate can achieve the best performance with a final crushing resistance of 5.7 MPa, which had a 46% increase compared with the reference group.

19.
Environ Technol ; 44(19): 2864-2875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35200116

RESUMO

This study developed the alternative disposals for dredged harbor sediments by co-sintering with waste rice husk into lightweight aggregates (LWA) to benefit resource sustainability and waste valorization. The effects of rice husk addition and sintering temperature on LWA performances such as water absorption, particle density, crushing strength, weight loss, volume shrinkage, and open porosity were investigated. The key parameters (e.g. C/Fe ratio in raw materials) controlling the LWA performances and engineering applications were determined. Results showed that dredged harbor sediments could be made into suitable LWA for engineering applications from the controlled rice husk addition and sintering temperature. The addition of rice husk led to lower LWA particle density, but raised water absorption and reduced crushing strength. The increase of sintering temperature reduced water absorption and improved crushing strength. The aggregates with 10-15% rice husk, sintered at 1150 °C had appropriate particle density (1.60-1.73 g/cm3), water absorption (11.8-16.6%), and crushing strength (6.0-10.6 MPa), which could be suitable for lightweight concrete applications. Low water-soluble chloride and heavy metals leachabilities aligned with Taiwan's regulatory standards for concrete aggregates. Co-treating waste rice husk and dredged harbor sediment into LWA can benefit the waste reduction and circular economy, and reduce the environmental impacts associated with their disposals.


Assuntos
Oryza , Temperatura , Água
20.
Materials (Basel) ; 16(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36984185

RESUMO

The river sand in the Santo Tomas River area of the Philippines is a kind of volcanogenic sand. The sand is fine sand with a fineness modulus of 2.2, an apparent density of 2380 kg/m3, a bulk density of 1320 kg/m3, a mud content of 6.7%, a methylene blue value of 1.2, a soluble chloride ion content of 0.00071%, and a light-matter content of up to 12.2%, which does not meet the requirements of the three-zone grading. Based on a series of experiments, this paper systematically studies and compares the workability, mechanical properties, and durability of two kinds of concrete with the river sand in the Santo Tomas River area and natural river sand in Beijing, China as fine aggregates, respectively. In addition, volcanogenic sand in the Philippines is technically optimized for the purpose of in-depth study. After optimization, such sand reaches the standard of Zone II-graded medium sand and is comprehensively improved in performance, which is evidenced by a fineness modulus of 2.4, an apparent density of 2570 kg/m3, a bulk density of 1550 kg/m3, a light-matter content of 6.0%, and a mud content of 6.7%. Study results show that in terms of mechanical properties, the concrete made of the optimized river sand in the Santo Tomas River area is superior to that made from the natural river sand in the Beijing area. In addition, separated light matter can be used as a natural light aggregate, which has a bulk density of 960 kg/m3, a cylindrical compressive strength of 2.5 MPa, and a 1 h water absorption of 8.2%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA