RESUMO
We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.
Assuntos
Técnicas Biossensoriais , Peptídeos/química , Imagem Individual de Molécula , Animais , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Embrião de Mamíferos/citologia , Ativação Enzimática , Fibroblastos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Camundongos , Nanopartículas/química , Conformação Proteica , Quinases da Família src/metabolismoRESUMO
The effect of COVID-19 on the high number of immunocompromised people living with HIV-1 (PLWH), particularly in Africa, remains a critical concern. Here, we identify key areas that still require further investigation, by examining COVID-19 vaccine effectiveness, and understanding antibody responses in SARS-CoV-2 infection and vaccination in comparison with people without HIV-1 (PWOH). We also assess the potential impact of pre-existing immunity against endemic human coronaviruses on SARS-CoV-2 responses in these individuals. Lastly, we discuss the consequences of persistent infection in PLWH (or other immunocompromised individuals), including prolonged shedding, increased viral diversity within the host, and the implications on SARS-CoV-2 evolution in Africa.
Assuntos
Anticorpos Antivirais , COVID-19 , Infecções por HIV , HIV-1 , Imunidade Humoral , SARS-CoV-2 , Humanos , COVID-19/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , SARS-CoV-2/imunologia , HIV-1/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Hospedeiro Imunocomprometido/imunologiaRESUMO
Rapid progress in algal biotechnology has triggered a growing interest in hydrogel-encapsulated microalgal cultivation, especially for the engineering of functional photosynthetic materials and biomass production. An overlooked characteristic of gel-encapsulated cultures is the emergence of cell aggregates, which are the result of the mechanical confinement of the cells. Such aggregates have a dramatic effect on the light management of gel-encapsulated photobioreactors and hence strongly affect the photosynthetic outcome. To evaluate such an effect, we experimentally studied the optical response of hydrogels containing algal aggregates and developed optical simulations to study the resultant light intensity profiles. The simulations are validated experimentally via transmittance measurements using an integrating sphere and aggregate volume analysis with confocal microscopy. Specifically, the heterogeneous distribution of cell aggregates in a hydrogel matrix can increase light penetration while alleviating photoinhibition more effectively than in a flat biofilm. Finally, we demonstrate that light harvesting efficiency can be further enhanced with the introduction of scattering particles within the hydrogel matrix, leading to a fourfold increase in biomass growth. Our study, therefore, highlights a strategy for the design of spatially efficient photosynthetic living materials that have important implications for the engineering of future algal cultivation systems.
Assuntos
Hidrogéis , Luz , Microalgas , Fotossíntese , Hidrogéis/química , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Biomassa , FotobiorreatoresRESUMO
Living tissues display fluctuations-random spatial and temporal variations of tissue properties around their reference values-at multiple scales. It is believed that such fluctuations may enable tissues to sense their state or their size. Recent theoretical studies developed specific models of fluctuations in growing tissues and predicted that fluctuations of growth show long-range correlations. Here, we elaborated upon these predictions and we tested them using experimental data. We first introduced a minimal model for the fluctuations of any quantity that has some level of temporal persistence or memory, such as concentration of a molecule, local growth rate, or mechanical property. We found that long-range correlations are generic, applying to any such quantity, and that growth couples temporal and spatial fluctuations, through a mechanism that we call "fluctuation stretching"-growth enlarges the length scale of variation of this quantity. We then analyzed growth data from sepals of the model plant Arabidopsis and we quantified spatial and temporal fluctuations of cell growth using the previously developed cellular Fourier transform. Growth appears to have long-range correlations. We compared different genotypes and growth conditions: mutants with lower or higher response to mechanical stress have lower temporal correlations and longer-range spatial correlations than wild-type plants. Finally, we used theoretical predictions to merge experimental data from all conditions and developmental stages into a unifying curve, validating the notion that temporal and spatial fluctuations are coupled by growth. Altogether, our work reveals kinematic constraints on spatiotemporal fluctuations that have an impact on the robustness of morphogenesis.
Assuntos
Arabidopsis , Modelos Biológicos , Morfogênese , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/crescimento & desenvolvimento , Flores/genéticaRESUMO
Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria toward a small number of cellulose overproducers from an initial pool of 40,000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms toward a specific phenotype and to unravel genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of new strains for the sustainable manufacturing of materials.
Assuntos
Celulose , Evolução Molecular Direcionada , Celulose/metabolismo , Celulose/biossíntese , Evolução Molecular Direcionada/métodos , Acetobacteraceae/metabolismo , Acetobacteraceae/genética , Fenótipo , MutaçãoRESUMO
Self-propelling organisms locomote via generation of patterns of self-deformation. Despite the diversity of body plans, internal actuation schemes and environments in limbless vertebrates and invertebrates, such organisms often use similar traveling waves of axial body bending for movement. Delineating how self-deformation parameters lead to locomotor performance (e.g. speed, energy, turning capabilities) remains challenging. We show that a geometric framework, replacing laborious calculation with a diagrammatic scheme, is well-suited to discovery and comparison of effective patterns of wave dynamics in diverse living systems. We focus on a regime of undulatory locomotion, that of highly damped environments, which is applicable not only to small organisms in viscous fluids, but also larger animals in frictional fluids (sand) and on frictional ground. We find that the traveling wave dynamics used by mm-scale nematode worms and cm-scale desert dwelling snakes and lizards can be described by time series of weights associated with two principal modes. The approximately circular closed path trajectories of mode weights in a self-deformation space enclose near-maximal surface integral (geometric phase) for organisms spanning two decades in body length. We hypothesize that such trajectories are targets of control (which we refer to as "serpenoid templates"). Further, the geometric approach reveals how seemingly complex behaviors such as turning in worms and sidewinding snakes can be described as modulations of templates. Thus, the use of differential geometry in the locomotion of living systems generates a common description of locomotion across taxa and provides hypotheses for neuromechanical control schemes at lower levels of organization.
Assuntos
Lagartos , Locomoção , Animais , Locomoção/fisiologia , Lagartos/fisiologia , Serpentes/fisiologia , Fenômenos Biomecânicos , Modelos BiológicosRESUMO
Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.
Assuntos
Genoma Bacteriano , Fenótipo , Cor , Bactérias/genética , Bactérias/metabolismo , Proteobactérias/genética , Proteobactérias/metabolismo , Filogenia , Metagenoma , Estudo de Associação Genômica Ampla , Bacteroidetes/genética , Bacteroidetes/metabolismoRESUMO
The social system of animals involves a complex interplay between physiology, natural history, and the environment. Long relied upon discrete categorizations of "social" and "solitary" inhibit our capacity to understand species and their interactions with the world around them. Here, we use a globally distributed camera trapping dataset to test the drivers of aggregating into groups in a species complex (martens and relatives, family Mustelidae, Order Carnivora) assumed to be obligately solitary. We use a simple quantification, the probability of being detected in a group, that was applied across our globally derived camera trap dataset. Using a series of binomial generalized mixed-effects models applied to a dataset of 16,483 independent detections across 17 countries on four continents we test explicit hypotheses about potential drivers of group formation. We observe a wide range of probabilities of being detected in groups within the solitary model system, with the probability of aggregating in groups varying by more than an order of magnitude. We demonstrate that a species' context-dependent proclivity toward aggregating in groups is underpinned by a range of resource-related factors, primarily the distribution of resources, with increasing patchiness of resources facilitating group formation, as well as interactions between environmental conditions (resource constancy/winter severity) and physiology (energy storage capabilities). The wide variation in propensities to aggregate with conspecifics observed here highlights how continued failure to recognize complexities in the social behaviors of apparently solitary species limits our understanding not only of the individual species but also the causes and consequences of group formation.
Assuntos
Carnívoros , Comportamento Social , Animais , Carnívoros/fisiologiaRESUMO
Can insects weighing mere grams challenge our current understanding of fluid dynamics in urination, jetting fluids like their larger mammalian counterparts? Current fluid urination models, predominantly formulated for mammals, suggest that jetting is confined to animals over 3 kg, owing to viscous and surface tension constraints at microscales. Our findings defy this paradigm by demonstrating that cicadas-weighing just 2 g-possess the capability for jetting fluids through remarkably small orifices. Using dimensional analysis, we introduce a unifying fluid dynamics scaling framework that accommodates a broad range of taxa, from surface-tension-dominated insects to inertia and gravity-reliant mammals. This study not only refines our understanding of fluid excretion across various species but also highlights its potential relevance in diverse fields such as ecology, evolutionary biology, and biofluid dynamics.
Assuntos
Elefantes , Hemípteros , Mamífero Proboscídeo , Animais , Ecologia , Evolução BiológicaRESUMO
Nonmuscle myosin II generates cytoskeletal forces that drive cell division, embryogenesis, muscle contraction, and many other cellular functions. However, at present there is no method that can directly measure the forces generated by myosins in living cells. Here we describe a Förster resonance energy transfer (FRET)-based tension sensor that can detect myosin associated force along the filamentous actin network. Fluorescence lifetime imaging microscopy (FLIM)-FRET measurements indicate that the forces generated by NMIIB exhibit significant spatial and temporal heterogeneity as a function of donor lifetime and fluorophore energy exchange. These measurements provide a proxy for inferred forces that vary widely along the actin cytoskeleton. This initial report highlights the potential utility of myosin-based tension sensors in elucidating the roles of cytoskeletal contractility in a wide variety of contexts.
RESUMO
Fluorescence microscopy is a powerful tool used in scientific and medical research, but it is inextricably linked to phototoxicity. Neglecting phototoxicity can lead to erroneous or inconclusive results. Recently, several reports have addressed this issue, but it is still underestimated by many researchers, even though it can lead to cell death. Phototoxicity can be reduced by appropriate microscopic techniques and carefully designed experiments. This review focuses on recent strategies to reduce phototoxicity in microscopic imaging of living cells and tissues. We describe digital image processing and new hardware solutions. We point out new modifications of microscopy methods and hope that this review will interest microscopy hardware engineers. Our aim is to underscore the challenges and potential solutions integral to the design of microscopy systems. Simultaneously, we intend to engage biologists, offering insight into the latest technological advancements in imaging that can enhance their understanding and practice.
Assuntos
Microscopia de Fluorescência , Humanos , Microscopia de Fluorescência/métodos , Animais , Processamento de Imagem Assistida por Computador/métodosRESUMO
Left-sided spatial neglect is a very common and challenging issue after right-hemispheric stroke, which strongly and negatively affects daily living behavior and recovery of stroke survivors. The mechanisms underlying recovery of spatial neglect remain controversial, particularly regarding the involvement of the intact, contralesional hemisphere, with potential contributions ranging from maladaptive to compensatory. In the present prospective, observational study, we assessed neglect severity in 54 right-hemispheric stroke patients (32 male; 22 female) at admission to and discharge from inpatient neurorehabilitation. We demonstrate that the interaction of initial neglect severity and spared white matter (dis)connectivity resulting from individual lesions (as assessed by diffusion tensor imaging, DTI) explains a significant portion of the variability of poststroke neglect recovery. In mildly impaired patients, spared structural connectivity within the lesioned hemisphere is sufficient to attain good recovery. Conversely, in patients with severe impairment, successful recovery critically depends on structural connectivity within the intact hemisphere and between hemispheres. These distinct patterns, mediated by their respective white matter connections, may help to reconcile the dichotomous perspectives regarding the role of the contralesional hemisphere as exclusively compensatory or not. Instead, they suggest a unified viewpoint wherein the contralesional hemisphere can - but must not necessarily - assume a compensatory role. This would depend on initial impairment severity and on the available, spared structural connectivity. In the future, our findings could serve as a prognostic biomarker for neglect recovery and guide patient-tailored therapeutic approaches.
Assuntos
Imagem de Tensor de Difusão , Transtornos da Percepção , Recuperação de Função Fisiológica , Acidente Vascular Cerebral , Substância Branca , Humanos , Masculino , Feminino , Transtornos da Percepção/etiologia , Transtornos da Percepção/fisiopatologia , Transtornos da Percepção/reabilitação , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Idoso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Pessoa de Meia-Idade , Recuperação de Função Fisiológica/fisiologia , Lateralidade Funcional/fisiologia , Estudos Prospectivos , Índice de Gravidade de Doença , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Idoso de 80 Anos ou maisRESUMO
Phylogenetic metrics are essential tools used in the study of ecology, evolution and conservation. Phylogenetic diversity (PD) in particular is one of the most prominent measures of biodiversity and is based on the idea that biological features accumulate along the edges of phylogenetic trees that are summed. We argue that PD and many other phylogenetic biodiversity metrics fail to capture an essential process that we term attrition. Attrition is the gradual loss of features through causes other than extinction. Here we introduce "EvoHeritage", a generalization of PD that is founded on the joint processes of accumulation and attrition of features. We argue that while PD measures evolutionary history, EvoHeritage is required to capture a more pertinent subset of evolutionary history including only components that have survived attrition. We show that EvoHeritage is not the same as PD on a tree with scaled edges; instead, accumulation and attrition interact in a more complex non-monophyletic way that cannot be captured by edge lengths alone. This leads us to speculate that the one-dimensional edge lengths of classic trees may be insufficiently flexible to capture the nuances of evolutionary processes. We derive a measure of EvoHeritage and show that it elegantly reproduces species richness and PD at opposite ends of a continuum based on the intensity of attrition. We demonstrate the utility of EvoHeritage in ecology as a predictor of community productivity compared with species richness and PD. We also show how EvoHeritage can quantify living fossils and resolve their associated controversy. We suggest how the existing calculus of PD-based metrics and other phylogenetic biodiversity metrics can and should be recast in terms of EvoHeritage accumulation and attrition.
Assuntos
Biodiversidade , Filogenia , Evolução Biológica , Classificação/métodos , Modelos BiológicosRESUMO
Cerebrospinal fluid (CSF) viral escape rarely occurs when HIV is detected in the CSF, while it is undetectable in the blood plasma or detectable in CSF at levels that exceed those in the blood plasma. We conducted this review to comprehensively synthesise its clinical presentation, diagnosis, management strategies and treatment outcomes. A review registered with PROSPERO (CRD42023475311) searched evidence across PubMed/MEDLINE, Embase, Web of Science, Scopus, and Google Scholar to gather articles (case reports/series) that report on CSF viral escape in people living with HIV (PLHIV) on antiretroviral therapy (ART). The quality of studies was assessed based on the domains of selection, ascertainment, causality, and reporting. A systematic search identified 493 articles and 27 studies that include 21 case reports, and six case series were involved in the review. The studies reported 62 cases of CSF viral escape in PLHIV. The majority were men (66.67%), with a median age of 43 (range: 28-73) years. Approximately, 31 distinct symptoms were documented, mostly being cognitive dysfunction, gait abnormalities, and tremors (12.51%). Diagnosis involved blood and CSF analysis, magnetic resonance imaging, and neuropsychological assessments. Over 36 ART regimens were employed, with a focus on ART intensification; almost one-third of the regimens contained Raltegravir (integrase strand transfer inhibitor). The outcomes showed 64.49% full recovery, 30.16% partial recovery, and 4.76% died. When neuropsychological symptoms manifest in PLHIV, monitoring for CSF viral escape is essential, regardless of plasma viral suppression. Personalised treatment strategies, particularly ART intensification, are strongly advised for optimising treatment outcomes in PLHIV diagnosed with CSF HIV escape.
Assuntos
Infecções por HIV , Humanos , Infecções por HIV/líquido cefalorraquidiano , Infecções por HIV/tratamento farmacológico , HIV-1 , Plasma , RNA Viral , Resultado do Tratamento , Carga ViralRESUMO
Despite advances in HIV treatment, the burden of viral non-suppression (VNS) remains a treatment success concern, particularly in Sub-Saharan African (SSA) countries. We determined the prevalence and factors associated with VNS for people living with HIV (PLHIV) receiving antiretroviral therapy (ART). This review, registered with PROSPERO (CRD42023470234), conducted an extensive search for evidence, focusing on PLHIV living in SSA on ART from the year 2000 to 19th October 2023, across databases including PubMed/MEDLINE, Embase, Web of Science, and Scopus. A total of 2357 articles were screened, from which 32 studies met the criteria for the final analysis, involving 756,620 PLHIV of all ages. The pooled prevalance for VNS was found to be 20.0% (95% CI: 15.43%-25.52%, I2 = 100%, p-value <0.01) Children and adolescents demonstrated the highest prevalence of VNS (viral load ≥1000 copies/mL) at 27.98% (95% CI: 21.91%-34.97%, I2 = 94%, p-value <0.01). The study revealed various factors associated with increased odds (risk) of VNS, p-value <0.05. These factors encompassed socio-demographics such as sex, age, education level, and marital status. Additionally, aspects related to HIV care, such as the facility attended, HIV status disclosure and adherence exhibited higher odds of VNS. Suboptimal ART adherence, longer duration on ART, socio-economic factors, lack of family and social support, presence of co-morbidities, advanced WHO HIV clinical stage, ART regimens, lower CD4+ count, abnormal body mass index, history of treatment interruptions, and progression of HIV illness were associated with VNS. Furthermore, behavioural/psychological factors including depression, substance use, negative perceptions towards ART, experiences of abuse, alcohol use, stigma, and certain patterns of sexual behaviour were also identified as factors for VNS. The occurrence of two VNS to every ten PLHIV on ART poses a threat to the progress made towards reaching the third 95% UNAIDS target in SSA. Additionally, these findings highlight the intricate interplay of various factors, encompassing patient characteristics, behavioural patterns, sociocultural influences, and pharmacological factors, all impacting VNS among PLHIV. Recognising its multifaceted nature, we recommend designing and implementing high impact interventions to effectively address VNS in SSA.
Assuntos
Infecções por HIV , Carga Viral , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , África Subsaariana/epidemiologia , Prevalência , Fármacos Anti-HIV/uso terapêutico , Fatores de Risco , Adolescente , Feminino , Masculino , Adulto , Antirretrovirais/uso terapêutico , Terapia Antirretroviral de Alta Atividade , CriançaRESUMO
In this paper, we discuss how tetrahydrodibenzo[a,j]acridine (4-HA) loses its hydrogen, which makes dibenzo[a,j]acridine (ARM) and also how 4-HA can be synthesized effectively using 2-tetralone in high yield. Dehydrogenative condensation and dehydrogenation are the two processes that make up the overall reaction of this synthetic approach. In addition, the presence of BF3 caused a remarkable fluorescence shift in ARM. Test paper analysis was used for examining the practical usefulness of ARM, which can be seen under UV light, resulting in this unique phenomenon. The fluorescent bio imaging experiment demonstrates that the sensor ARM has the capability to detect BF3 in living HeLa cells.
Assuntos
Acridinas , Corantes Fluorescentes , Humanos , Células HeLa , FluorescênciaRESUMO
How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size-eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an "active fluid" whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies-as well as other forms of growing active matter, such as tumors and engineered living materials-in 3D environments.
Assuntos
Bactérias , Modelos Biológicos , Morfogênese , Hidrogéis , SoloRESUMO
DNA recombination is a ubiquitous process that ensures genetic diversity. Contrary to textbook pictures, DNA recombination, as well as generic DNA translocations, occurs in a confined and highly entangled environment. Inspired by this observation, here, we investigate a solution of semiflexible polymer rings undergoing generic cutting and reconnection operations under spherical confinement. Our setup may be realized using engineered DNA in the presence of recombinase proteins or by considering micelle-like components able to form living (or reversibly breakable) polymer rings. We find that in such systems, there is a topological gelation transition, which can be triggered by increasing either the stiffness or the concentration of the rings. Flexible or dilute polymers break into an ensemble of short, unlinked, and segregated rings, whereas sufficiently stiff or dense polymers self-assemble into a network of long, linked, and mixed loops, many of which are knotted. We predict that the two phases should behave qualitatively differently in elution experiments monitoring the escape dynamics from a permeabilized container. Besides shedding some light on the biophysics and topology of genomes undergoing DNA reconnection in vivo, our findings could be leveraged in vitro to design polymeric complex fluids-e.g., DNA-based complex fluids or living polymer networks-with desired topologies.
Assuntos
Micelas , Polímeros , Polímeros/metabolismo , DNA/metabolismo , Biofísica , RecombinasesRESUMO
The origin of nonlinear responses in cells has been suggested to be crucial for various cell functions including the propagation of the nervous impulse. In physics, nonlinear behavior often originates from phase transitions. Evidence for such transitions on the single-cell level, however, has so far not been provided, leaving the field unattended by the biological community. Here, we demonstrate that single cells of a human neuronal cell line display all optical features of a sharp, highly nonlinear phase transition within their membrane. The transition is reversible and does not originate from protein denaturation. Triggered by temperature and modified by pH here, a thermodynamic approach strongly suggests that similar nonlinear state changes can be induced by other variables such as calcium or mechanical stress. At least in lipid membranes, such state changes are accompanied by significant changes in permeability, enzyme activity, elastic, and electrical properties.
Assuntos
Membrana Celular/fisiologia , Neurônios/metabolismo , Transição de Fase , Linhagem Celular , Membrana Celular/química , Humanos , Bicamadas Lipídicas/química , Lipídeos de Membrana , Desnaturação Proteica , Análise de Célula Única/métodos , Temperatura , TermodinâmicaRESUMO
Cell migration requires the interplay among diverse migration patterns. The molecular basis of distinct migration programs is undoubtedly vital but not fully explored. Meanwhile, the lack of tools for investigating spontaneous migratory plasticity in a single living cell also adds to the hindrance. Here, we developed a micro/nanotechnology-enabled single-cell analytical platform to achieve coherent monitoring of spontaneous migratory pattern and signaling molecules. Via the platform, we unveiled a previously unappreciated STAT3 regionalization on the multifunctional regulations of migration. Specifically, nuclear STAT3 is associated with amoeboid migration, while cytoplasmic STAT3 promotes mesenchymal movement. Opposing effects of JAK2 multisite phosphorylation shape its response to STAT3 distribution in a dynamic and antagonistic manner, eventually triggering a reversible amoeboid-mesenchymal transition. Based on the above results, bioinformatics further revealed a possible downstream regulator of nucleocytoplasmic STAT3. Thus, our platform, as an exciting technological advance in single-cell migration research, can provide in-depth mechanism interpretations of tumor metastasis and progression.