Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.647
Filtrar
1.
Nano Lett ; 24(1): 195-201, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38117033

RESUMO

Vertically aligned self-assembled nanocomposite films have provided a unique platform to study magnetoelectric effects and other forms of coupling between complex oxides. However, the distribution in the locations and sizes of the phase-separated nanostructures limits their utility. In this work, we demonstrate a process to template the locations of the self-assembled structure using ion lithography, which is effective for general insulating substrates. This process was used to produce a nanocomposite consisting of fin-shaped vertical nanostructures of ferroelectric BiFeO3 and ferrimagnetic CoFe2O4 with a feature size of 100 nm on (111)-oriented SrTiO3 substrates. Cross-sectional imaging of the three-phase perovskite-spinel-substrate epitaxial interface reveals the selective nucleation of CoFe2O4 in the trenches of the patterned substrate, and the magnetic domains of CoFe2O4 were manipulated by applying an external magnetic field.

2.
Nano Lett ; 24(33): 10032-10039, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38950386

RESUMO

Mass photometry (MP) is a rapidly growing optical technique for label-free mass measurement of single biomolecules in solution. The underlying measurement principle provides numerous advantages over ensemble-based methods but has been limited to low analyte concentrations due to the need to uniquely and accurately quantify the binding of individual molecules to the measurement surface, which results in diffraction-limited spots. Here, we combine nanoparticle lithography with surface PEGylation to substantially lower surface binding, resulting in a 2 orders of magnitude improvement in the upper concentration limit associated with mass photometry. We demonstrate the facile tunability of degree of passivation, enabling measurements at increased analyte concentrations. These advances provide access to protein-protein interactions in the high nanomolar to low micromolar range, substantially expanding the application space of mass photometry.


Assuntos
Fotometria , Polietilenoglicóis , Polietilenoglicóis/química , Fotometria/métodos , Propriedades de Superfície , Nanopartículas/química , Proteínas/química , Proteínas/análise
3.
Nano Lett ; 24(18): 5610-5617, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669343

RESUMO

Halide perovskites (HPs) metasurfaces have recently attracted significant interest due to their potential to not only further enhance device performance but also reveal the unprecedented functionalities and novel photophysical properties of HPs. However, nanopatterning on HPs is critically challenging as they are readily destructed by the organic solvents in the standard lithographic processes. Here, we present a novel, subtle, and fully nondestructive HPs metasurface fabrication strategy based on cryogenic electron-beam writing. This technique allows for high-precision patterning and in situ imaging of HPs with excellent compatibility. As a proof-of-concept, broadband absorption enhanced metasurfaces were realized by patterning nanopillar arrays on CH3NH3PbI3 film, which results in photodetectors with approximately 14-times improvement on responsivity and excellent stability. Our findings highlight the great feasibility of cryogenic electron-beam writing for producing perovskite metasurface and unlocking the unprecedented photoelectronic properties of HPs.

4.
Nano Lett ; 24(19): 5783-5790, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695397

RESUMO

Nanoimprint lithography is gaining popularity as a cost-efficient way to reproduce nanostructures in large quantities. Recent advances in nanoimprinting lithography using high-index nanoparticles have demonstrated replication of photonic devices, but it is difficult to confer special properties on nanostructures beyond general metasurfaces. Here, we introduce a novel method for fabricating light-emitting metasurfaces using nanoimprinting lithography. By utilizing quantum dots embedded in resin, we successfully imprint dielectric metasurfaces that function simultaneously as both emitters and resonators. This approach to incorporating quantum dots into metasurfaces demonstrates an improvement in photoluminescence characteristics compared to the situation where quantum dots and metasurfaces are independently incorporated. Design of the metasurface is specifically tailored to support photonic modes within the emission band of quantum dots with a large enhancement of photoluminescence. This study indicates that nanoimprinting lithography has the capability to construct nanostructures using functionalized nanoparticles and could be used in various fields of nanophotonic applications.

5.
J Struct Biol ; 216(2): 108097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772448

RESUMO

Cryo-focussed ion beam (FIB)-milling is a powerful technique that opens up thick, cellular specimens to high-resolution structural analysis by electron cryotomography (cryo-ET). FIB-milled lamellae can be produced from cells on grids, or cut from thicker, high-pressure frozen specimens. However, these approaches can put geometrical constraints on the specimen that may be unhelpful, particularly when imaging structures within the cell that have a very defined orientation. For example, plunge frozen rod-shaped bacteria orient parallel to the plane of the grid, yet the Z-ring, a filamentous structure of the tubulin-like protein FtsZ and the key organiser of bacterial division, runs around the circumference of the cell such that it is perpendicular to the imaging plane. It is therefore difficult or impractical to image many complete rings with current technologies. To circumvent this problem, we have fabricated monolithic gold specimen supports with a regular array of cylindrical wells in a honeycomb geometry, which trap bacteria in a vertical orientation. These supports, which we call "honeycomb gold discs", replace standard EM grids and when combined with FIB-milling enable the production of lamellae containing cross-sections through cells. The resulting lamellae are more stable and resistant to breakage and charging than conventional lamellae. The design of the honeycomb discs can be modified according to need and so will also enable cryo-ET and cryo-EM imaging of other specimens in otherwise difficult to obtain orientations.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Ouro , Microscopia Crioeletrônica/métodos , Ouro/química , Tomografia com Microscopia Eletrônica/métodos , Escherichia coli/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Manejo de Espécimes/métodos
6.
Small ; 20(9): e2306468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857588

RESUMO

Organic semiconductors have great potential to revolutionize electronics by enabling flexible and eco-friendly manufacturing of electronic devices on plastic film substrates. Recent research and development led to the creation of printed displays, radio-frequency identification tags, smart labels, and sensors based on organic electronics. Over the last 3 decades, significant progress has been made in realizing electronic devices with unprecedented features, such as wearable sensors, disposable electronics, and foldable displays, through the exploitation of desirable characteristics in organic electronics. Neverthless, the down-scalability of organic electronic devices remains a crucial consideration. To address this, efforts are extensively explored. It is of utmost importance to further develop these alternative patterning methods to overcome the downscaling challenge. This review comprehensively discusses the efforts and strategies aimed at overcoming the limitations of downscaling in organic semiconductors, with a particular focus on four main areas: 1) lithography-compatible organic semiconductors, 2) fine patterning of printing methods, 3) organic material deposition on pre-fabricated devices, and 4) vertical-channeled organic electronics. By discussing these areas, the full potential of organic semiconductors can be unlocked, and the field of flexible and sustainable electronics can be advanced.

7.
Small ; : e2402565, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923716

RESUMO

Biologically engineered nanomaterials give rise to unique and intriguing properties, which are not available in nature. The full-realization of such has been hindered by the lack of robust and straightforward techniques to produce the required architectures. Here a new bottomup bionano-engineering route is developed to construct nanomaterials using a guided assembly of collagen building blocks, establishing a lithographic process for three-dimensional collagen-based hierarchical micronano-architectures. By introducing optimized hybrid electro-hydrodynamic micronano-lithography exploiting collagen molecules as biological building blocks to self-assemble into a complex variety of structures, quasi-ordered mimics of metamaterials-like are constructed. The tailor-designed engineered apparatus generates the underlying substrates with vertical orientation of collagen at controlled speeds. Templating these hierarchical structures into inorganic materials allows the replication of their network into periodic metal micronano-assemblies. These generate substrates with interesting optical properties, suggesting that size-and-orientation dependent nanofilaments with varying degree of lateral order yield distinctly coloured structures with characteristic optical spectra correlated with observed colours, which varying diameters and interspacing, are attributable to coherent scattering by different periodicity of each fibrous micronano-structure. The artificial mimics display similar optical characteristics to the natural butterfly wing's structure, known to exhibit extraordinary electromagnetic properties, driving future applications in cloaking, super-lenses, photovoltaics and photodetectors.

8.
Small ; : e2401127, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884187

RESUMO

In situ patterning of biomolecules and living organisms while retaining their biological activity is extremely challenging, primarily because such patterning typically involves thermal stresses that could be substantially higher than the physiological thermal or stress tolerance level. Top-down patterning approaches are especially prone to these issues, while bottom-up approaches suffer from a lack of control in developing defined structures and the time required for patterning. A microbubble generated and manipulated by optical tweezers (microbubble lithography) is used to self-assemble and pattern living organisms in continuous microscopic structures in real-time, where the material thus patterned remains biologically active due to their ability to withstand elevated temperatures for short exposures. Successful patterns of microorganisms (Escherichia coli, Lactococcus. lactis and the Type A influenza virus) are demonstrated, as well as reporter proteins such as green fluorescent protein (GFP) on functionalized substrates with high signal-to-noise ratio and selectivity. Together, the data presented herein may open up fascinating possibilities in rapid in situ parallelized diagnostics of multiple pathogens and bioelectronics.

9.
Small ; : e2308570, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716740

RESUMO

Soft-lithography is widely used to fabricate microstructured surfaces on plastics and elastomers for designable physical properties such as wetting and adhesions. However, it remains a big challenge to construct high-aspect-ratio microstructures on the surface of hydrogels due to the difficulty in demolding from the gel with low strength and stiffness. Demonstrated here is the engineering of tough hydrogels by soft-lithography to form well-defined micropillars. The mechanical properties of poly(acrylamide-co-methacrylic acid) hydrogels with dense hydrogen-bond associations severely depend on temperature, with Young's modulus increasing from 8.1 MPa at 15 °C to 821.8 MPa at -30 °C, enabling easy demolding at low temperatures. Arrays of micropillars are maintained on the surface of the gel, and can be used at room temperature when the gel restores soft and stretchable. The hydrogel also exhibits good shape-memory property, favoring tailoring the morphology with a switchable tilt angle of micropillars. Consequently, the hydrogel shows tunable wetting and adhesion properties, as manifested by varying contact angles and adhesion strengths. These surface properties can also be tuned by geometry and arrangement of micropillars. This facile strategy by harnessing tunable viscoelasticity of supramolecular hydrogels should be applicable to other soft materials, and broaden their applications in biomedical and engineering fields.

10.
Small ; : e2400155, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644332

RESUMO

Nanopatterning driven by electrohydrodynamic (EHD) instability can aid in the resolution of the drawbacks inherent in conventional imprinting or other molding methods. This is because EHD force negates the requirement of physical contact and is easily tuned. However, its potential has not examined owing to the limited size of the pattern replica (several to tens of micrometers). Thus, this study proposes a new route for large-area patterning through high-speed evolution of EHD-driven pattern growth along the in-plane axis. Through the acceleration of the in-plane growth, while selectively controlling a specific edge growth, the pattern replica area can be extended from the micro- to centimeter scale with high fidelity. Moreover, even in the case of nonuniform contact mode, the proposed rapid in-plane growth mode facilitates uniform large-scale replication, which is not possible in conventional imprinting or other molding methods.

11.
Small ; : e2403169, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973079

RESUMO

Nanopatterning on biomaterials has attracted significant attention as it can lead to the development of biomedical devices capable of performing diagnostic and therapeutic functions while being biocompatible. Among various nanopatterning techniques, electron-beam lithography (EBL) enables precise and versatile nanopatterning in desired shapes. Various biomaterials are successfully nanopatterned as bioresists by using EBL. However, the use of high-energy electron beams (e-beams) for high-resolutive patterning has incorporated functional materials and has caused adverse effects on biomaterials. Moreover, the scattering of electrons not absorbed by the bioresist leads to proximity effects, thus deteriorating pattern quality. Herein, EBL-based nanopatterning is reported by inducing molecular degradation of amorphous silk fibroin, followed by selectively inducing secondary structures. High-resolution EBL nanopatterning is achievable, even at low-energy e-beam (5 keV) and low doses, as it minimizes the proximity effect and enables precise 2.5D nanopatterning via grayscale lithography. Additionally, integrating nanophotonic structures into fluorescent material-containing silk allows for fluorescence amplification. Furthermore, this post-exposure cross-linking way indicates that the silk bioresist can maintain nanopatterned information stored in silk molecules in the amorphous state, utilizing for the secure storage of nanopatterned information as a security patch. Based on the fabrication technique, versatile biomaterial-based nanodevices for biomedical applications can be envisioned.

12.
Small ; 20(19): e2309484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38287738

RESUMO

The fabrication of a highly controlled gold (Au) nanohole (NH) array via tip-based lithography is improved by incorporating a sacrificial layer-a tip-crash buffer layer. This inclusion mitigates scratches during the nano-indentation process by employing a 300 nm thick poly(methyl methacrylate) layer as a sacrificial layer on top of the Au film. Such a precaution ensures minimal scratches on the Au film, facilitating the creation of sub-50 nm Au NHs with a 15 nm gap between the Au NHs. The precision of this method exceeds that of fabricating Au NHs without a sacrificial layer. Demonstrating its versatility, this Au NH array is utilized in two distinct applications: as a dry etching mask to form a molybdenum disulfide hole array and as a catalyst in metal-assisted chemical etching, resulting in conical-shaped silicon nanostructures. Additionally, a significant electric field is generated when Au nanoparticles (NPs) are placed within the Au NHs. This effect arises from coupling electromagnetic waves, concentrated by the Au NHs and amplified by the Au NPs. A notable result of this configuration is the enhancement factor of surface-enhanced Raman scattering, which is an order of magnitude greater than that observed with just Au NHs and Au NPs alone.

13.
Small ; : e2310580, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751207

RESUMO

Multiphoton lithography (MPL), an emerging truly 3D microfabrication technique, exhibits substantial potential in biomedical applications, including drug delivery and tissue engineering. Fabricated micro-objects are often expected to undergo shape morphing or bending of the entire structure or its parts. Furthermore, ensuring precise property tuning is detrimental to the realization of the functionality of MPL microstructures. Herein, novel MPL materials based on interpenetrating polymer networks (IPNs) are presented that effectively combine the advantages of acrylate and epoxy systems. IPNs with varying component ratios are investigated for their microfabrication performance and structural integrity with respect to thermal and micromechanical properties. A variety of high-resolution techniques is applied to comprehensively evaluate IPN properties at the bulk, micron, and segmental levels. This study shows that the MPL laser scanning velocity and power, photoinitiator content, and multi-step exposure can be used to tune the morphology and properties of the IPN. As a result, a library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. New IPN microstructures with Young's moduli of 3-4 MPa demonstrate high-to-fully elastic responses to deformations, making them promising for applications in morphable microsystems, soft micro-robotics, and cell engineering.

14.
Small ; 20(20): e2307956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38143295

RESUMO

A cross-comparison of three stop-flow configurations-such as low-pressure (LSF), high-pressure open-circuit (OC-HSF), and high-pressure short-circuit (SC-HSF) stop-flow-is presented to rapidly bring a high velocity flow O(m s-1) within a microchannel to a standstill O(µm s-1). The performance of three stop-flow configurations is assessed by measuring residual flow velocities within microchannels having three orders of magnitude different flow resistances. The LSF configuration outperforms the OC-HSF and SC-HSF configurations within a high flow resistance microchannel and results in a residual velocity of <10 µm s-1. The OC-HSF configuration results in a residual velocity of <150 µm s-1 within a low flow resistance microchannel. The SC-HSF configuration results in a residual velocity of <200 µm s-1 across the three orders-of-magnitude different flow resistance microchannels, and <100 µm s-1 for the low flow resistance channel. It is hypothesized that residual velocity results from compliance in fluidic circuits, which is further investigated by varying the elasticity of microchannel walls and connecting tubing. A numerical model is developed to estimate the expanded volumes of the compliant microchannel and connecting tubings under a pressure gradient and to calculate the distance traveled by the sample fluid. A comparison of the numerically and experimentally obtained traveling distances confirms the hypothesis that the residual velocities are an outcome of the compliance in the fluidic circuit.

15.
Small ; : e2311937, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529743

RESUMO

Achieving reliable and quantifiable performance in large-area surface-enhanced Raman spectroscopy (SERS) substrates poses a formidable challenge, demanding signal enhancement while ensuring response uniformity and reproducibility. Conventional SERS substrates often made of inhomogeneous materials with random resonator geometries, resulting in multiple or broadened plasmonic resonances, undesired absorptive losses, and uneven field enhancement. These limitations hamper reproducibility, making it difficult to conduct comparative studies with high sensitivity. This study introduces an innovative approach that addresses these challenges by utilizing monocrystalline gold flakes to fabricate well-defined plasmonic double-wire resonators through focused ion-beam lithography. Inspired by biological strategy, the double-wire grating substrate (DWGS) geometry is evolutionarily optimized to maximize the SERS signal by enhancing both excitation and emission processes. The use of monocrystalline material minimizes absorption losses and ensures shape fidelity during nanofabrication. DWGS demonstrates notable reproducibility (RSD = 6.6%), repeatability (RSD = 5.6%), and large-area homogeneity > 104 µm2. It provides a SERS enhancement for sub-monolayer coverage detection of 4-Aminothiophenol analyte. Furthermore, DWGS demonstrates reusability, long-term stability on the shelf, and sustained analyte signal stability over time. Validation with diverse analytes, across different states of matter, including biological macromolecules, confirms the sensitive and reproducible nature of DWGSs, thereby establishing them as a promising platform for future sensing applications.

16.
J Synchrotron Radiat ; 31(Pt 3): 485-492, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630438

RESUMO

Synchrotron light sources can provide the required spatial coherence, stability and control to support the development of advanced lithography at the extreme ultraviolet and soft X-ray wavelengths that are relevant to current and future fabricating technologies. Here an evaluation of the optical performance of the soft X-ray (SXR) beamline of the Australian Synchrotron (AS) and its suitability for developing interference lithography using radiation in the 91.8 eV (13.5 nm) to 300 eV (4.13 nm) range are presented. A comprehensive physical optics model of the APPLE-II undulator source and SXR beamline was constructed to simulate the properties of the illumination at the proposed location of a photomask, as a function of photon energy, collimation and monochromator parameters. The model is validated using a combination of experimental measurements of the photon intensity distribution of the undulator harmonics. It is shown that the undulator harmonics intensity ratio can be accurately measured using an imaging detector and controlled using beamline optics. Finally, the photomask geometric constraints and achievable performance for the limiting case of fully spatially coherent illumination are evaluated.

17.
MRS Bull ; 49(4): 299-309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645611

RESUMO

Abstract: The current work presents a novel flexible multifunctional platform for biological interface applications. The use of titania nanotube arrays (TNAs) as a multifunctional material is explored for soft-tissue interface applications. In vitro biocompatibility of TNAs to brain-derived cells was first examined by culturing microglia cells-the resident immune cells of the central nervous system on the surface of TNAs. The release profile of an anti-inflammatory drug, dexamethasone from TNAs-on-polyimide substrates, was then evaluated under different bending modes. Flexible TNAs-on-polyimide sustained a linear release of anti-inflammatory dexamethasone up to ~11 days under different bending conditions. Finally, microfabrication processes for patterning and transferring TNA microsegments were developed to facilitate structural stability during device flexing and to expand the set of compatible polymer substrates. The techniques developed in this study can be applied to integrate TNAs or other similar nanoporous inorganic films onto various polymer substrates. Impact statement: Titania nanotube arrays (TNAs) are highly tunable and biocompatible structures that lend themselves to multifunctional implementation in implanted devices. A particularly important aspect of titania nanotubes is their ability to serve as nano-reservoirs for drugs or other therapeutic agents that slowly release after implantation. To date, TNAs have been used to promote integration with rigid, dense tissues for dental and orthopedic applications. This work aims to expand the implant applications that can benefit from TNAs by integrating them onto soft polymer substrates, thereby promoting compatibility with soft tissues. The successful direct growth and integration of TNAs on polymer substrates mark a critical step toward developing mechanically compliant implantable systems with drug delivery from nanostructured inorganic functional materials. Diffusion-driven release kinetics and the high drug-loading efficiency of TNAs offer tremendous potential for sustained drug delivery for scientific investigations, to treat injury and disease, and to promote device integration with biological tissues. This work opens new opportunities for developing novel and more effective implanted devices that can significantly improve patient outcomes and quality of life. Supplementary information: The online version contains supplementary material available at 10.1557/s43577-023-00628-y.

18.
Nanotechnology ; 35(39)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38959870

RESUMO

Electron beam lithography (EBL) stands out as a powerful direct-write tool offering nanometer-scale patterning capability and is especially useful in low-volume R&D prototyping when coupled with pattern transfer approaches like etching or lift-off. Among pattern transfer approaches, lift-off is preferred particularly in research settings, as it is cost-effective and safe and does not require tailored wet/dry etch chemistries, fume hoods, and/or complex dry etch tools; all-in-all offering convenient, 'undercut-free' pattern transfer rendering it useful, especially for metallic layers and unique alloys with unknown etchant compatibility or low etch selectivity. Despite the widespread use of the lift-off technique and optical/EBL for micron to even sub-micron scales, existing reports in the literature on nanofabrication of metallic structures with critical dimension in the 10-20 nm regime with lift-off-based EBL patterning are either scattered, incomplete, or vary significantly in terms of experimental conditions, which calls for systematic process optimization. To address this issue, beyond what can be found in a typical photoresist datasheet, this paper reports a comprehensive study to calibrate EBL patterning of sub-50 nm metallic nanostructures including gold nanowires and nanogaps based on a lift-off process using bilayer polymethyl-methacrylate as the resist stack. The governing parameters in EBL, including exposure dose, soft-bake temperature, development time, developer solution, substrate type, and proximity effect are experimentally studied through more than 200 EBL runs, and optimal process conditions are determined by field emission scanning electron microscope imaging of the fabricated nanostructures reaching as small as 11 nm feature size.

19.
Nanotechnology ; 35(36)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848694

RESUMO

Thermal rectifiers are essential in optimizing heat dissipation in solid-state devices to enhance energy efficiency, reliability, and overall performance. In this study, we experimentally investigate the thermal rectification phenomenon in suspended asymmetric graphene ribbons (GRs). The asymmetry within the graphene is introduced by incorporating periodic parallel nanoribbons on one side of the GR while maintaining the other side in a pristine form. Our findings reveal a substantial thermal rectification effect in these asymmetric graphene devices, reaching up to 45% at room temperature and increasing further at lower environmental temperatures. This effect is attributed to a significant thermal conductivity contrast between pristine graphene and nanoribbon graphene within the asymmetric structure. We observe that the incorporation of nanoribbons leads to a notable reduction in thermal conductivity, primarily due to phonon scattering and bottleneck effects near the nanoribbon edges. These findings suggest that graphene structures exhibiting asymmetry, facilitated by parallel nanoribbons, hold promise for effective heat management at the nanoscale level and the development of practical phononic devices.

20.
Nanotechnology ; 35(29)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38593758

RESUMO

To break the resolution limitation of traditional resists, more work is needed on non-chemically amplified resists (non-CARs). Non-CARs based on iodonium salt modified polystyrene (PS-I) were prepared with controllable molecular weight and structure. The properties of the resist can be adjusted by the uploading of iodonium salts on the polymer chain, the materials with a higher proportion of iodonium salts show better lithography performance. By comparing contrast curves and quality of the lithographic patterns, the optimum developing condition of 4-methyl-2-pentanone and ethyl alcohol (v:v = 1:7) was selected. The high-resolution stripes of 15 nm half-pitch (HP) can be achieved by PS-I0.58in e-beam lithography (EBL). PS-I0.58shows the advanced lithography performance in the patterns of 16 nm HP and 18 nm HP stripes with low line edge roughness (3.0 nm and 2.4 nm). The resist shows excellent potential for further pattern transfer, the etch selectivity of resist PS-I0.58to the silicon was close to 12:1. The lithographic mechanism of PS-I was investigated by experimental and theoretical calculation, which indicates the polarity of materials changes results in the solubility switch. This work provides a new option and useful guidelines for the development of high-resolution resist.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA