Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Microb Cell Fact ; 23(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172890

RESUMO

BACKGROUND: Antibiotics biosynthesis is usually regulated by the cluster-situated regulatory gene(s) (CSRG(s)), which directly regulate the genes within the corresponding biosynthetic gene cluster (BGC). Previously, we have demonstrated that LmbU functions as a cluster-situated regulator (CSR) of lincomycin. And it has been found that LmbU regulates twenty non-lmb genes through comparative transcriptomic analysis. However, the regulatory mode of CSRs' targets outside the BGC remains unknown. RESULTS: We screened the targets of LmbU in the whole genome of Streptomyces lincolnensis and found fourteen candidate targets, among which, eight targets can bind to LmbU by electrophoretic mobility shift assays (EMSA). Reporter assays in vivo revealed that LmbU repressed the transcription of SLINC_0469 and SLINC_1037 while activating the transcription of SLINC_8097. In addition, disruptions of SLINC_0469, SLINC_1037, and SLINC_8097 promoted the production of lincomycin, and qRT-PCR showed that SLINC_0469, SLINC_1037, and SLINC_8097 inhibited transcription of the lmb genes, indicating that all the three regulators can negatively regulate lincomycin biosynthesis. CONCLUSIONS: LmbU can directly regulate genes outside the lmb cluster, and these genes can affect both lincomycin biosynthesis and the transcription of lmb genes. Our results first erected the cascade regulatory circuit of LmbU and regulators outside lmb cluster, which provides the theoretical basis for the functional research of LmbU family proteins.


Assuntos
Proteínas de Bactérias , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lincomicina , Streptomyces/genética , Streptomyces/metabolismo , Transcriptoma , Regulação Bacteriana da Expressão Gênica , Antibacterianos/farmacologia , Antibacterianos/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 373, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878095

RESUMO

The lincoamide antibiotic lincomycin, derived from Streptomyces lincolnensis, is widely used for the treatment of infections caused by gram-positive bacteria. As a common global regulatory factor of GntR family, DasR usually exists as a regulatory factor that negatively regulates antibiotic synthesis in Streptomyces. However, the regulatory effect of DasR on lincomycin biosynthesis in S. lincolnensis has not been thoroughly investigated. The present study demonstrates that DasR functions as a positive regulator of lincomycin biosynthesis in S. lincolnensis, and its overexpression strain OdasR exhibits a remarkable 7.97-fold increase in lincomycin production compared to the wild-type strain. The effects of DasR overexpression could be attenuated by the addition of GlcNAc in the medium in S. lincolnensis. Combined with transcriptome sequencing and RT-qPCR results, it was found that most structural genes in GlcNAc metabolism and central carbon metabolism were up-regulated, but the lincomycin biosynthetic gene cluster (lmb) were down-regulated after dasR knock-out. However, DasR binding were detected with the DasR responsive elements (dre) of genes involved in GlcNAc metabolism pathway through electrophoretic mobility shift assay, while they were not observed in the lmb. These findings will provide novel insights for the genetic manipulation of S. lincolnensis to enhance lincomycin production. KEY POINTS: • DasR is a positive regulator that promotes lincomycin synthesis and does not affect spore production • DasR promotes lincomycin production through indirect regulation • DasR correlates with nutrient perception in S. lincolnensis.


Assuntos
Antibacterianos , Regulação Bacteriana da Expressão Gênica , Lincomicina , Streptomyces , Lincomicina/farmacologia , Lincomicina/biossíntese , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Família Multigênica , Acetilglucosamina/metabolismo , Vias Biossintéticas/genética , Perfilação da Expressão Gênica
3.
Plant Cell Rep ; 43(6): 141, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743349

RESUMO

KEY MESSAGE: A GLK homologue was identified and functionally characterized in Catharanthus roseus. Silencing CrGLK with VIGS or the chloroplast retrograde signaling inducer lincomycin increased terpenoid indole alkaloid biosynthesis. Catharanthus roseus is the sole source of the chemotherapeutic terpenoid indole alkaloids (TIAs) vinblastine and vincristine. TIA pathway genes, particularly genes in the vindoline pathway, are expressed at higher levels in immature versus mature leaves, but the molecular mechanisms responsible for this developmental regulation are unknown. We investigated the role of GOLDEN2-LIKE (GLK) transcription factors in contributing to this ontogenetic regulation since GLKs are active in seedlings upon light exposure and in the leaf's early development, but their activity is repressed as leaves age and senesce. We identified a GLK homologue in C. roseus and functionally characterized its role in regulating TIA biosynthesis, with a focus on the vindoline pathway, by transiently reducing its expression through two separate methods: virus-induced gene silencing (VIGS) and application of chloroplast retrograde signaling inducers, norflurazon and lincomycin. Reducing CrGLK levels with each method reduced chlorophyll accumulation and the expression of the light harvesting complex subunit (LHCB2.2), confirming its functional homology with GLKs in other plant species. In contrast, reducing CrGLK via VIGS or lincomycin increased TIA accumulation and TIA pathway gene expression, suggesting that CrGLK may repress TIA biosynthesis. However, norflurazon had no effect on TIA gene expression, indicating that reducing CrGLK alone is not sufficient to induce TIA biosynthesis. Future work is needed to clarify the specific molecular mechanisms leading to increased TIA biosynthesis with CrGLK silencing. This is the first identification and characterization of GLK in C. roseus and the first investigation of how chloroplast retrograde signaling might regulate TIA biosynthesis.


Assuntos
Catharanthus , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Plantas , Alcaloides de Triptamina e Secologanina , Fatores de Transcrição , Catharanthus/genética , Catharanthus/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Cloroplastos/metabolismo
4.
J Basic Microbiol ; 64(1): 119-127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37562983

RESUMO

The transcription factor (TF)-mediated regulatory network controlling lincomycin production in Streptomyces lincolnensis is yet to be fully elucidated despite several types of associated TFs having been reported. SLCG_2919, a tetracycline repressor (TetR)-type regulator, was the first TF to be characterized outside the lincomycin biosynthetic cluster to directly suppress the lincomycin biosynthesis in S. lincolnensis. In this study, improved genomic systematic evolution of ligands by exponential enrichment (gSELEX), an in vitro technique, was adopted to capture additional SLCG_2919-targeted sequences harboring the promoter regions of SLCG_6675, SLCG_4123-4124, SLCG_6579, and SLCG_0139-0140. The four DNA fragments were confirmed by electrophoretic mobility shift assays (EMSAs). Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) showed that the corresponding target genes SLCG_6675 (anthranilate synthase), SLCG_0139 (LysR family transcriptional regulator), SLCG_0140 (beta-lactamase), SLCG_6579 (cytochrome P450), SLCG_4123 (bifunctional DNA primase/polymerase), and SLCG_4124 (magnesium or magnesium-dependent protein phosphatase) in ΔSLCGL_2919 were differentially increased by 3.3-, 4.2-, 3.2-, 2.5-, 4.6-, and 2.2-fold relative to those in the parental strain S. lincolnensis LCGL. Furthermore, the individual inactivation of these target genes in LCGL reduced the lincomycin yield to varying degrees. This investigation expands on the known DNA targets of SLCG_2919 to control lincomycin production and lays the foundation for improving industrial lincomycin yields via genetic engineering of this regulatory network.


Assuntos
Proteínas de Bactérias , Magnésio , Streptomyces , Magnésio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos , Lincomicina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tetraciclina , DNA , Regulação Bacteriana da Expressão Gênica
5.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999118

RESUMO

In this study, a liquid chromatographic method was developed for the fast determination of lincomycin, polymyxin and vancomycin in a preservation solution for transplants. A Kinetex EVO C18 (150 × 4.6 mm, 2.6 µm) column was utilized at 45 °C. Gradient elution was applied using a mixture of mobile phases A and B, both including 30 mM phosphate buffer at pH 2.0 and acetonitrile, at a ratio of 95:5 (v/v) for A and 50:50 (v/v) for B. A flow rate of 1.0 mL/min, an injection volume of 20 µL and UV detection at 210 nm were used. A degradation study treating the three antibiotics with 0.5 M hydrochloric acid, 0.5 M sodium hydroxide and 3% H2O2 indicated that the developed method was selective toward lincomycin, polymyxin, vancomycin and their degradation products. Other ingredients of the preservation solution, like those from the cell culture medium, did not interfere. The method was validated with good sensitivity, linearity, precision and accuracy. Furthermore, lincomycin, polymyxin and vancomycin were found to be stable in this preservation solution for 4 weeks when stored at -20 °C.


Assuntos
Lincomicina , Polimixinas , Vancomicina , Lincomicina/análise , Vancomicina/análise , Polimixinas/análise , Cromatografia Líquida/métodos , Soluções para Preservação de Órgãos , Antibacterianos/análise , Reprodutibilidade dos Testes , Cromatografia Líquida de Alta Pressão/métodos
6.
Appl Environ Microbiol ; 89(10): e0113323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732750

RESUMO

The antibiotic lincomycin binds to the 23S ribosomal RNA peptidyl transferase loop region to inhibit protein synthesis. However, lincomycin can also stimulate the growth and secondary metabolism of actinomycetes in a concentration-dependent manner. In Streptomyces coelicolor A3(2), lincomycin stimulates the production of the blue-pigmented antibiotic actinorhodin at concentrations below the minimum inhibitory concentration. To better understand the molecular mechanism underlying these concentration-dependent positive effects, this study investigated how the target molecule, the ribosome, undergoes dynamic changes in the presence of lincomycin and explored the ribosome-related factors involved. Lincomycin, at a concentration that stimulates actinorhodin production of S. coelicolor A3(2), could restore temporarily arrested ribosome function by utilizing ribosome-related proteins and translation factors, presumably under the control of the transcription factor WblC protein that confers intrinsic resistance to multiple translation-inhibiting antibiotics, to eventually produce stable and active ribosomes even during the late growth phase. This qualitatively and quantitatively positive ribosome alteration can be advantageous for producing actinorhodin biosynthetic enzymes. A series of gene expression and biochemical analyses revealed that lincomycin at the concentration that induces ribosomal stabilization in S. coelicolor A3(2) could influence the localization of the 20S proteasome-related proteins, resulting in reduced proteasome activity. These findings suggest that the functional analysis of 20S proteasome represents a potential pivotal challenge for understanding the molecular mechanism of ribosome stabilization induced by lincomycin. Therefore, as lincomycin can dynamically alter its target molecule, the ribosome, we discuss the future issues and prospects for an increased understanding of the concentration-dependent properties of antibiotics. IMPORTANCE Antibiotics were originally defined as chemical compounds produced by a microbe that inhibits the growth of other microbes. However, an unexplained effect of this is that a low concentration of antibiotics, such as those below the minimum inhibitory concentration, can positively affect microbial growth and metabolism. The secondary metabolic activation of streptomycetes in the presence of the translation-inhibiting antibiotic lincomycin illustrates the concentration-dependent positive effect of the antibiotic. The significance of this study is that the phenomenological interpretation of the molecular mechanism of the concentration-dependent positive effect of lincomycin in Streptomyces coelicolor A3(2) has provided novel insight into the possible role of antibiotics in making their target molecules stable and active with the assistance of various related factors that benefit their function. Further exploration of this idea would lead to an essential understanding of antibiotics, including why actinomycetes make them and their role in nature.


Assuntos
Antibacterianos , Streptomyces coelicolor , Lincomicina , Streptomyces coelicolor/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Antraquinonas/metabolismo , Proteínas Ribossômicas/genética , Regulação Bacteriana da Expressão Gênica
7.
Ann Bot ; 132(1): 163-177, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37382489

RESUMO

BACKGROUND AND AIMS: The photoprotective role of foliar anthocyanins has long been ambiguous: exacerbating, being indifferent to or ameliorating the photoinhibition of photosynthesis. The photoinhibitory light spectrum and failure to separate photo-resistance from repair, as well as the different methods used to quantify the photo-susceptibility of the photosystems, could lead to such a discrepancy. METHODS: We selected two congeneric deciduous shrubs, Prunus cerasifera with anthocyanic leaves and Prunus triloba with green leaves, grown under identical growth conditions in an open field. The photo-susceptibilities of photosystem II (PSII) and photosystem I (PSI) to red light and blue light, in the presence of lincomycin (to block the repair), of exposed leaves were quantified by a non-intrusive P700+ signal from PSI. Leaf absorption, pigments, gas exchange and Chl a fluorescence were also measured. KEY RESULTS: The content of anthocyanins in red leaves (P. cerasifera) was >13 times greater than that in green leaves (P. triloba). With no difference in maximum quantum efficiency of PSII photochemistry (Fv/Fm) and apparent CO2 quantum yield (AQY) in red light, anthocyanic leaves (P. cerasifera) showed some shade-acclimated suites, including lower Chl a/b ratio, lower photosynthesis rate, lower stomatal conductance and lower PSII/PSI ratio (on an arbitrary scale), compared with green leaves (P. triloba). In the absence of repair of PSII, anthocyanic leaves (P. cerasifera) showed a rate coefficient of PSII photoinactivation (ki) that was 1.8 times higher than that of green leaves (P. triloba) under red light, but significantly lower (-18 %) under blue light. PSI of both types of leaves was not photoinactivated under blue or red light. CONCLUSIONS: In the absence of repair, anthocyanic leaves exhibited an exacerbation of PSII photoinactivation under red light and a mitigation under blue light, which can partially reconcile the existing controversy in terms of the photoprotection by anthocyanins. Overall, the results demonstrate that appropriate methodology applied to test the photoprotection hypothesis of anthocyanins is critical.


Assuntos
Prunus domestica , Prunus domestica/metabolismo , Antocianinas/metabolismo , Clorofila , Fotossíntese/fisiologia , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia
8.
Appl Microbiol Biotechnol ; 107(24): 7501-7514, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768348

RESUMO

The Actinomycetes Streptomyces lincolnensis is the producer of lincosamide-type antibiotic lincomycin, a widely utilized drug against Gram-positive bacteria and protozoans. In this work, through gene knockout, complementation, and overexpression experiments, we identified LcbR1 (SLINC_1595), a GntR family transcriptional regulator, as a repressor for lincomycin biosynthesis. Deletion of lcbR1 boosted lincomycin production by 3.8-fold, without obvious change in morphological development or cellular growth. The homologues of LcbR1 are widely distributed in Streptomyces. Heterologous expression of SCO1410 from Streptomyces coelicolor resulted in the reduction of lincomycin yield, implying that the function of LcbR1 is conserved across different species. Alignment among sequences upstream of lcbR1 and their homologues revealed a conserved 16-bp palindrome (-TTGAACGATCCTTCAA-), which was further proven to be the recognition motif of LcbR1 by electrophoretic mobility shift assays (EMSAs). Via this motif, LcbR1 suppressed the transcription of lcbR1 and SLINC_1596 sharing the same bi-directional promoter. SLINC_1596, one important target of LcbR1, exerted a positive effect on lincomycin production. As detected by quantitative real-time PCR (qRT-PCR) analyses, the expressions of all selected structural (lmbA, lmbC, lmbJ, lmbV, and lmbW), resistance (lmrA and lmrB) and regulatory genes (lmrC and lmbU) from lincomycin biosynthesis cluster were upregulated in deletion strain ΔlcbR1 at 48 h of fermentation, while the mRNA amounts of bldD, glnR, ramR, SLCG_Lrp, and SLCG_2919, previously characterized as the regulators on lincomycin production, were decreased in strain ΔlcbR1, although the regulatory effects of LcbR1 on the above differential expression genes seemed to be indirect. Besides, indicated by EMSAs, the expression of lcbR1 might be regulated by GlnR, SLCG_Lrp, and SLCG_2919, which shows the complexity of the regulatory network on lincomycin biosynthesis. KEY POINTS: • LcbR1 is a novel and conservative GntR family regulator regulating lincomycin production. • LcbR1 modulates the expressions of lcbR1 and SLINC_1596 through a palindromic motif. • GlnR, SLCG_Lrp, and SLCG_2919 can control the expression of lcbR1.


Assuntos
Streptomyces coelicolor , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lincomicina , Antibacterianos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
9.
Appl Microbiol Biotechnol ; 107(9): 2933-2945, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36930277

RESUMO

Lincomycin is a broad-spectrum antibiotic and particularly effective against Gram-positive pathogens. Albeit familiar with the biosynthetic mechanism of lincomycin, we know less about its regulation, limiting the rational design for strain improvement. We therefore analyzed two-component systems (TCSs) in Streptomyces lincolnensis, and selected eight TCS gene(s) to construct their deletion mutants utilizing CRISPR/Cas9 system. Among them, lincomycin yield increased in two strains (Δ3900-3901 and Δ5290-5291) while decreased in other four strains (Δ3415-3416, Δ4153-4154, Δ4985, and Δ7949). Considering the conspicuous effect, SLINC_5291-5290 (AflQ1-Q2) was subsequently studied in detail. Its repression on lincomycin biosynthesis was further proved by gene complementation and overexpression. By binding to a 16-bp palindromic motif, the response regulator AflQ1 inhibits the transcription of its encoding gene and the expression of eight operons inside the lincomycin synthetic cluster (headed by lmbA, lmbJ, lmbK, lmbV, lmbW, lmbU, lmrA, and lmrC), as demonstrated by quantitative RT-PCR and electrophoretic mobility shift assays. Besides, the regulatory genes including bldD, glnR, lcbR1, and ramR are also regulated by the TCS. According to the screening towards nitrogen sources, aspartate affects the regulatory behavior of histidine kinase AflQ2. And in return, AflQ1 accelerates aspartate metabolism via ask-asd, asd2, and thrA. In summary, we acquired six novel regulators related to lincomycin biosynthesis, and elucidated the regulatory mechanism of AflQ1-Q2. This highly conserved TCS is a promising target for the construction of antibiotic high-yield strains. KEY POINTS: • AflQ1-Q2 is a repressor for lincomycin production. • AflQ1 modulates the expression of lincomycin biosynthetic and regulatory genes. • Aspartate affects the behavior of AflQ2, and its metabolism is promoted by AflQ1.


Assuntos
Ácido Aspártico , Proteínas de Bactérias , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lincomicina , Antibacterianos , Regulação Bacteriana da Expressão Gênica
10.
Biosci Biotechnol Biochem ; 87(7): 786-795, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37076767

RESUMO

AtrA belongs to the TetR family and has been well characterized for its roles in antibiotic biosynthesis regulation. Here, we identified an AtrA homolog (AtrA-lin) in Streptomyces lincolnensis. Disruption of atrA-lin resulted in reduced lincomycin production, whereas the complement restored the lincomycin production level to that of the wild-type. In addition, atrA-lin disruption did not affect cell growth and morphological differentiation. Furthermore, atrA-lin disruption hindered the transcription of regulatory gene lmbU, structural genes lmbA and lmbW inside the lincomycin biosynthesis gene cluster, and 2 other regulatory genes, adpA and bldA. Completement of atrA-lin restored the transcription of these genes to varying degrees. Notably, we found that AtrA-lin directly binds to the promoter region of lmbU. Collectively, AtrA-lin positively modulated lincomycin production via both pathway-specific and global regulators. This study offers further insights into the functional diversity of AtrA homologs and the mechanism of lincomycin biosynthesis regulation.


Assuntos
Lincomicina , Streptomyces , Lincomicina/farmacologia , Lincomicina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Regulação Bacteriana da Expressão Gênica , Antibacterianos/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(40): 24794-24801, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958639

RESUMO

The structure of lincomycin A consists of the unusual eight-carbon thiosugar core methyllincosamide (MTL) decorated with a pendent N-methylprolinyl moiety. Previous studies on MTL biosynthesis have suggested GDP-ᴅ-erythro-α-ᴅ-gluco-octose and GDP-ᴅ-α-ᴅ-lincosamide as key intermediates in the pathway. However, the enzyme-catalyzed reactions resulting in the conversion of GDP-ᴅ-erythro-α-ᴅ-gluco-octose to GDP-ᴅ-α-ᴅ-lincosamide have not yet been elucidated. Herein, a biosynthetic subpathway involving the activities of four enzymes-LmbM, LmbL, CcbZ, and CcbS (the LmbZ and LmbS equivalents in the closely related celesticetin pathway)-is reported. These enzymes catalyze the previously unknown biosynthetic steps including 6-epimerization, 6,8-dehydration, 4-epimerization, and 6-transamination that convert GDP-ᴅ-erythro-α-ᴅ-gluco-octose to GDP-ᴅ-α-ᴅ-lincosamide. Identification of these reactions completes the description of the entire lincomycin biosynthetic pathway. This work is significant since it not only resolves the missing link in octose core assembly of a thiosugar-containing natural product but also showcases the sophistication in catalytic logic of enzymes involved in carbohydrate transformations.


Assuntos
Lincomicina/biossíntese , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Lincomicina/química , Lincosamidas/química , Lincosamidas/metabolismo , Streptomyces/química , Streptomyces/enzimologia , Streptomyces/genética
12.
J Basic Microbiol ; 63(6): 622-631, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36734183

RESUMO

Lincomycin is one of the most important antibiotics. However, transcriptional regulation network of secondary metabolism in Streptomyces lincolnensis, the lincomycin producer, remained obscure. AdpA from S. lincolnensis (namely AdpAlin ) has been proved to activate lincomycin biosynthesis. Here we found that both lincomycin and melanin took l-tyrosine as precursor, and AdpAlin activated melanin biosynthesis as well. Three tyrosinases, MelC2, MelD2, and MelE, and one tyrosine peroxygenase, LmbB2, participated in lincomycin and melanin biosynthesis in different ways. For melanin biosynthesis, MelC2 was the only key enzyme required. For lincomycin biosynthesis, MelD2 and LmbB2 were positive factors and were suggested to convert l-tyrosine to l-dihydroxyphenylalanine (l-DOPA). Otherwise, MelC2 and MelE were negative factors for lincomycin biosynthesis and they were supposed to oxidize l-DOPA to generate melanin and certain unknown metabolite, respectively. Based on in silico analysis combined with electrophoretic mobility shift assays (EMSAs), we proved that AdpAlin directly interacted with promoters of melC, melD, and melE by binding to putative AdpA-binding sites in vitro. Moreover, in vivo experiments revealed that AdpAlin positively regulated the transcription of melC and melE, but negatively regulated melD. In conclusion, AdpAlin was the switch of secondary metabolism in S. lincolnensis, and it modulated precursor flux of lincomycin and melanin biosynthesis by directly activating melC, melE, and lmbB1/lmbB2 or repressing melD.


Assuntos
Lincomicina , Melaninas , Melaninas/metabolismo , Metabolismo Secundário , Levodopa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Tirosina/metabolismo
13.
J Basic Microbiol ; 63(2): 190-199, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36453540

RESUMO

Lincomycin produced by Streptomyces lincolnensis is a critical antibacterial antibiotic in the clinical. To further understand the regulatory mechanism of lincomycin biosynthesis, we identified an alternative σ factor, σL sl , in Streptomyces lincolnensis NRRL 2936. Deletion of sigLsl resulted in an increase in cell growth but a decrease in lincomycin production. σL sl boosted lincomycin biosynthesis by directly stimulating the transcription of four genes (lmbD, lmbV, lmrC, and lmbU) within the lincomycin biosynthetic lmb gene cluster. Besides, σL sl participated in lincomycin biosynthesis by directly stimulating the transcription of mshC, a gene responsible for MSH synthesis. In conclusion, our findings demonstrated that σL sl plays a direct regulatory role in lincomycin biosynthesis. This study extends the understanding of molecular mechanisms of lincomycin biosynthetic regulation.


Assuntos
Lincomicina , Fator sigma , Fator sigma/genética , Proteínas de Bactérias/genética , Antibacterianos
14.
Prep Biochem Biotechnol ; 53(9): 1092-1098, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36651611

RESUMO

Lincomycin is a widely used aminoglycoside antibiotic. For its separation from fermentation broth in production, solvent extraction is usually applied because of its low cost and high capacity compared to other bioseparation methods. The multistage mixer-settler is a common extraction equipment in commercial production, but it occupies a large area and causes pollution. In this study, a fully enclosed turbine tower was designed and applied in order to replace the mixer-settler. Its structure parameters (turbine diameter, tray porosity) were optimized on the basis of the extraction effect of lincomycin. The results showed that with 35% tray porosity and 28/26 mm turbine diameter of the tower, the extraction rate was kept above 99.0% steadily under 375 rpm/min rotating speed and 60 °C temperature. The extraction effect is much better than mixer-settler and such turbine tower is expected to be applied in the commercial production of lincomycin.


Assuntos
Antibacterianos , Lincomicina , Aminoglicosídeos , Fermentação , Temperatura
15.
Molecules ; 28(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37513181

RESUMO

Antibiotic drug residues can adversely affect the human body. Lincomycin is a common veterinary drug that can form residues in foods of animal origin. However, the detection of trace residue levels of lincomycin residues in real samples is challenging. Here, a simple solid phase extraction (SPE) method was developed for the enrichment of lincomycin from cow milk samples before its detection by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The adsorbent used in the SPE was a Cu-based metal-organic framework (Cu-MOF) prepared by the solvothermal synthesis approach. The prepared MOFs were characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), differential thermogravimetric analysis (TG-DTA), and N2 adsorption-desorption experiments. The adsorption capacity (adsorption equilibrium, extraction time, pH), and elution solvent parameters were investigated. Under the optimized conditions of the HPLC-MS/MS method, lincomycin was detected in the linear range of 10-200 g/L with a detection limit of 0.013 ng/mL. Commercial milk samples were spiked with lincomycin, and a recovery rate between 92.3% and 97.2% was achieved. Therefore, the current method can be successfully applied for the enrichment and determination of lincomycin from milk samples.


Assuntos
Lincomicina , Estruturas Metalorgânicas , Animais , Humanos , Estruturas Metalorgânicas/química , Espectrometria de Massas em Tandem/métodos , Leite/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos
16.
World J Microbiol Biotechnol ; 39(12): 332, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801155

RESUMO

Regulators belonging to the DeoR family are widely distributed among the bacteria. Few studies have reported that DeoR family proteins regulate secondary metabolism of Streptomyces. This study explored the function of DeoR (SLINC_8027) in Streptomyces lincolnensis. Deletion of deoR in NRRL 2936 led to an increase in cell growth. The lincomycin production of the deoR deleted strain ΔdeoR was 3.4-fold higher than that of the wild strain. This trait can be recovered to a certain extent in the deoR complemented strain ΔdeoR::pdeoR. According to qRT-PCR analysis, DeoR inhibited the transcription of all detectable genes in the lincomycin biosynthesis cluster and repressed the expression of glnR, bldD, and SLCG_Lrp, which encode regulators outside the cluster. DeoR also inhibited the transcription of itself, as revealed by the XylE reporter. Furthermore, we demonstrated that DeoR bound directly to the promoter region of deoR, lmbA, lmbC-D, lmbJ-K, lmrA, lmrC, glnR, and SLCG_Lrp, by recognizing the 5'-CGATCR-3' motif. This study found that versatile regulatory factor DeoR negatively regulates lincomycin biosynthesis and cellular growth in S. lincolnensis, which expanded the regulatory network of lincomycin biosynthesis.


Assuntos
Lincomicina , Streptomyces , Lincomicina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Metabolismo Secundário , Regulação Bacteriana da Expressão Gênica
17.
J Appl Microbiol ; 133(2): 400-409, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35384192

RESUMO

AIMS: Assessing the role of ramRsl , a gene absent in a lincomycin over-producing strain, in the regulation of morphological development and lincomycin biosynthesis in Streptomyces lincolnensis. METHODS AND RESULTS: The gene ramRsl was deleted from the wild-type strain NRRL 2936 and the ΔramR mutant strain was characterized by a slower growth rate and a delayed morphological differentiation compared to the original strain NRRL 2936. Furthermore, the ΔramR produced 2.6-fold more lincomycin than the original strain, and consistently the level of expression of all lincomycin cluster located genes was enhanced at 48 and 96 h in the ΔramR. Complementation of ΔramR with an intact copy of ramRsl restored all wild-type features, whereas the over-expression of ramRsl led to a reduction of 33% of the lincomycin yield. Furthermore, the level of expression of glnR, bldA and SLCG_2919, three of known lincomycin biosynthesis regulators, was lower in the ΔramR than in the original strain at the early stage of fermentation and we demonstrated, using electrophoretic mobility shift assay and XylE reporter assay, that glnR is a novel direct target of RamR. CONCLUSIONS: Altogether, these results indicated that, beyond promoting the morphological development, RamR regulates negatively lincomycin biosynthesis and positively the expression of the nitrogen regulator GlnR. SIGNIFICANCE AND IMPACT OF THE STUDY: We demonstrated that RamR plays a negative role in the regulation of lincomycin biosynthesis in S. lincolnensis. Interestingly, the deletion of this gene in other antibiotic-producing Streptomyces strains might also increase their antibiotic-producing abilities.


Assuntos
Regulação Bacteriana da Expressão Gênica , Streptomyces , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lincomicina/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
18.
Mikrochim Acta ; 190(1): 11, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477444

RESUMO

A novel electrochemiluminescence (ECL) aptasensor for the determination of lincomycin (LIN) was developed based on CdS QDs/carboxylated g-C3N4 (CdS QDs/C-g-C3N4). CdS QDs/C-g-C3N4 served as the substrate of the aptasensor, and then CdS QDs/C-g-C3N4-modified electrode was incubated with aptamer DNA (Apt-DNA). When the non-specific sites of the electrode surface was blocked by 6-mercaptohexanol, the ferrocene-labeled probe (Fer-DNA) was assembled onto the electrode surface through base complementation with Apt-DNA. In the absence of LIN, the ECL signal was quenched effectively by Fer-DNA and a decreased ECL emission (off state) was acquired. On the contrary, LIN was specifically bond with Apt-DNA, and Fer-DNA was detached from the aptasensor surface because of the deformation of Apt-DNA, resulting in an effectively enhanced ECL signal (on state). The constructed ECL aptasensor exhibited a wide detection range for LIN determination (0.05 ng mL-1-100 µg mL-1) with a low detection limit (0.02 ng mL-1). Importantly, the proposed ECL aptasensor showed outstanding accuracy and specificity for LIN determination, and also provided a potential strategy for other antibiotic determinations.


Assuntos
DNA , Lincomicina
19.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682750

RESUMO

The adverse effects of short-term megadose of antibiotics exposure on the gastrointestinal and liver tissue reactions in young children have been reported. Antibiotic-induced intestinal and liver reactions are usually unpredictable and present a poorly understood pathogenesis. It is, therefore, necessary to develop strategies for reducing the adverse effects of antibiotics. Studies on the harm and rescue measures of antibiotics from the perspective of the gut-liver system are lacking. Here, we demonstrate that lincomycin exposure reduced body weight, disrupted the composition of gut microbiota and intestinal morphology, triggered immune-mediated injury and inflammation, caused liver dysfunction, and affected lipid metabolism. However, baicalin administration attenuated the lincomycin-induced changes. Transcriptome analysis showed that baicalin improved immunity in mice, as evidenced by the decreased levels of intestinal inflammatory cytokines and expression of genes that regulate Th1, Th2, and Th17 cell differentiation, and inhibited mucin type O-glycan biosynthesis pathways. In addition, baicalin improved liver function by upregulating the expression of genes involved in bile acid secretion and lipid degradation, and downregulating genes involved in lipid synthesis in lincomycin-treated mice. Bile acids can regulate intestinal immunity and strengthen hepatoenteric circulation. In addition, baicalin also improved anti-inflammatory bacteria abundance (Blautia and Coprobacillus) and reduced pathogenic bacteria abundance (Proteobacteria, Klebsiella, and Citrobacter) in lincomycin-treated mice. Thus, baicalin can ameliorate antibiotic-induced injury and its associated complications such as liver disease.


Assuntos
Inflamação , Lincomicina , Animais , Antibacterianos/efeitos adversos , Antibacterianos/metabolismo , Pré-Escolar , Flavonoides , Humanos , Inflamação/patologia , Lincomicina/metabolismo , Lincomicina/farmacologia , Lipídeos/farmacologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
20.
J Environ Manage ; 307: 114539, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085969

RESUMO

Lincomycin fermentation residues (LFR) are the byproducts from the pharmaceutical industry, and contain high concentrations of antibiotics that could pose a threat to the environment. Here, we report that black soldier fly larvae (BSFL) and associated microbiota can effectively degrade LFR and accelerate the degradation of lincomycin in LFR. The degradation rate of lincomycin in LFR can reach 84.9% after 12 days of BSFL-mediated bioconversion, which is 3-fold greater than that accomplished with natural composting. The rapid degradation was partially carried out by the BSFL-associated microbiota, contributing 22.0% of the degradation in the final composts. Based on microbiome analysis, we found that the structure of microbiota from both BSFL guts and BSFL composts changed significantly during the bioconversion, and that several bacterial genera were correlated with lincomycin degradation. The roles of the associated microbiota in the degradation were further verified by the ability of two larval intestinal bacterial isolates and one bacterial isolate from BSFL composts to lincomycin degradation. The synergy between BSFL and the isolated strains resulted in a 2-fold increase in degradation compared to that achieved by microbial degradation alone. Furthermore, we determined that the degradation was correlated with the induction of several antibiotic resistant genes (ARGs) associated with lincomycin degradation in larval guts and BSFL composts. Moreover, the environmental conditions in the BSFL composts were found to be conducive to the degradation. In conclusion, these findings demonstrate that the BSFL-mediated bioconversion of LFR could effectively reduce residual lincomycin and that the associated microbiota play crucial roles in the process.


Assuntos
Dípteros , Resíduos Industriais , Animais , Indústria Farmacêutica , Larva , Lincomicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA