Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Small ; 18(24): e2200184, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35451217

RESUMO

2D transition-metal dichalcogenides have been reported to possess piezoelectricity due to their lack of inversion symmetry; thus, they are potentially applicable as electromechanical energy harvesters. Herein, the authors propose a lithography-free piezoelectric energy harvester composed of centimeter-scale MoS2 monolayer films with an interdigitated electrode pattern that is enabled only by the large scale of the film. High-quality large-scale synthesis of the monolayer films is conducted by low-pressure chemical vapor deposition with the assistance of an unprecedented Na2 S promoter. The extra sulfur supplied by Na2 S critically passivates the sulfur vacancies. The energy harvester having a large active area of ≈18.3 mm2 demonstrates an unexpectedly high piezoelectric energy harvesting performance of ≈400.4 mV and ≈40.7 nA under a bending strain of 0.57%, with the careful adjustment of side electrodes along the zigzag atomic arrays in the two dominant domain structure. Nanoampere-level harvesting has not yet been reported with any 2D material-based harvester.

2.
Small ; 18(33): e2201171, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859524

RESUMO

Broadband absorbers are useful ultraviolet protection, energy harvesting, sensing, and thermal imaging. The thinner these structures are, the more device-relevant they become. However, it is difficult to synthesize ultrathin absorbers in a scalable and straightforward manner. A general and straightforward synthetic strategy for preparing ultrathin, broadband metasurface absorbers that do not rely on cumbersome lithographic steps is reported. These materials are prepared through the surface-assembly of plasmonic octahedral nanoframes (NFs) into large-area ordered monolayers via drop-casting with subsequent air-drying at room temperature. This strategy is used to produce three types of ultrathin broadband absorbers with thicknesses of ≈200 nm and different lattice symmetries (loose hexagonal, twisted hexagonal, dense hexagonal), all of which exhibit efficient light absorption (≈90%) across wavelengths ranging from 400-800 nm. Their broadband absorption is attributed to the hollow morphologies of the NFs, the incorporation of a high-loss material (i.e., Pt), and the strong field enhancement resulting from surface assembly. The broadband absorption is found to be polarization-independent and maintained for a wide range of incidence angles (±45°). The ability to design and fabricate broadband metasurface absorbers using this high-throughput surface-based assembly strategy is a significant step toward the large-scale, rapid manufacturing of nanophotonic structures and devices.


Assuntos
Luz , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos
3.
Nanotechnology ; 33(22)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35172297

RESUMO

Two-dimensional (2D) materials including black phosphorus (BP) have been extensively investigated because of their exotic physical properties and potential applications in nanoelectronics and optoelectronics. Fabricating BP based devices is challenging because BP is extremely sensitive to the external environment, especially to the chemical contamination during the lithography process. The direct evaporation through shadow mask technique is a clean method for lithography-free electrode patterning of 2D materials. Herein, we employ the lithography-free evaporation method for the construction of BP based field-effect transistors and photodetectors and systematically compare their performances with those of BP counterparts fabricated by conventional lithography and transfer electrode methods. The results show that BP devices fabricated by direct evaporation method possess higher mobility, faster response time, and smaller hysteresis than those prepared by the latter two methods. This can be attributed to the clean interface between BP and evaporated-electrodes as well as the lower Schottky barrier height of 20.2 meV, which is given by the temperature-dependent electrical results. Furthermore, the BP photodetectors exhibit a broad-spectrum response and polarization sensitivity. Our work elucidates a universal, low-cost and high-efficiency method to fabricate BP devices for optoelectronic applications.

4.
Nanotechnology ; 33(6)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34710859

RESUMO

Until now, the growth of periodic vertically aligned multi-walled carbon nanotube (VA-MWCNT) arrays was dependent on at least one lithography step during fabrication. Here, we demonstrate a lithography-free fabrication method to grow hexagonal arrays of self-standing VA-MWCNTs with tunable pitch and MWCNT size. The MWCNTs are synthesized by plasma enhanced chemical vapor deposition (PECVD) from Ni catalyst particles. Template guided dewetting of a thin Ni film on a hexagonally close-packed silica particle monolayer provides periodically distributed Ni catalyst particles as seeds for the growth of the periodic MWCNT arrays. The diameter of the silica particles directly controls the pitch of the periodic VA-MWCNT arrays from 600 nm to as small as 160 nm. The diameter and length of the individual MWCNTs can also be readily adjusted and are a function of the Ni particle size and PECVD time. This unique method of lithography-free growth of periodic VA-MWCNT arrays can be utilized for the fabrication of large-scale biomimetic materials.

5.
Small ; 14(41): e1801134, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30216662

RESUMO

Reactive interface patterning promoted by lithographic electrochemistry serves as a facile method for generating submicron structures on conductive substrates. A binary-potential step applied to a metal layer with a resist overlayer allows silicon to be patterned with metal oxides. In this study, the role and influence of the resist overlayer on the uniformity of pattern formation are examined. The ability of the resist to detach from the underlying metal is a critical determinant of pattern geometry. By choosing an appropriate resist, large patterns with submicron precision are generated quickly by the application of the binary-potential steps. From this information, a lithography-free approach to generating identical patterns is achieved with simple resists such as that furnished from a lacquer-water emulsion, thus greatly simplifying the patterning of silicon with metal oxide catalysts.

6.
ACS Nano ; 18(29): 18900-18909, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38997111

RESUMO

With electronic devices evolving toward portable and high-performance wearables, the constraints of complex and wet processing technologies become apparent. This study presents a scalable photolithography/chemical-free method for crafting wearable all-carbon nanotube (CNT) photodetector device arrays. Laser-assisted patterning and dry deposition techniques directly assemble gas-phase CNTs into flexible devices without any lithography or lift-off processes. The resulting wafer-scale all-CNT photodetector arrays showcase excellent uniformity, wearability, environmental stability, and notable broadband photoresponse, boasting a high responsivity of 44 AW-1 and a simultaneous detectivity of 1.9 × 109 Jones. This research provides an efficient, versatile, and scalable strategy for manufacturing wearable all-CNT device arrays, allowing widespread adoption in wearable optoelectronics and multifunctional sensors.

7.
ACS Appl Mater Interfaces ; 15(42): 49468-49477, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37816211

RESUMO

Metasurfaces can be realized by organizing subwavelength elements (e.g., plasmonic nanoparticles) on a reflective surface covered with a dielectric layer. Such an array of resonators, acting collectively, can completely absorb the resulting resonant wavelength. Unfortunately, despite the excellent optical properties of metasurfaces, they lack the tunability to perform as adaptive optical components. To boost the utilization of metasurfaces and realize a new generation of dynamically controlled optical components, we report our recent finding based on the powerful combination of an innovative metasurface-optical absorber and nematic liquid crystals (NLCs). The metasurface consists of self-assembled silver nanocubes (AgNCs) immobilized on a 50 nm thick gold layer by using a polyelectrolyte multilayer as a dielectric spacer. The resulting optical absorbers show a well-defined reflection band centered in the near-infrared of the electromagnetic spectrum (750-770 nm), a very high absorption efficiency (∼60%) at the resonant wavelength, and an elevated photothermal efficiency estimated from the time constant value (34 s). Such a metasurface-based optical absorber, combined with an NLC layer, planarly aligned via a photoaligned top cover glass substrate, shows homogeneous NLC alignment and an absorption band photothermally tunable over approximately 46 nm. Detailed thermographic studies and spectroscopic investigations highlight the extraordinary capability of the active metasurface to be used as a light-controllable optical absorber.

8.
Micromachines (Basel) ; 13(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36014150

RESUMO

A kind of ultra-thin transmissive color filter based on a metal-semiconductor-metal (MSM) structure is proposed. The displayed color can cover the entire visible range and switches after H2 treatment. An indium gallium zinc oxide (IGZO) semiconductor was employed, as the concentration of charge carriers can be controlled to adjust the refractive index and achieve certain colors. The color modulation in the designed structure was verified using the rigorous coupled wave analysis (RCWA) method. The angular independence of the relative transmission could reach up to 60°, and polarization-insensitive performance could also be maintained. Numerical results demonstrated that the thickness of IGZO was the key parameter to concentrate the incident light. The overall structure is planar and lithography-free and can be produced with simple preparation steps. The obtained results can also be extended to other similar resonators where a proper cavity allows dynamical functionality.

9.
Adv Sci (Weinh) ; 9(5): e2103598, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34939368

RESUMO

The quantum defects in nanodiamonds, such as nitrogen-vacancy (NV) centers, are emerging as a promising candidate for nanoscale sensing and imaging, and the controlled placement with respect to target locations is vital to their practical applications. Unfortunately, this prerequisite continues to suffer from coarse positioning accuracy, low throughput, and process complexity. Here, it is reported on direct, on-demand electrohydrodynamic printing of nanodiamonds containing NV centers with high precision control over quantity and position. After thorough characterizations of the printing conditions, it is shown that the number of printed nanodiamonds can be controlled at will, attaining the single-particle level precision. This printing approach, therefore, enables positioning NV center arrays with a controlled number directly on the universal substrate without any lithographic process. The approach is expected to pave the way toward new horizons not only for experimental quantum physics but also for the practical implementation of such quantum systems.

10.
ACS Appl Mater Interfaces ; 13(24): 28916-28924, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34102837

RESUMO

Shape memory composites are fascinating materials with the ability to preserve deformed shapes that recover when triggered by certain external stimuli. Although elastomers are not inherently shape memory materials, the inclusion of phase-change materials within the elastomer can impart shape memory properties. When this filler changes the phase from liquid to solid, the effective modulus of the polymer increases significantly, enabling stiffness tuning. Using gallium, a metal with a low melting point (29.8 °C), it is possible to create elastomeric materials with metallic conductivity and shape memory properties. This concept has been used previously in core-shell (gallium-elastomer) fibers and foams, but here, we show that it can also be implemented in elastomeric films containing microchannels. Such microchannels are appealing because it is possible to control the geometry of the filler and create metallically conductive circuits. Stretching the solidified metal fractures the fillers; however, they can heal by body heat to restore conductivity. Such conductive, shape memory sheets with healable conductivity may find applications in stretchable electronics and soft robotics.

11.
Nanomaterials (Basel) ; 11(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34361200

RESUMO

Thermal emitters with properties of wavelength-selective and narrowband have been highly sought after for a variety of potential applications due to their high energy efficiency in the mid-infrared spectral range. In this study, we theoretically and experimentally demonstrate the tunable narrowband thermal emitter based on fully planar Si-W-SiN/SiNO multilayer, which is realized by the excitation of Tamm plasmon polaritons between a W layer and a SiN/SiNO-distributed Bragg reflector. In conjunction with electromagnetic simulations by the FDTD method, the optimum structure design of the emitter is implemented by 2.5 periods of DBR structure, and the corresponding emitter exhibits the nearly perfect narrowband absorption performance at the resonance wavelength and suppressed absorption performance in long wave range. Additionally, the narrowband absorption peak is insensitive to polarization mode and has a considerable angular tolerance of incident light. Furthermore, the actual high-quality Si-W-SiN/SiNO emitters are fabricated through lithography-free methods including magnetron sputtering and PECVD technology. The experimental absorption spectra of optimized emitters are found to be in good agreement with the simulated absorption spectra, showing the tunable narrowband absorption with all peak values of over 95%. Remarkably, the fabricated Si-W-SiN/SiNO emitter presents excellent high-temperature stability for several heating/cooling cycles confirmed up to 1200 K in Ar ambient. This easy-to-fabricate and tunable narrowband refractory emitter paves the way for practical designs in various photonic and thermal applications, such as thermophotovoltaic and IR radiative heaters.

12.
ACS Appl Mater Interfaces ; 13(30): 36644-36652, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34310104

RESUMO

In this work, a facile and cost-effective approach to assemble metallic wires into two-dimensional (2D) and three-dimensional (3D) freestanding geometries by room-temperature welding is demonstrated. The low melting point of gallium (29.8 °C) enables the welding at room temperature without the aid of high-energy sources required for high-melting-point metals and alloys. The welding enables assembly of solid gallium wires into 2D and 3D geometries that could create freestanding architectures with multiple junctions along any inclined direction. These 2D and 3D freestanding metallic structures are freeze-cast in soft elastomers to obtain stretchable and soft devices: a 2D stretchable resistive and capacitive sensor patterned with parallel metal lines, a 2D stretchable capacitive sensor patterned with an interdigitated metal structure with capacitive changes on stretching in both x- and y-axes, and a 3D compressive sensor by assembly of liquid metal helices, which could sense foot pressure compression. We also developed a facile method to interconnect between soft circuits and external electronics, suppressing stress during mechanical deformation.

13.
ACS Nano ; 14(6): 6570-6581, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32338865

RESUMO

The role of additives in facilitating the growth of conventional semiconducting thin films is well-established. Apparently, their presence is also decisive in the growth of two-dimensional transition metal dichalcogenides (TMDs), yet their role remains ambiguous. In this work, we show that the use of sodium bromide enables synthesis of TMD monolayers via a surfactant-mediated growth mechanism, without introducing liquefaction of metal oxide precursors. We discovered that sodium ions provided by sodium bromide chemically passivate edges of growing molybdenum disulfide crystals, relaxing in-plane strains to suppress 3D islanding and promote monolayer growth. To exploit this growth model, molybdenum disulfide monolayers were directly grown into desired patterns using predeposited sodium bromide as a removable template. The surfactant-mediated growth not only extends the families of metal oxide precursors but also offers a way for lithography-free patterning of TMD monolayers on various surfaces to facilitate fabrication of atomically thin electronic devices.

14.
ACS Biomater Sci Eng ; 6(2): 1144-1153, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464846

RESUMO

Effective integration of stimulation and direction in bionic scaffolds by materials and microstructure design has been the focus in the advancement of nerve regeneration. Hydrogels are the most promising biomimicked materials used in developing nerve grafts, but the highly hydrated networks limit the fabrication of hydrogel materials into complex biomedical devices. Herein, facile lithography-free and spontaneously micropatterned techniques were used to fabricate a smart protein hydrogel-based scaffold, which carried topographical, electrical, and chemical induction for neural regulation. The synthesized tissue-mimicked silk-gelatin (SG)/polylactic acid bilayer system can self-form three-dimensional ordered corrugation micropatterns with well-defined dimensions (wavelength, λ) based on the stress-induced topography. Through magnetically and topographically guided deposition of the synthesized nerve growth factor-incorporated Fe3O4-graphene nanoparticles (GFPNs), a biologically and electrically conductive cell passage with one-dimensional directionality was constructed to allow for a controllable constrained geometric effect on neuronal adhesion, differentiation, and neurite orientation. Particularly, the SG with corrugation patterns of λ ≈ 30 µm resulted in the optimal cell adhesion and differentiation in response to the pattern guidance. Furthermore, the additional electrical stimulation applied on GFPN-deposited SG resulted in a 1.5-fold increase in the neurite elongation by day 7, finally leading to the neuronal connection by day 21. Such a hydrogel device with synergistic effects of physical and chemical enhancement on neuronal activity provides an expectable opportunity in the development of next-generation nerve conduits.


Assuntos
Gelatina , Seda , Condutividade Elétrica , Eletricidade , Hidrogéis
15.
SLAS Technol ; 25(1): 82-87, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31381466

RESUMO

Typography-like templates for polydimethylsiloxane (PDMS) microfluidic chips using a fused deposition modeling (FDM) three-dimensional (3D) printer are presented. This rapid and fast proposed scheme did not require complicated photolithographic fabrication facilities and could deliver resolutions of ~100 µm. Polylactic acid (PLA) was adopted as the material to generate the 3D-printed units, which were then carefully assembled on a glass substrate using a heat-melt-curd strategy. This craft of bonding offers a cost-effective way to design and modify the templates of microfluidic channels, thus reducing the processing time of microfluidic chips. Finally, a flexible microfluidic chip to be employed for cell-based drug screening was developed based on the modularized 3D-printed templates. The lithography-free, typography-like, 3D-printed templates create a modularized fabrication process and promote the prevalence of integrated microfluidic systems with minimal requirements and improved efficiency.


Assuntos
Dimetilpolisiloxanos , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Poliésteres , Impressão Tridimensional , Células A549 , Cisplatino , Humanos
16.
Micromachines (Basel) ; 10(6)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195643

RESUMO

The range of fundamental phenomena and applications achievable by metamaterials (MMs) can be significantly extended by dynamic control over the optical response. A mid-infrared tunable absorber which consists of lithography-free planar multilayered dielectric stacks and germanium antimony tellurium alloy (Ge2Sb2Te5, GST) thin film was presented and studied. The absorption spectra under amorphous and crystalline phase conditions was evaluated by the transfer matrix method (TMM). It was shown that significant tuning of absorption can be achieved by switching the phase of thin layer of GST between amorphous and crystalline states. The near unity (>90%) absorption can be significant maintained by incidence angles up to 75 under crystalline state for both transverse electric (TE) and transverse magnetic (TM) polarizations. The proposed method enhances the functionality of MMs-based absorbers and has great potential for application to filters, emitters, and sensors.

17.
Nanomaterials (Basel) ; 9(11)2019 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744237

RESUMO

Carbon solid solubility in metals is an important factor affecting uniform graphene growth by chemical vapor deposition (CVD) at high temperatures. At low temperatures, however, it was found that the carbon diffusion rate (CDR) on the metal catalyst surface has a greater impact on the number and uniformity of graphene layers compared with that of the carbon solid solubility. The CDR decreases rapidly with decreasing temperatures, resulting in inhomogeneous and multilayer graphene. In the present work, a Ni-Cu alloy sacrificial layer was used as the catalyst based on the following properties. Cu was selected to increase the CDR, while Ni was used to provide high catalytic activity. By plasma-enhanced CVD, graphene was grown on the surface of Ni-Cu alloy under low pressure using methane as the carbon source. The optimal composition of the Ni-Cu alloy, 1:2, was selected through experiments. In addition, the plasma power was optimized to improve the graphene quality. On the basis of the parameter optimization, together with our previously-reported, in-situ, sacrificial metal-layer etching technique, relatively homogeneous wafer-size patterned graphene was obtained directly on a 2-inch SiO2/Si substrate at a low temperature (~600 °C).

18.
Adv Mater ; 30(5)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29226459

RESUMO

The unique correspondence between mathematical operators and photonic elements in wave optics enables quantitative analysis of light manipulation with individual optical devices. Phase-transition materials are able to provide real-time reconfigurability of these devices, which would create new optical functionalities via (re)compilation of photonic operators, as those achieved in other fields such as field-programmable gate arrays (FPGA). Here, by exploiting the hysteretic phase transition of vanadium dioxide, an all-solid, rewritable metacanvas on which nearly arbitrary photonic devices can be rapidly and repeatedly written and erased is presented. The writing is performed with a low-power laser and the entire process stays below 90 °C. Using the metacanvas, dynamic manipulation of optical waves is demonstrated for light propagation, polarization, and reconstruction. The metacanvas supports physical (re)compilation of photonic operators akin to that of FPGA, opening up possibilities where photonic elements can be field programmed to deliver complex, system-level functionalities.

19.
Adv Mater ; 30(21): e1706696, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29635805

RESUMO

The metal-dielectric stacks-based asymmetric Fabry-Perot (F-P) cavity systems have recently attracted much interest from the scientific community for realizing perfect absorption over the spectral bands from visible to infrared since they possess a lithography-free design that is cost-effective and scalable. This study experimentally demonstrates an asymmetric F-P cavity system for achieving tunable wide angle perfect absorption and phase singularity. The proposed system shows tunable multiband perfect absorption in the visible spectral region by incorporating an ultrathin layer of phase change material such as Ge2 Sb2 Te5 (GST) in the stack. The system shows multi-narrowband perfect absorption with a maximum of 99.8% at a specific incident angle and polarization state when the GST is in amorphous phase; however, the absorption bands blueshift and broaden after switching to the crystalline phase. More importantly, the proposed scheme shows tunable phase singularity at the reflection-less point. The obtained tunable perfect absorption and abrupt phase change are solely due to the presence of a highly absorbing ultrathin layer of GST in the stack. Experimental results are validated using an analytical simulation model based on a transfer matrix method. The proposed scheme could find potential applications in active photonic devices such as phase-sensitive biosensors and absorption filters.

20.
ACS Sens ; 2(12): 1869-1875, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29164868

RESUMO

In this work, we present a dual-functional sensor that can perform surface-enhanced Raman spectroscopy (SERS) based identification and electrochemical (EC) quantification of analytes in liquid samples. A lithography-free reactive ion etching process was utilized to obtain nanostructures of high aspect ratios distributed homogeneously on a 4 in. fused silica wafer. The sensor was made up of three-electrode array, obtained by subsequent e-beam evaporation of Au on nanostructures in selected areas through a shadow mask. The SERS performance was evaluated through surface-averaged enhancement factor (EF), which was ∼6.2 × 105, and spatial uniformity of EF, which was ∼13% in terms of relative standard deviation. Excellent electrochemical performance and reproducibility were revealed by recording cyclic voltammograms. On nanostructured electrodes, paracetamol (PAR) showed an improved quasi-reversible behavior with decrease in peak potential separation (ΔEp ∼ 90 mV) and higher peak currents (Ipa/Ipc ∼ 1), compared to planar electrodes (ΔEp ∼ 560 mV). The oxidation potential of PAR was also lowered by ∼80 mV on nanostructured electrodes. To illustrate dual-functional sensing, quantitative evaluation of PAR ranging from 30 µM to 3 mM was realized through EC detection, and the presence of PAR was verified by its SERS fingerprint.


Assuntos
Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Acetaminofen/análise , Eletrodos , Ouro/química , Oxirredução , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA