Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(30): 9186-9194, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39012034

RESUMO

The interaction between light and moiré superlattices presents a platform for exploring unique light-matter phenomena. Tailoring these optical properties holds immense potential for advancing the utilization of moiré superlattices in photonics, optoelectronics, and valleytronics. However, the control of the optical polarization state in moiré superlattices, particularly in the presence of moiré effects, remains elusive. Here, we unveil the emergence of optical anisotropy in moiré superlattices by constructing twisted WSe2/WSe2/SiP heterostructures. We report a linear polarization degree of ∼70% for moiré excitons, attributed to the spatially nonuniform charge distribution, corroborated by first-principles calculations. Furthermore, we demonstrate the modulation of this linear polarization state via the application of a magnetic field, resulting in polarization angle rotation and a magnetic-field-dependent linear polarization degree, influenced by valley coherence and moiré potential effects. Our findings demonstrate an efficient strategy for tuning the optical polarization state of moiré superlattices using heterointerface engineering.

2.
Materials (Basel) ; 17(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124394

RESUMO

In this paper, a single-feed microstrip antenna (MA) equipped with a transmission-mode focusing metasurface (MS) is proposed to achieve dual-polarization capabilities and superior high-gain radiation performance. The original-feed MA comprises two distinct layers of coaxial-fed tangential patches, enabling it to emit a circular polarization (CP) wave with a gain of 3.5 dBic at 5.6 GHz and linear polarization (LP) radiation with a gain of 4 dBi at 13.7 GHz. To improve the performance of the single-feed MA, a dual-polarization transmission focusing MS is proposed and numerically substantiated. By positioning the originally designed MA at the focal point of the MS, we create a transmission-mode MS antenna system capable of achieving CP and LP radiations with the significantly higher gains of 12.9 dBic and 14.8 dBi at 5.6 GHz and 13.7 GHz, respectively. Measurements conducted on the fabricated dual-polarization focusing MS antenna closely align with the simulation results, validating the effectiveness of our approach. This work underscores the significant potential of dual-polarization high-speed data systems and offers a practical solution for enhancing antenna gains in contemporary wireless communication systems.

3.
Adv Mater ; 36(31): e2403017, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38739121

RESUMO

A miniature laser with linear polarization is a long sought-after component of photonic integrated circuits. In particular, for multiwavelength polarization lasers, it supports simultaneous access to multiple, widely varying laser wavelengths in a small spatial region, which is of great significance for advancing applications such as optical computing, optical storage, and optical sensing. However, there is a trade-off between the size of small-scale lasers and laser performance, and multiwavelength co-gain of laser media and multicavity micromachining in the process of laser miniaturization remain as significant challenges. Herein, room-temperature linearly polarized multiwavelength lasers in the visible and near-infrared wavelength ranges are demonstrated, by fabricating random cavities scattered with silica in an Er-doped Cs2Ag0.4Na0.6In0.98Bi0.02Cl6 double-perovskite quantum dots gain membrane. By regulating the local symmetry and enabling effective energy transfer in nanocrystals, multiwavelength lasers with ultralow thresholds are achieved at room temperature. The maximum degree of polarization reaches 0.89. With their advantages in terms of miniaturization, ultralow power consumption, and adaptability for integration, these lasers offer a prospective light source for future photonic integrated circuits aimed at high-capacity optical applications.

4.
Materials (Basel) ; 17(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673181

RESUMO

Biodiesel is a mixture of saturated and unsaturated Fatty Acid Methyl Esters (FAMEs) whose composition affects the corrosion behavior of metal containers during storage. This study examines the effect of the C=C bond present in selected FAMEs (Methyl Stearate, Methyl Oleate, and Methyl Linoleate) in aluminum corrosion in the absence of oxygen. First, mass loss assays were carried out at 100, 200, and 280 °C for 1000 h using pure Methyl Stearate (MS), 5% Methyl Oleate in Methyl Stearate (MS-5% MO), and 5% Methyl Linoleate in Methyl Stearate (MS-5% ML). Next, chemical changes in FAMEs were studied using FTIR, TGA, and GC/MS. SEM/EDS analysis allowed us to inspect the aluminum surfaces and their chemical characterization. We estimated higher corrosion rates for MS assays than those of unsaturated methyl ester mixtures. In a separate set of experiments, we used electrochemical techniques (potentiodynamic polarization, linear polarization resistance, and electrochemical impedance spectroscopy) to investigate aluminum corrosion induced by thermal-degraded products from FAMEs at 100, 200, and 280 °C for 300 h able to dissolve in aqueous extracts. These electrochemical experiments revealed that the products in the aqueous extracts from the unsaturated methyl ester mixture form a passive layer on the Al surface thicker than pure MS at the corresponding degradation temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA