Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Acta Pharmacol Sin ; 45(10): 2134-2148, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38789494

RESUMO

Excessive dietary calories lead to systemic metabolic disorders, disturb hepatic lipid metabolism, and aggravate nonalcoholic steatohepatitis (NASH). Bile acids (BAs) play key roles in regulating nutrition absorption and systemic energy homeostasis. Resmetirom is a selective thyroid hormone receptor ß (THRß) agonist and the first approved drug for NASH treatment. It is well known that the THRß activation could promote intrahepatic lipid catabolism and improve mitochondrial function, however, its effects on intestinal lipid absorption and BA compositions remain unknown. In the present study, the choline-deficient, L-amino acid defined, high-fat diet (CDAHFD) and high-fat diet plus CCl4 (HFD+CCl4)-induced NASH mice were used to evaluate the effects of resmetirom on lipid and BA composition. We showed that resmetirom administration (10 mg·kg-1·d-1, i.g.) significantly altered hepatic lipid composition, especially reduced the C18:2 fatty acyl chain-containing triglyceride (TG) and phosphatidylcholine (PC) in the two NASH mouse models, suggesting that THRß activation inhibited intestinal lipid absorption since C18:2 fatty acid could be obtained only from diet. Targeted analysis of BAs showed that resmetirom treatment markedly reduced the hepatic and intestinal 12-OH to non-12-OH BAs ratio by suppressing cytochrome P450 8B1 (CYP8B1) expression in both NASH mouse models. The direct inhibition by resmetirom on intestinal lipid absorption was further verified by the BODIPY gavage and the oral fat tolerance test. In addition, disturbance of the altered BA profiles by exogenous cholic acid (CA) supplementation abolished the inhibitory effects of resmetirom on intestinal lipid absorption in both normal and CDAHFD-fed mice, suggesting that resmetirom inhibited intestinal lipid absorption by reducing 12-OH BAs content. In conclusion, we discovered a novel mechanism of THRß agonists on NASH treatment by inhibiting intestinal lipid absorption through remodeling BAs composition, which highlights the multiple regulation of THRß activation on lipid metabolism and extends the current knowledge on the action mechanisms of THRß agonists in NASH treatment.


Assuntos
Ácidos e Sais Biliares , Dieta Hiperlipídica , Absorção Intestinal , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Receptores beta dos Hormônios Tireóideos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácidos e Sais Biliares/metabolismo , Masculino , Receptores beta dos Hormônios Tireóideos/agonistas , Receptores beta dos Hormônios Tireóideos/metabolismo , Absorção Intestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Camundongos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Tetracloreto de Carbono , Piridazinas , Uracila/análogos & derivados
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526687

RESUMO

Vertical sleeve gastrectomy (VSG) is one of the most effective and durable therapies for morbid obesity and its related complications. Although bile acids (BAs) have been implicated as downstream mediators of VSG, the specific mechanisms through which BA changes contribute to the metabolic effects of VSG remain poorly understood. Here, we confirm that high fat diet-fed global farnesoid X receptor (Fxr) knockout mice are resistant to the beneficial metabolic effects of VSG. However, the beneficial effects of VSG were retained in high fat diet-fed intestine- or liver-specific Fxr knockouts, and VSG did not result in Fxr activation in the liver or intestine of control mice. Instead, VSG decreased expression of positive hepatic Fxr target genes, including the bile salt export pump (Bsep) that delivers BAs to the biliary pathway. This reduced small intestine BA levels in mice, leading to lower intestinal fat absorption. These findings were verified in sterol 27-hydroxylase (Cyp27a1) knockout mice, which exhibited low intestinal BAs and fat absorption and did not show metabolic improvements following VSG. In addition, restoring small intestinal BA levels by dietary supplementation with taurocholic acid (TCA) partially blocked the beneficial effects of VSG. Altogether, these findings suggest that reductions in intestinal BAs and lipid absorption contribute to the metabolic benefits of VSG.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Gastrectomia/métodos , Obesidade Mórbida/cirurgia , Receptores Citoplasmáticos e Nucleares/genética , Animais , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Redução de Peso/genética
3.
BMC Biol ; 21(1): 150, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403071

RESUMO

BACKGROUND: Biological aging is an important factor leading to the development of pathologies associated with metabolic dysregulation, including type 2 diabetes, cancer, cardiovascular and neurodegenerative diseases. Telomere length, a central feature of aging, has additionally been identified as inversely associated with glucose tolerance and the development of type 2 diabetes. However, the effects of shortened telomeres on body weight and metabolism remain incompletely understood. Here, we studied the metabolic consequences of moderate telomere shortening using second generation loss of telomerase activity in mice. RESULTS: Aged male and female G2 Terc-/- mice and controls were characterized with respect to body weight and composition, glucose homeostasis, insulin sensitivity and metabolic activity. This was complemented with molecular and histological analysis of adipose tissue, liver and the intestine as well as microbiota analysis. We show that moderate telomere shortening leads to improved insulin sensitivity and glucose tolerance in aged male and female G2 Terc-/- mice. This is accompanied by reduced fat and lean mass in both sexes. Mechanistically, the metabolic improvement results from reduced dietary lipid uptake in the intestine, characterized by reduced gene expression of fatty acid transporters in enterocytes of the small intestine. Furthermore, G2-Terc-/- mice showed significant alterations in the composition of gut microbiota, potentially contributing to the improved glucose metabolism. CONCLUSIONS: Our study shows that moderate telomere shortening reduces intestinal lipid absorption, resulting in reduced adiposity and improved glucose metabolism in aged mice. These findings will guide future murine and human aging studies and provide important insights into the age associated development of type 2 diabetes and metabolic syndrome.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Telomerase , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Peso Corporal , Ácidos Graxos , Glucose/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Telomerase/genética
4.
FASEB J ; 36(3): e22185, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35133032

RESUMO

FGF19/FGF15 is an endocrine regulator of hepatic bile salt and lipid metabolism, which has shown promising effects in the treatment of NASH in clinical trials. FGF19/15 is transcribed and released from enterocytes of the small intestine into enterohepatic circulation in response to bile-induced FXR activation. Previously, the TSS of FGF19 was identified to bind Wnt-regulated TCF7L2/encoded transcription factor TCF4 in colorectal cancer cells. Impaired Wnt signaling and specifical loss of function of its coreceptor LRP6 have been associated with NASH. We, therefore, examined if TCF7L2/TCF4 upregulates Fgf19 in the small intestine and restrains NASH through gut-liver crosstalk. We examined the mice globally overexpressing, haploinsufficient, and conditional knockout models of TCF7L2 in the intestinal epithelium. The TCF7L2+/- mice exhibited increased plasma bile salts and lipids and developed diet-induced fatty liver disease while mice globally overexpressing TCF7L2 were protected against these traits. Comprehensive in vivo analysis revealed that TCF7L2 transcriptionally upregulates FGF15 in the gut, leading to reduced bile synthesis and diminished intestinal lipid uptake. Accordingly, VilinCreert2 ; Tcf7L2fl/fl mice showed reduced Fgf19 in the ileum, and increased plasma bile. The global overexpression of TCF7L2 in mice with metabolic syndrome-linked LRP6R611C substitution rescued the fatty liver and fibrosis in the latter. Strikingly, the hepatic levels of TCF4 were reduced and CYP7a1 was increased in human NASH, indicating the relevance of TCF4-dependent regulation of bile synthesis to human disease. These studies identify the critical role of TCF4 as an upstream regulator of the FGF15-mediated gut-liver crosstalk that maintains bile and liver triglyceride homeostasis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Íleo/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Homeostase , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
5.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768963

RESUMO

Environmental chemicals, which are known to impact offspring health, have become a public concern. Constitutive activated receptor (CAR) is activated by various environmental chemicals and participates in xenobiotic metabolism. Here, we described the effects of maternal exposure to the CAR-specific ligand 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP, TC) on offspring health outcomes. Maternal TC exposure exhibited a stronger inhibition of body weight in 3-week-old and 8-week-old first-generation (F1) offspring female mice compared to controls. Further, maternal TC exposure obtained a strong increase in hepatic drug-metabolizing enzyme expression in 3-week-old female mice that persisted into 8-week-old adulthood. Interestingly, we observed distorted intestinal morphological features in 8-week-old F1 female mice in the TC-exposed group. Moreover, maternal TC exposure triggered a loss of intestinal barrier integrity by reducing the expression of intestinal tight junction proteins. Accordingly, maternal exposure to TC down-regulated serum triglyceride levels as well as decreased the expression of intestinal lipid uptake and transport marker genes. Mechanistically, maternal TC exposure activated the intestinal inflammatory response and disrupted the antioxidant system in the offspring female mice, thereby impeding the intestinal absorption of nutrients and seriously threatening offspring health. Altogether, these findings highlight that the effects of maternal TC exposure on offspring toxicity could not be ignored.


Assuntos
Receptor Constitutivo de Androstano , Receptores Citoplasmáticos e Nucleares , Animais , Feminino , Humanos , Camundongos , Crescimento e Desenvolvimento , Fígado/metabolismo , Exposição Materna , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
6.
Molecules ; 28(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838948

RESUMO

One of the goals of archaeological studies is to determine how material goods and ideas moved among human populations, and bitumen is a worthy proxy because it has been used since prehistory. As a result, when bitumen is excavated from archaeological sites, determining its provenance is important because it sheds light on the trade and communication of populations at a given time. During the study of archaeological bitumen from coastal sites in central and southern Puglia (Italy), we observed that stable isotope ratios of saturated and aromatic fractions were incompatible with those obtained from asphaltenes, supporting the absorption of a foreign substance. Experiments showed that lipids are absorbed by bitumen and, in the case of oils, are distributed mainly in the saturated and aromatic fractions as their isotopic ratios change. The same experiments showed that the isotopic ratios of the asphaltenes do not change. Lipid absorption on the archaeological bitumen may have occurred before the bitumen was applied to the pottery, during the use of the pottery or while underground, before being excavated. These hypotheses are discussed, and it is concluded that the isotopic ratio of asphaltenes is a reliable proxy for provenance, whereas those of the saturated and aromatic fractions should be considered with caution due to possible lipid absorption. Nevertheless, they provide new information on pottery use that can be used in archaeological chemistry.


Assuntos
Hidrocarbonetos , Óleos , Humanos , Hidrocarbonetos/química , Itália , Isótopos
7.
J Lipid Res ; 63(11): 100278, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36100090

RESUMO

The small intestinal epithelium has classically been envisioned as a conduit for nutrient absorption, but appreciation is growing for a larger and more dynamic role for enterocytes in lipid metabolism. Considerable gaps remain in our knowledge of this physiology, but it appears that the enterocyte's structural polarization dictates its behavior in fat partitioning, treating fat differently based on its absorption across the apical versus the basolateral membrane. In this review, we synthesize existing data and thought on this dual-track model of enterocyte fat metabolism through the lens of human integrative physiology. The apical track includes the canonical pathway of dietary lipid absorption across the apical brush-border membrane, leading to packaging and secretion of those lipids as chylomicrons. However, this track also reserves a portion of dietary lipid within cytoplasmic lipid droplets for later uses, including the "second-meal effect," which remains poorly understood. At the same time, the enterocyte takes up circulating fats across the basolateral membrane by mechanisms that may include receptor-mediated import of triglyceride-rich lipoproteins or their remnants, local hydrolysis and internalization of free fatty acids, or enterocyte de novo lipogenesis using basolaterally absorbed substrates. The ultimate destinations of basolateral-track fat may include fatty acid oxidation, structural lipid synthesis, storage in cytoplasmic lipid droplets, or ultimate resecretion, although the regulation and purposes of this basolateral track remain mysterious. We propose that the enterocyte integrates lipid flux along both of these tracks in order to calibrate its overall program of lipid metabolism.


Assuntos
Quilomícrons , Enterócitos , Humanos , Enterócitos/metabolismo , Quilomícrons/metabolismo , Metabolismo dos Lipídeos , Gorduras na Dieta/metabolismo , Gotículas Lipídicas/metabolismo
8.
J Biol Chem ; 296: 100052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33168624

RESUMO

Microsomal triglyceride transfer protein (MTTP) is an endoplasmic reticulum resident protein that is essential for the assembly and secretion of triglyceride (TG)-rich, apoB-containing lipoproteins. Although the function and structure of mammalian MTTP have been extensively studied, how exactly MTTP transfers lipids to lipid acceptors and whether there are other biomolecules involved in MTTP-mediated lipid transport remain elusive. Here we identify a role in this process for the poorly characterized protein PRAP1. We report that PRAP1 and MTTP are partially colocalized in the endoplasmic reticulum. We observe that PRAP1 directly binds to TG and facilitates MTTP-mediated lipid transfer. A single amino acid mutation at position 85 (E85V) impairs PRAP1's ability to form a ternary complex with TG and MTTP, as well as impairs its ability to facilitate MTTP-mediated apoB-containing lipoprotein assembly and secretion, suggesting that the ternary complex formation is required for PRAP1 to facilitate MTTP-mediated lipid transport. PRAP1 is detectable in chylomicron/VLDL-rich plasma fractions, suggesting that MTTP recognizes PRAP1-bound TG as a cargo and transfers TG along with PRAP1 to lipid acceptors. Both PRAP1-deficient and E85V knock-in mutant mice fed a chow diet manifested an increase in the length of their small intestines, likely to compensate for challenges in absorbing lipid. Interestingly, both genetically modified mice gained significantly less body weight and fat mass when on high-fat diets compared with littermate controls and were prevented from hepatosteatosis. Together, this study provides evidence that PRAP1 plays an important role in MTTP-mediated lipid transport and lipid absorption.


Assuntos
Proteínas de Transporte/metabolismo , Metabolismo dos Lipídeos , Proteínas da Gravidez/metabolismo , Animais , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Transporte Biológico , Dieta Hiperlipídica , Fígado Gorduroso/genética , Lipoproteínas/metabolismo , Camundongos , Camundongos Knockout , Proteínas da Gravidez/genética , Ligação Proteica , Triglicerídeos/metabolismo
9.
J Lipid Res ; 62: 100123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34563519

RESUMO

Regulating dietary fat absorption may impact progression of nonalcoholic fatty liver disease (NAFLD). Here, we asked if inducible inhibition of chylomicron assembly, as observed in intestine-specific microsomal triglyceride (TG) transfer protein knockout mice (Mttp-IKO), could retard NAFLD progression and/or reverse established fibrosis in two dietary models. Mttp-IKO mice fed a methionine/choline-deficient (MCD) diet exhibited reduced hepatic TGs, inflammation, and fibrosis, associated with reduced oxidative stress and downstream activation of c-Jun N-terminal kinase and nuclear factor kappa B signaling pathways. However, when Mttpflox mice were fed an MCD for 5 weeks and then administered tamoxifen to induce Mttp-IKO, hepatic TG was reduced, but inflammation and fibrosis were increased after 10 days of reversal along with adaptive changes in hepatic lipogenic mRNAs. Extending the reversal time, following 5 weeks of MCD feeding to 30 days led to sustained reductions in hepatic TG, but neither inflammation nor fibrosis was decreased, and both intestinal permeability and hepatic lipogenesis were increased. In a second model, similar reductions in hepatic TG were observed when mice were fed a high-fat/high-fructose/high-cholesterol (HFFC) diet for 10 weeks, then switched to chow ± tamoxifen (HFFC → chow) or (HFFC → Mttp-IKO chow), but again neither inflammation nor fibrosis was affected. In conclusion, we found that blocking chylomicron assembly attenuates MCD-induced NAFLD progression by reducing steatosis, oxidative stress, and inflammation. In contrast, blocking chylomicron assembly in the setting of established hepatic steatosis and fibrosis caused increased intestinal permeability and compensatory shifts in hepatic lipogenesis that mitigate resolution of inflammation and fibrogenic signaling despite 50-90-fold reductions in hepatic TG.


Assuntos
Quilomícrons/metabolismo , Fígado Gorduroso/metabolismo , Fibrose/metabolismo , Inflamação/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Deficiência de Colina , Quilomícrons/antagonistas & inibidores , Dieta/efeitos adversos , Feminino , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Masculino , Metionina/deficiência , Camundongos , Camundongos Knockout , Camundongos Transgênicos
10.
J Biol Chem ; 295(13): 4101-4113, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32047110

RESUMO

The hormone leptin regulates fat storage and metabolism by signaling through the brain and peripheral tissues. Lipids delivered to peripheral tissues originate mostly from the intestine and liver via synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. An intracellular chaperone, microsomal triglyceride transfer protein (MTP), is required for the biosynthesis of these lipoproteins, and its regulation determines fat mobilization to different tissues. Using cell culture and animal models, here we sought to identify the effects of leptin on MTP expression in the intestine and liver. Leptin decreased MTP expression in differentiated intestinal Caco-2 cells, but increased expression in hepatic Huh7 cells. Similarly, acute and chronic leptin treatment of chow diet-fed WT mice decreased MTP expression in the intestine, increased it in the liver, and lowered plasma triglyceride levels. These leptin effects required the presence of leptin receptors (LEPRs). Further experiments also suggested that leptin interacted with long-form LEPR (ObRb), highly expressed in the intestine, to down-regulate MTP. In contrast, in the liver, leptin interacted with short-form LEPR (ObRa) to increase MTP expression. Mechanistic experiments disclosed that leptin activates signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling pathways in intestinal and hepatic cells, respectively, and thereby regulates divergent MTP expression. Our results also indicated that leptin-mediated MTP regulation in the intestine affects plasma lipid levels. In summary, our findings suggest that leptin regulates MTP expression differentially by engaging with different LEPR types and activating distinct signaling pathways in intestinal and hepatic cells.


Assuntos
Proteínas de Transporte/genética , Leptina/metabolismo , Receptores para Leptina/genética , Triglicerídeos/metabolismo , Animais , Apolipoproteínas B/metabolismo , Células CACO-2 , Hepatócitos/metabolismo , Humanos , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Leptina/farmacologia , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Lipoproteínas/sangue , Lipoproteínas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Triglicerídeos/sangue
11.
Gut ; 69(3): 487-501, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31189655

RESUMO

OBJECTIVE: To investigate whether milk polar lipids (PL) impact human intestinal lipid absorption, metabolism, microbiota and associated markers of cardiometabolic health. DESIGN: A double-blind, randomised controlled 4-week study involving 58 postmenopausal women was used to assess the chronic effects of milk PL consumption (0, 3 or 5 g-PL/day) on lipid metabolism and gut microbiota. The acute effects of milk PL on intestinal absorption and metabolism of cholesterol were assessed in a randomised controlled crossover study using tracers in ileostomy patients. RESULTS: Over 4 weeks, milk PL significantly reduced fasting and postprandial plasma concentrations of cholesterol and surrogate lipid markers of cardiovascular disease risk, including total/high-density lipoprotein-cholesterol and apolipoprotein (Apo)B/ApoA1 ratios. The highest PL dose preferentially induced a decreased number of intestine-derived chylomicron particles. Also, milk PL increased faecal loss of coprostanol, a gut-derived metabolite of cholesterol, but major bacterial populations and faecal short-chain fatty acids were not affected by milk PL, regardless of the dose. Acute ingestion of milk PL by ileostomy patients shows that milk PL decreased cholesterol absorption and increased cholesterol-ileal efflux, which can be explained by the observed co-excretion with milk sphingomyelin in the gut. CONCLUSION: The present data demonstrate for the first time in humans that milk PL can improve the cardiometabolic health by decreasing several lipid cardiovascular markers, notably through a reduced intestinal cholesterol absorption involving specific interactions in the gut, without disturbing the major bacterial phyla of gut microbiota. TRIAL REGISTRATION NUMBER: NCT02099032 and NCT02146339; Results.


Assuntos
Doenças Cardiovasculares/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/farmacologia , Sobrepeso/metabolismo , Esfingomielinas/metabolismo , Animais , Apolipoproteína A-I/sangue , Apolipoproteína B-100/sangue , Colestanol/metabolismo , Colesterol/metabolismo , HDL-Colesterol/sangue , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Emulsificantes/farmacologia , Fezes/química , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Ileostomia , Absorção Intestinal/efeitos dos fármacos , Lipídeos/administração & dosagem , Lipídeos/análise , Pessoa de Meia-Idade , Leite/química , Pós-Menopausa , Fatores de Risco
12.
Adv Exp Med Biol ; 1276: 105-136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32705597

RESUMO

Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Esteróis , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Humanos , Lipoproteínas , Fígado/metabolismo , Esteróis/metabolismo
13.
J Biol Chem ; 291(14): 7651-60, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26828064

RESUMO

Lysophosphatidylcholine acyltransferase 3 (Lpcat3) is involved in phosphatidylcholine remodeling in the small intestine and liver. We investigated lipid metabolism in inducible intestine-specific and liver-specificLpcat3gene knock-out mice. We producedLpcat3-Flox/villin-Cre-ER(T2)mice, which were treated with tamoxifen (at days 1, 3, 5, and 7), to deleteLpcat3specifically in the small intestine. At day 9 after the treatment, we found that Lpcat3 deficiency in enterocytes significantly reduced polyunsaturated phosphatidylcholines in the enterocyte plasma membrane and reduced Niemann-Pick C1-like 1 (NPC1L1), CD36, ATP-binding cassette transporter 1 (ABCA1), and ABCG8 levels on the membrane, thus significantly reducing lipid absorption, cholesterol secretion through apoB-dependent and apoB-independent pathways, and plasma triglyceride, cholesterol, and phospholipid levels, as well as body weight. Moreover, Lpcat3 deficiency does not cause significant lipid accumulation in the small intestine. We also utilized adenovirus-associated virus-Cre to depleteLpcat3in the liver. We found that liver deficiency only reduces plasma triglyceride levels but not other lipid levels. Furthermore, there is no significant lipid accumulation in the liver. Importantly, small intestine Lpcat3 deficiency has a much bigger effect on plasma lipid levels than that of liver deficiency. Thus, inhibition of small intestine Lpcat3 might constitute a novel approach for treating hyperlipidemia.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/deficiência , Membrana Celular/metabolismo , Enterócitos/metabolismo , Intestino Delgado/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Membrana Celular/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout , Especificidade de Órgãos
14.
J Biol Chem ; 291(6): 2602-15, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26644473

RESUMO

Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3(-/-)) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3(-/-) mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3(-/-) mice. Gpat3(-/-) enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3(-/-) mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Ácidos e Sais Biliares/metabolismo , Gorduras na Dieta/farmacologia , Enterócitos/enzimologia , Metabolismo dos Lipídeos/fisiologia , Triglicerídeos/farmacologia , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Animais , Camundongos , Camundongos Knockout , Fosfolipídeos/genética , Fosfolipídeos/metabolismo
15.
Am J Physiol Endocrinol Metab ; 313(2): E121-E133, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28377401

RESUMO

Bile acids (BAs) are cholesterol derivatives that regulate lipid metabolism, through their dual abilities to promote lipid absorption and activate BA receptors. However, different BA species have varying abilities to perform these functions. Eliminating 12α-hydroxy BAs in mice via Cyp8b1 knockout causes low body weight and improved glucose tolerance. The goal of this study was to determine mechanisms of low body weight in Cyp8b1-/- mice. We challenged Cyp8b1-/- mice with a Western-type diet and assessed body weight and composition. We measured energy expenditure, fecal calories, and lipid absorption and performed lipidomic studies on feces and intestine. We investigated the requirement for dietary fat in the phenotype using a fat-free diet. Cyp8b1-/- mice were resistant to Western diet-induced body weight gain, hepatic steatosis, and insulin resistance. These changes were associated with increased fecal calories, due to malabsorption of hydrolyzed dietary triglycerides. This was reversed by treating the mice with taurocholic acid, the major 12α-hydroxylated BA species. The improvements in body weight and steatosis were normalized by feeding mice a fat-free diet. The effects of BA composition on intestinal lipid handling are important for whole body energy homeostasis. Thus modulating BA composition is a potential tool for obesity or diabetes therapy.


Assuntos
Dieta Ocidental/efeitos adversos , Gorduras na Dieta/metabolismo , Fígado Gorduroso/genética , Absorção Intestinal/genética , Metabolismo dos Lipídeos/genética , Esteroide 12-alfa-Hidroxilase/genética , Aumento de Peso/genética , Animais , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Ann Hepatol ; 16(Suppl. 1: s3-105.): s27-s42, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29080338

RESUMO

Atherosclerosis is characterized by lipid accumulation, inflammatory response, cell death and fibrosis in the arterial wall, and is major pathological basis for ischemic coronary heart disease (CHD), which is the leading cause of morbidity and mortality in the USA and Europe. Intervention studies with statins have shown to reduce LDL cholesterol levels and subsequently the risk of developing CHD. However, not all the aggressive statin therapy could decrease the risk of developing CHD. Many clinical and epidemiological studies have clearly demonstrated that the HDL cholesterol is inversely associated with risk of CHD and is a critical and independent component of predicting its risk. Elucidations of HDL metabolism give rise to therapeutic targets with potential to raising plasma HDL cholesterol levels, thereby reducing the risk of developing CHD. The concept of reverse cholesterol transport is based on the hypothesis that HDL displays an cardioprotective function, which is a process involved in the removal of excess cholesterol that is accumulated in the peripheral tissues (e.g., macrophages in the aortae) by HDL, transporting it to the liver for excretion into the feces via the bile. In this review, we summarize the latest advances in the role of the lymphatic route in reverse cholesterol transport, as well as the biliary and the non-biliary pathways for removal of cholesterol from the body. These studies will greatly increase the likelihood of discovering new lipid-lowering drugs, which are more effective in the prevention and therapeutic intervention of CHD that is the major cause of human death and disability worldwide.


Assuntos
Aterosclerose/metabolismo , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Animais , Anticolesterolemiantes/uso terapêutico , Aterosclerose/sangue , Aterosclerose/epidemiologia , Aterosclerose/prevenção & controle , Transporte Biológico , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Humanos , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/epidemiologia , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Prognóstico , Fatores de Risco
17.
J Lipid Res ; 57(12): 2208-2216, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27707818

RESUMO

It was hypothesized that under induced lipid malabsorption/maldigestion conditions, an enriched sn-1(3)-monoacylglycerol (MAG) oil may be a better carrier for n-3 long-chain PUFAs (LC-PUFAs) compared with triacylglycerol (TAG) from fish oil. This monocentric double blinded clinical trial examined the accretion of EPA (500 mg/day) and DHA (300 mg/day) when consumed as TAG or MAG, into the erythrocytes, plasma, and chylomicrons of 45 obese (BMI ≥30 kg/m2 and ≤40 kg/m2) volunteers who were and were not administered Orlistat, an inhibitor of pancreatic lipases. Intake of MAG-enriched oil resulted in higher accretion of LC-PUFAs than with TAG, the concentrations of EPA and DHA in erythrocytes being, respectively, 72 and 24% higher at 21 days (P < 0.001). In addition, MAG increased the plasma concentration of EPA by 56% (P < 0.001) as compared with TAG. In chylomicrons, MAG intake yielded higher levels of EPA with the area under the curve (0-10 h) of EPA being 55% greater (P = 0.012). In conclusion, in obese human subjects with Orlistat-induced lipid maldigestion/malabsorption conditions, LC-PUFA MAG oil increased LC-PUFA levels in erythrocytes, plasma, and chylomicrons to a greater extent than TAG. These results indicate that MAG oil might require minimal enzymatic digestion prior to intestinal uptake and transfer across the epithelial barrier.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacocinética , Ácido Eicosapentaenoico/farmacocinética , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Monoglicerídeos/administração & dosagem , Adulto , Fármacos Antiobesidade/efeitos adversos , Fármacos Antiobesidade/uso terapêutico , Membrana Celular/metabolismo , Quilomícrons , Ácidos Docosa-Hexaenoicos/administração & dosagem , Método Duplo-Cego , Ácido Eicosapentaenoico/administração & dosagem , Eritrócitos/metabolismo , Feminino , Óleos de Peixe/administração & dosagem , Óleos de Peixe/farmacocinética , Humanos , Lactonas/efeitos adversos , Lactonas/uso terapêutico , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/tratamento farmacológico , Orlistate
18.
Am J Physiol Endocrinol Metab ; 311(1): E105-16, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27166280

RESUMO

Mitochondrial dysfunction is associated with many human diseases and results from mismatch of damage and repair over the life of the organelle. PARK2 is a ubiquitin E3 ligase that regulates mitophagy, a repair mechanism that selectively degrades damaged mitochondria. Deletion of PARK2 in multiple in vivo models results in susceptibility to stress-induced mitochondrial and cellular dysfunction. Surprisingly, Park2 knockout (KO) mice are protected from nutritional stress and do not develop obesity, hepatic steatosis or insulin resistance when fed a high-fat diet (HFD). However, these phenomena are casually related and the physiological basis for this phenotype is unknown. We therefore undertook a series of acute HFD studies to more completely understand the physiology of Park2 KO during nutritional stress. We find that intestinal lipid absorption is impaired in Park2 KO mice as evidenced by increased fecal lipids and reduced plasma triglycerides after intragastric fat challenge. Park2 KO mice developed hepatic steatosis in response to intravenous lipid infusion as well as during incubation of primary hepatocytes with fatty acids, suggesting that hepatic protection from nutritional stress was secondary to changes in energy balance due to altered intestinal triglyceride absorption. Park2 KO mice showed reduced adiposity after 1-wk HFD, as well as improved hepatic and peripheral insulin sensitivity. These studies suggest that changes in intestinal lipid absorption may play a primary role in protection from nutritional stress in Park2 KO mice by preventing HFD-induced weight gain and highlight the need for tissue-specific models to address the role of PARK2 during metabolic stress.


Assuntos
Peso Corporal/genética , Dieta Hiperlipídica , Resistência à Insulina/genética , Absorção Intestinal/genética , Metabolismo dos Lipídeos/genética , Ubiquitina-Proteína Ligases/genética , Animais , Metabolismo Energético , Ácidos Graxos/farmacologia , Fígado Gorduroso/genética , Fezes/química , Infusões Intravenosas , Mucosa Intestinal/metabolismo , Lipídeos/análise , Lipídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitofagia/genética , Triglicerídeos/sangue , Aumento de Peso/genética
19.
Am J Physiol Gastrointest Liver Physiol ; 310(10): G776-89, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26968208

RESUMO

Dietary lipids are transported from the intestine through contractile lymphatics. Chronic lipid loads can adversely affect lymphatic function. However, the acute lymphatic pump response in the mesentery to a postprandial lipid meal has gone unexplored. In this study, we used the rat mesenteric collecting vessel as an in vivo model to quantify the effect of lipoproteins on vessel function. Lipid load was continuously monitored by using the intensity of a fluorescent fatty-acid analog, which we infused along with a fat emulsion through a duodenal cannula. The vessel contractility was simultaneously quantified. We demonstrated for the first time that collecting lymphatic vessels respond to an acute lipid load by reducing pump function. High lipid levels decreased contraction frequency and amplitude. We also showed a strong tonic response through a reduction in the end-diastolic and systolic diameters. We further characterized the changes in flow rate and viscosity and showed that both increase postprandially. In addition, shear-mediated Ca(2+) signaling in lymphatic endothelial cells differed when cultured with lipoproteins. Together these results show that the in vivo response could be both shear and lipid mediated and provide the first evidence that high postprandial lipid has an immediate negative effect on lymphatic function even in the acute setting.


Assuntos
Gorduras na Dieta/metabolismo , Vasos Linfáticos/fisiologia , Contração Muscular , Período Pós-Prandial , Animais , Sinalização do Cálcio , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Linfa/metabolismo , Linfa/fisiologia , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Masculino , Músculo Liso/fisiologia , Ratos , Ratos Sprague-Dawley , Viscosidade
20.
J Biol Chem ; 289(15): 10909-10918, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24573674

RESUMO

Acyl-CoA:monoacylglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze the two consecutive steps in the synthesis of triacylglycerol, a key process required for dietary fat absorption into the enterocytes of the small intestine. In this report, we investigated the tendency of MGAT2 to form an enzyme complex with DGAT1 and DGAT2 in intact cells. We demonstrated that in addition to the 38-kDa monomer of the MGAT2 enzyme predicted by its peptide sequence, a 76-kDa moiety was detected in SDS-PAGE without reducing agent and heat inactivation. The 76-kDa MGAT2 moiety was greatly enhanced by treatment with a cross-linking reagent in intact cells. Additionally, the cross-linking reagent dose-dependently yielded a band corresponding to the tetramer (152 kDa) in SDS-PAGE, suggesting that the MGAT2 enzyme primarily functions as a homotetrameric protein and as a tetrameric protein. Likewise, DGAT1 also forms a homodimer under nondenaturing conditions. When co-expressed in COS-7 cells, MGAT2 heterodimerized with DGAT1 without treatment with a cross-linking reagent. MGAT2 also co-eluted with DGAT1 on a gel filtration column, suggesting that the two enzymes form a complex in intact cells. In contrast, MGAT2 did not heterodimerize with DGAT2 when co-expressed in COS-7 cells, despite high sequence homology between the two enzymes. Furthermore, systematic deletion analysis demonstrates that N-terminal amino acids 35-80 of DGAT1, but not a signal peptide at the N terminus of MGAT2, is required for the heterodimerization. Finally, co-expression of MGAT2 with DGAT1 significantly increased lipogenesis in COS-7 cells, indicating the functional importance of the dimerization.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos , N-Acetilglucosaminiltransferases/metabolismo , Absorção , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Cromatografia em Gel , Reagentes de Ligações Cruzadas/química , Diabetes Mellitus/metabolismo , Gorduras na Dieta/metabolismo , Deleção de Genes , Humanos , Lipogênese , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA