Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 33(1): 61-68, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27443394

RESUMO

PURPOSE: The use of higher frequencies in percutaneous microwave ablation (MWA) may offer compelling interstitial antenna design advantages over the 915 MHz and 2.45 GHz frequencies typically employed in current systems. To evaluate the impact of higher frequencies on ablation performance, we conducted a comprehensive computational and experimental study of microwave absorption and tissue heating as a function of frequency. METHODS: We performed electromagnetic and thermal simulations of MWA in ex vivo and in vivo porcine muscle at discrete frequencies in the 1.9-26 GHz range. Ex vivo ablation experiments were performed in the 1.9-18 GHz range. We tracked the size of the ablation zone across frequency for constant input power and ablation duration. Further, we conducted simulations to investigate antenna feed line heating as a function of frequency, input power, and cable diameter. RESULTS: As the frequency was increased from 1.9 to 26 GHz the resulting ablation zone dimensions decreased in the longitudinal direction while remaining relatively constant in the radial direction; thus at higher frequencies the overall ablation zone was more spherical. However, cable heating at higher frequencies became more problematic for smaller diameter cables at constant input power. CONCLUSION: Comparably sized ablation zones are achievable well above 1.9 GHz, despite increasingly localised power absorption. Specific absorption rate alone does not accurately predict ablation performance, particularly at higher frequencies where thermal diffusion plays an important role. Cable heating due to ohmic losses at higher frequencies may be controlled through judicious choices of input power and cable diameter.


Assuntos
Técnicas de Ablação/métodos , Micro-Ondas , Músculos/cirurgia , Técnicas de Ablação/instrumentação , Animais , Simulação por Computador , Desenho de Equipamento , Suínos
2.
Materials (Basel) ; 16(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241474

RESUMO

With the demand for construction of lightweight ships and polar ships, high-strength steel is increasingly applied in shipbuilding. There are a large number of complex curved plates to be processed in ship construction. The main method for forming a complex curved plate is line heating. A saddle plate is an important type of double-curved plate, which affects the resistance performance of the ship. The existing research on high-strength-steel saddle plates is lacking. To solve the problem of forming for high-strength-steel saddle plates, the numerical calculation of line heating for a EH36 steel saddle plate was studied. By combining it with a line heating experiment of low-carbon-steel saddle plates, the feasibility of numerical calculation based on the thermal elastic-plastic theory for high-strength-steel saddle plates was verified. Under the premise that the processing conditions such as the material parameters, heat transfer parameters, and the constraint mode of the plate were correctly designed, the effects of the influencing factors on deformation of the saddle plate could be studied by the numerical calculation method. The numerical calculation model of line heating for high-strength-steel saddle plates was established, and the effects of geometric parameters and forming parameters on shrinkage and deflection were studied. This research can provide ideas for the lightweight construction of ships and provide data support for automatic processing of curved plates. It can also provide inspiration for curved plate forming in fields such as aerospace manufacturing, the automotive industry, and architecture.

3.
Materials (Basel) ; 16(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687721

RESUMO

The application of high-strength steel plates can reduce ship weight, and the saddle plate is one of the most common types of double-curved hull plates. To fill the research gap regarding high-strength steel saddle plates, two prediction models are established here to predict deformation in saddle plate forming. Deflection is a key parameter reflecting the overall deformation of a curved plate. Therefore, first of all, the influencing factors of the line heating of high-strength steel saddle plates were analyzed. The influence of plate geometric parameters and forming parameters on deflection was researched. Second, a multiple linear regression model between deflection and the geometric parameters and forming parameters of high-strength steel saddle plates was established. Finally, to solve the problem of a large error in the multivariate regression model for extrapolation, an intelligent prediction program for deflection based on a support vector machine (SVM) was developed using the Python language. The results show that the error of the multiple regression model was less than 5% for data interpolation. The error of the intelligent prediction model for deflection was less than 5% for data extrapolation. This research can provide data support for the automatic forming of marine saddle plates.

4.
Materials (Basel) ; 15(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431448

RESUMO

The wind tower block is welded with the flange to assemble the wind tower. The inherent strain due to local heating and cooling of the weld affects the flatness of the flange. Therefore, line heating is performed to satisfy the design criteria of the flange flatness, but the work variables depend on the operator's empirical judgment. This study proposed a method to determine the optimum linear heating conditions to control the welded flatness of wind tower blocks and flanges. A proposed method uses the inherent strain method, a simple analysis method, and the optimization is performed based on the deformation superposition method. The changes in flange flatness due to welding and single-point heating were calculated. Then, the flatness change due to single-point heating is superimposed with a scale factor, which represents the magnitude of line heating, and is added to the flatness change due to welding. Using the optimization procedure, the line heating conditions used to derive the flatness that satisfies the design criteria were derived and applied to the analytical model for verification.

5.
Materials (Basel) ; 15(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009262

RESUMO

In the shipbuilding industry, welding is the main technique used to join steel structures. There is a lifting process, post-welding, that can eliminate the correction effect of line heating. Line heating is reperformed after the lifting process. This can significantly delay the ship assembly process. Herein, we present a design method for installing a permanent stiffener to avoid the disappearance of the line heating effect during the lifting process. The change in physical properties due to heating and cooling of the line heating is calculated. The limiting stress, at which the effect of the line heating completely disappears, based on the inherent strain theory, is obtained. The phase fraction by the cooling rate is calculated using the continuous cooling transformation diagram and the Kiustinen-Marburgerm equation. Physical properties affected by the phase transformation are calculated, considering the physical properties and fraction of each phase. The square plate theory and superposition principle are used to construct a local model, with a stiffener, of the ship block. The stress caused by the shape of the stiffener and the distance between the stiffeners were calculated for the local model. The calculated stress and the limiting stress were compared to determine, for the expected line heating efficiency, the most acceptable stiffener design. Finally, to confirm the elimination of the problem, the designed stiffener is analyzed using the finite element method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA