Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2406489, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340269

RESUMO

Silicon (Si) has attracted considerable attention as a promising alternative to graphite in lithium-ion batteries (LIBs) because of its high theoretical capacity and voltage. However, the durability and cycling stability of Si-based composites have emerged as major obstacles to their widespread adoption as LIBs anode materials. To tackle these challenges, a hollow core-shell dodecahedra structure of a Si-based composite (HD-Si@C) is developed through a novel double-layer in situ growth approach. This innovative design ensures that the nano-sized Si particles are evenly distributed within a hollow carbon shell, effectively addressing issues like Si fragmentation, volume expansion, and detachment from the carbon layer during cycles. The HD-Si@C composite demonstrates remarkable structural integrity as a LIBs anode, resulting in exceptional electrochemical performance and promising practical applications, as evidenced by tests in pouch-type full cells. Notably, the composite shows outstanding cycling stability, retaining 85% of its initial capacity (713 mAh g-1) even after 3000 cycles at a high current rate of 5000 mA g-1. Additionally, the material achieves a gravimetric energy density of 369 W h kg-1, showcasing its potential for efficient energy storage solutions. This research signifies a significant step toward realizing the practical utilization of Si-based materials in the next generation of LIBs.

2.
Angew Chem Int Ed Engl ; 63(45): e202411579, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39086196

RESUMO

Prussian blue analogues (PBAs) have been widely studied in aqueous zinc-ion batteries (AZIBs) due to the characteristics of large specific surface area, open aperture, and straightforward synthesis. In this work, vanadium-based PBA nanocubes were firstly prepared using a mild in situ conversion strategy at room temperature without the protection of noble gas. Benefiting from the multiple-redox active sites of V3+/V4+, V4+/V5+, and Fe2+/Fe3+, the cathode exhibited an excellent discharge specific capacity of 200 mAh g-1 in AZIBs, which is much higher than those of other metal-based PBAs nanocubes. To further improve the long-term cycling stability of the V-PBA cathode, a high concentration water-in-salt electrolyte (4.5 M ZnSO4+3 M Zn(OTf)2), and a water-based eutectic electrolyte (5.55 M glucose+3 M Zn(OTf)2) were designed to successfully inhibit the dissolution of vanadium and improve the deposition of Zn2+ onto the zinc anode. More importantly, the assembled AZIBs maintained 55 % of their highest discharge specific capacity even after 10000 cycles at 10 A g-1 with superior rate capability. This study provides a new strategy for the preparation of pure PBA nanostructures and a new direction for enhancing the long-term cycling stability of PBA-based AZIBs at high current densities for industrialization prospects.

3.
Small ; 19(37): e2302200, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37150868

RESUMO

Metallic-phase iron sulfide (e.g., Fe7 S8 ) is a promising candidate for high power density sodium storage anode due to the inherent metal electronic conductivity and unhindered sodium-ion diffusion kinetics. Nevertheless, long-cycle stability can not be achieved simultaneously while designing a fast-charging Fe7 S8 -based anode. Herein, Fe7 S8 encapsulated in carbon-sulfur bonds doped hollow carbon fibers (NHCFs-S-Fe7 S8 ) is designed and synthesized for sodium-ion storage. The NHCFs-S-Fe7 S8 including metallic-phase Fe7 S8 embrace higher electron specific conductivity, electrochemical reversibility, and fast sodium-ion diffusion. Moreover, the carbonaceous fibers with polar CSFe bonds of NHCFs-S-Fe7 S8 exhibit a fixed confinement effect for electrochemical conversion intermediates contributing to long cycle life. In conclusion, combined with theoretical study and experimental analysis, the multinomial optimized NHCFs-S-Fe7 S8 is demonstrated to integrate a suitable structure for higher capacity, fast charging, and longer cycle life. The full cell shows a power density of 1639.6 W kg-1 and an energy density of 204.5 Wh kg-1 , respectively, over 120 long cycles of stability at 1.1 A g-1 . The underlying mechanism of metal sulfide structure engineering is revealed by in-depth analysis, which provides constructive guidance for designing the next generation of durable high-power density sodium storage anodes.

4.
Small ; 17(43): e2101576, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34155817

RESUMO

Potassium-ion batteries (PIBs) are recognized as promising alternatives for lithium-ion batteries as the next-generation energy storage systems. However, the larger radius of K+ hinders the K+ insertion into the conventional carbon electrode and results in sluggish potassiation kinetics and poor cycling stability. Here, nitrogen and fluorine dual doping of soft carbon nanotubes (NFSC) anode are synthesized in one pot, achieving extraordinary electrochemical performance for PIBs. It is demonstrated that NFSC with a doping dose of 5.6 at% nitrogen and 1.3 at% fluorine together exhibits the highest reversible capacity of 238 mAh g-1 at 0.2 A g-1 and cycling stability of 186 mAh g-1 after 1000 cycles at 1 A g-1 . The extraordinary electrochemical performance can be attributed to the hollow structure, expanded interlayer distance, nitrogen and fluorine dual doping, and the binding ability of abundant defect sites. Moreover, density functional theory shows that the extra fluorine modification can dramatically enhance the conventional nitrogen doping effect and reduces the formation energy which makes a great contribution to the improvement of electrical conduction and K-ions insert. This work may promote the development of low-cost and sustainable carbon-based materials for PIBs and other advanced energy storage devices.

5.
Small ; : e1801836, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29971944

RESUMO

Dual carbon-based potassium dual ion batteries (K-DCBs) have recently attracted ever-increasing attention owing to the potential advantages of high performance-to-cost ratio, good safety, and environmental friendliness. However, the reported K-DCBs still cannot simultaneously meet the requirements of high capacity, long cycling stability, and low cost, which are necessary for practical applications. In this study, a K-DCB with good comprehensive performance including capacity, cycling stability, medium discharge voltage, and energy density is developed by introducing the optimal cathode and anode materials, i.e., KS6 and natural graphite, respectively. An initial capacity of ≈54.6 mAh g-1 and 92.5% capacity retention after 400 cycles can be delivered in a wide voltage window of 2.4-5.4 V at the current density of 100 mA g-1 . A high medium discharge voltage around 4.2 V and an energy density up to 158.3 Wh kg-1 are meanwhile delivered by the K-DCB. In addition, the working mechanism of the devices is understood in detail. It is believed that valuable contributions to the electrochemical performance improvement of the related devices toward practical applications can be provided by this study.

6.
J Colloid Interface Sci ; 661: 59-67, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295703

RESUMO

Potassium-ion batteries (PIBs) with high potassium abundance, low redox potential of K/K+ and similar energy storage mechanism to lithium-ion batteries are potential candidates for large-scale energy storage in the future. However, due to the large size of K+ (1.38 Å), PIBs exhibit poor kinetics in existing commercial graphite anode materials system. Additionally, they can degrade the material structure and induce significant volume effects, leading to material fragmentation and pulverization in the process of long cycling. It is not straightforward to achieve compatibility with existing potassium anode systems, which forces us to develop new high-performance, low-strain anode materials with outstanding structural stability. Hence, nitrogen doping low-strain and large diameter soft carbon microspheres (NDCS) anodes were successfully developed to meet the demands of high-performance PIBs. Due to its large diameter and low strain characteristics, the Coulomb efficiency is as high as 98.7 %, and the capacity retention is close to 70 % after 4000 cycles at a current density of 1 A/g. Furthermore, we employed advanced computed tomography (CT) techniques to enhance the comprehension of electrochemically driven reactions from the surface to the bulk. This work provides a promising and viable technical solution for exploring PIBs anode materials with low strain and long cycling capabilities to meet the requirements of various application scenarios.

7.
Adv Mater ; 36(26): e2403489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556648

RESUMO

Rechargeable aqueous proton batteries with small organic molecule anodes are currently considered promising candidates for large-scale energy storage due to their low cost, stable safety, and environmental friendliness. However, the practical application is limited by the poor cycling stability caused by the shuttling of soluble organic molecules between electrodes. Herein, a cell separator is modified by a GO-casein-Cu2+ layer with a brick-and-mortar structure to inhibit the shuttling of small organic molecules. Experimental and calculation results indicate that, attributed to the synergistic effect of physical blocking of casein molecular chains and electrostatic and coordination interactions of Cu2+, bulk dissolution and shuttling of multiple small molecules can be inhibited simultaneously, while H+ transfer across the separators is not almost affected. With the protection of the GO-casein-Cu2+ separator, soluble small molecules, such as diquinoxalino[2,3-a:2',3'-c]phenazine,2,3,8,9,14,15-hexacyano (6CN-DQPZ) exhibit a high reversible capacity of 262.6 mA h g-1 and amazing stability (capacity retention of 92.9% after 1000 cycles at 1 A g-1). In addition, this strategy is also proved available to other active conjugated small molecules, such as indanthrone (IDT), providing a general green sustainable strategy for advancing the use of small organic molecule electrodes in proton cells.

8.
ACS Appl Mater Interfaces ; 16(26): 33475-33484, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38886899

RESUMO

To meet the requirements of long-range electric vehicles and aviation, the high-mass-loading electrode with high areal capacity is a promising solution to realize ultrahigh-energy lithium-metal batteries (LMBs). However, enabling the operation of high mass loading with a long cycling life is still a challenge without in-depth investigation. Herein, we figured out that the polarization appearing in the cycled lithium-metal anodes (LMAs) is responsible for the poor cycling of LMBs with high mass loading. Moreover, the origin of fast degradation of LMAs is affected by mass loading through the Li plating process, which is decided by the Li plating morphology. Hence, manipulating the mass loading can directly promote lithium reversibility and further mitigate cell polarization in LMBs, endowing high-mass-loading LMBs with excellent cycling stability. Consequently, we achieved an ultrahigh energy density (605 W h kg-1) of a 10.1 A h pouch cell with an excellent retention of 91.7% capacity and 86% energy after 50 cycles. The feasible strategy points out a promising approach for designing high-energy-density LMBs in the future.

9.
Adv Mater ; 36(30): e2403214, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38748854

RESUMO

Currently, it is still challenging to develop a hydrogel electrolyte matrix that can successfully achieve a harmonious combination of mechanical strength, ionic conductivity, and interfacial adaptability. Herein, a multi-networked hydrogel electrolyte with a high entanglement effect based on gelatin/oxidized dextran/methacrylic anhydride, denoted as ODGelMA is constructed. Attribute to the Schiff base network formulation of ─RC═N─, oxidized dextran integrated gelatin chains induce a dense hydrophilic conformation group. Furthermore, addition of methacrylic anhydride through a grafting process, the entangled hydrogel achieves impressive mechanical features (6.8 MPa tensile strength) and high ionic conductivity (3.68 mS cm-1 at 20 °C). The ODGelMA electrolyte regulates the zinc electrode by circumventing dendrite growth, and showcases an adaptable framework reservoir to accelerate the Zn2+ desolvation process. Benefiting from the entanglement effect, the Zn anode achieves an outstanding average Coulombic efficiency (CE) of 99.8% over 500 cycles and cycling stability of 900 h at 5 mA cm-2 and 2.5 mAh cm-2. The Zn||I2 full cell yields an ultra-long cycling stability of 10 000 cycles with a capacity retention of 92.4% at 5 C. Furthermore, a 60 mAh single-layer pouch cell maintains a stable work of 350 cycles.

10.
ACS Appl Mater Interfaces ; 15(36): 42603-42610, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639524

RESUMO

Organic materials have garnered intensive focus as a new group of electrodes for lithium-ion batteries (LIBs). However, many reported organic electrodes so far still exhibit unsatisfying cycling stability because of the dissolution in the electrolytes. Herein, a novel azo-linked hexaazatrianphthalene (HATN)-based polymer (AZO-HATN-AQ) is designed and fabricated by the polymerization of trinitrodiquinoxalino[2,3-a:2',3'-c]phenazine (HATNTN) and 2,6-diaminoanthraquinone (DAAQ). The abundant redox-active sites, extended π-conjugated planar conformation, and low energy gap endow the AZO-HATN-AQ electrode with high theoretical capacity, excellent solubility resistance, and fast Li-ion transport. In particular, the fully lithiated AZO-HATN-AQ still keeps the planar structure, contributing to the excellent cycling stability. As a result, AZO-HATN-AQ cathodes show high specific capacity (240 mAh g-1 at 0.05 A g-1), prominent rate capability (98 mAh g-1 at 8 A g-1), and outstanding cycling stability (120 mAh g-1 after 2000 cycles at 4 A g-1 with 85.7% capacity retention) simultaneously. This study demonstrates that rational structure design of the polymer electrodes is an effective approach to achieving excellent comprehensive electrochemical performance.

11.
ACS Appl Mater Interfaces ; 15(5): 7014-7022, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36706135

RESUMO

Metal-air batteries have attracted wide interest owing to their ultrahigh theoretical energy densities, particularly for lithium-oxygen batteries. One of the challenges inhibiting the practical application of lithium-oxygen batteries is the unavoidable liquid electrolyte evaporation accompanying oxygen fluxion in the semi-open system, which leads to safety issues and poor cyclic performance. To address these issues, we propose a solid-state polyimide based gel polymer electrolyte (PI@GPE), immobilizing and reserving a liquid electrolyte in the gelled polymer substrate. The liquid electrolyte uptake of PI@GPE is measured to be 842%, 6 times higher than that of the commercial glass fiber separator, contributing to a high ionic conductivity of 0.44 mS cm-1. Additionally, PI@GPE possesses an enhanced lithium transference number of 0.596 as well as superior interfacial compatibility with lithium metals. Under 0.1 mA cm-2 and 0.25 mA h cm-2, PI@GPE-based lithium-oxygen batteries demonstrate distinguished long-cycling stability of 366 cycles, 4 times more than that with a glass fiber separator and liquid electrolyte. Our work provides a unique solid-state gel polymer electrolyte to mitigate liquid electrolyte leakage, exhibiting promising potential application in highly safe lithium-oxygen batteries with a long-cycling life.

12.
ACS Appl Mater Interfaces ; 15(31): 37442-37453, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494549

RESUMO

V-based sulfides are considered as potential cathode materials for Mg2+/Li+ hybrid ion batteries (MLIBs) due to their high theoretical specific capacities, unique crystal structure, and flexible valence adjustability. However, the formation of irreversible polysulfides, poor cycling performance, and severe structural collapse at high current densities impede their further development. Herein, VS4 microspheres with various controllable nanoarchitectures were successfully constructed via a facile solvothermal method by adjusting the amount of hydrochloric acid and were used as cathode materials for MLIBs. The VS4 microsphere self-assembled by bundles of paralleled-nanorods and some intersected-nanorods (VS4@NC-5) exhibits an outstanding initial discharge capacity of 805.4 mAh g-1 at 50 mA g-1 that is maintained at 259.1 mAh g-1 after 70 cycles. Moreover, the VS4@NC-5 cathode can deliver a superior rate capability (146.1 mAh g-1 at 2000 mA g-1) and ultralong cycling life (134.5 mAh g-1 at 2000 mA g-1 after 2000 cycles). The extraordinary electrochemical performance of VS4@NC-5 could be attributed to its special multi-hierarchical microsphere structure and the formation of N-doped carbon layers and V-C bonds, resulting in unobstructed ion diffusion channels, multidimensional electron transfer pathways, and enhancements of electrical conductivity and structure stability. Furthermore, the electrochemical reaction mechanism and phase conversion behavior of the VS4@NC-5 cathode at various states are investigated by a series of ex situ characterization methods. The VS4 well-designed through morphological engineering in this work can pave a way to explore more sulfides with high-rate performance and long cycling stability for energy storage devices.

13.
ACS Appl Mater Interfaces ; 14(6): 8157-8162, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107971

RESUMO

Prussian white (PW), due to its low cost, easy synthesis, open structure, and fast ion extraction/interaction, is introduced to the electrochromic field. The PW films were successfully grown on indium tin oxide (ITO) glass by a facial hydrothermal method. Impressively, the PW film exhibits excellent electrochemical cycling stability without obvious decay over 10 000 cycles and a high coloration efficiency of 149.3 cm2 C-1. The film also provides the large optical transmittance contrast (over 70%) in a wide wavelength range of 650-800 nm. Furthermore, the PW film shows the rapid coloration and bleaching response. These results suggest that PW is a promising practical candidate of high-performance electrochromic material.

14.
J Colloid Interface Sci ; 623: 168-181, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35576648

RESUMO

Three-dimensional (3D) printing of Li-ion batteries with unconventional 3D electrodes has attracted considerable attention in recent years. However, fabricating 3D electrodes with high specific capacity, high areal capacity, ultralong cycling stability, and improved rate performance remains a challenge to date. Novel 3D grid-patterned LiFePO4@MgO composite electrodes with thicknesses of 143, 306, and 473 µm were fabricated via 3D printing. The electrochemical performance of half cells was evaluated. The 3D-printed LiFePO4@MgO (143 µm) electrodes exhibit stable specific capacities of 142.8 mAh g-1 @ 1.0 C and 90.3 mAh g-1 @ 10.0 C after 800 and 1700 cycles, respectively. In addition, the 473 µm-thick 3D grid-patterned LiFePO4@MgO achieves an areal capacity of 3.01 mAh cm-2 @ 0.1 C after 20 cycles. The full cells comprised 143 µm-thick 3D-printed LiFePO4@MgO, and 217 µm Li4Ti5O12 electrodes show a capacity of 139.0 mAh g-1 @ 1.0 C after 400 cycles. These results indicate that, this type of thick 3D-printed LiFePO4@MgO electrode achieves high capacity, high-rate capability, and ultralong cycle stability. The outstanding performance ascribes the fast electrolyte infusion of 3D-printed electrodes and the enhanced electronic/ionic transport.

15.
Chem Asian J ; 17(21): e202200712, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36042542

RESUMO

Lithium-oxygen batteries have received great research interest owing to their ultrahigh theoretical energy density and are considered as one of the promising secondary batteries. However, there are still some challenges in their practical application, like liquid organic electrolyte evaporation in the semi-open system and instability in the high-voltage oxidizing environment. In this work, a cellulose acetate-based gel polymer electrolyte (CA@GPE) is proposed, whose cross-linked microporous structure ensures the ultrahigh liquid electrolyte uptake of 2391%. The prepared CA@GPE exhibits a high lithium-ion transference number of 0.595, a satisfying ionic conductivity of 0.47 mS cm-1 and a wide electrochemical stability window up to 5.0 V. The Li//Li symmetric cell employing CA@GPE could cycle stably over 1200 h. The lithium-oxygen battery with CA@GPE presents a superb cycling lifetime of 370 cycles at 0.1 mA cm-2 under 0.25 mAh cm-2 . This work offers a possible strategy to realize long-cycling stability lithium-oxygen batteries.

16.
ACS Appl Mater Interfaces ; 14(39): 44479-44487, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129817

RESUMO

Potassium-ion batteries have been considered as a promising next-generation energy storage system due to low cost but comparable energy density to lithium-ion batteries. However, carbon-based anode materials usually delivered unsatisfactory K-storage capacity as well as long-cycling performance due to poor matching with common electrolytes, thus forming an unstable solid electrolyte interphase (SEI). Herein, a robust KF-rich SEI can be achieved on the as-prepared non-graphitic carbon surface by regulating the electrolyte solvation structures, which can significantly suppress redox reaction of solvents and ensure highly reversible K+ intercalation/deintercalation. As a result, the as-synthesized non-graphitic carbon anode predictably exhibits super long-cycling performance with about 200 mA h/g at 100 mA/g for 1000 cycles and a stable capacity of 135 mA h/g at 500 mA/g for 2000 cycles with negligible capacity decay in the optimized 3 M KFSI/DME electrolyte. This work provides deep insights into further development and improvement of advanced electrolyte systems for next generation energy storage devices.

17.
Chem Asian J ; 15(9): 1430-1435, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32167677

RESUMO

Aqueous zinc-ion batteries (ZIBs) have become the highest potential energy storage system for large-scale applications owing to the high specific capacity, good safety and low cost. In this work, a NASICON-type Na3 V2 (PO4 )3 cathode modified by a uniform carbon layer (NVP/C) has been synthesized via a facile solid-state method and exhibited significantly improved electrochemical performance when working in an aqueous ZIB. Specifically, the NVP/C cathode shows an excellent rate capacity (e. g., 48 mAh g-1 at 1.0 A g-1 ). Good cycle stability is also achieved (e. g., showing a capacity retention of 88% after 2000 cycles at 1.0 A g-1 ). Furthermore, the Zn2+ (de)intercalation mechanism in the NVP cathode has been determined by various ex-situ techniques. In addition, a Zn||NVP/C pouch cell has been assembled, delivering a high capacity of 89 mAhg-1 at 0.2 A g-1 and exhibiting a superior long cycling stability.

18.
J Colloid Interface Sci ; 542: 213-221, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30753944

RESUMO

Covalent organic frameworks (COFs) with devisable nanostructures have exhibited extensive application prospects in energy storage and conversion. In this work, spherical COFs were successfully utilized as an ideal precursor for N, B co-doped carbon spheres (NBCs) that display hierarchical spherical architectures with rich pores. When applied as lithium ion batteries (LIBs) anode, NBCs exhibit high reversible specific capacity and outstanding long-life cycling stability (205.5 mAh g-1 at 5.0 A g-1 and 171.4 mAh g-1 at 10.0 A g-1 after 5000 cycles) owing to their hierarchical porosity, unique structure and in-situ N, B co-doping. The excellent lithium storage ability, especially satisfactory long cycling stability, enables NBCs to be a promising candidate for LIBs.

19.
ACS Appl Mater Interfaces ; 7(44): 24622-8, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26477268

RESUMO

Efficient utilization and broader commercialization of alternative energies (e.g., solar, wind, and geothermal) hinges on the performance and cost of energy storage and conversion systems. For now and in the foreseeable future, the combination of rechargeable batteries and electrochemical capacitors remains the most promising option for many energy storage applications. Porous carbonaceous materials have been widely used as an electrode for batteries and supercapacitors. To date, however, the highest specific capacitance of an electrochemical double layer capacitor is only ∼200 F/g, although a wide variety of synthetic approaches have been explored in creating optimized porous structures. Here, we report our findings in the synthesis of porous carbon through a simple, one-step process: direct carbonization of kelp in an NH3 atmosphere at 700 °C. The resulting oxygen- and nitrogen-enriched carbon has a three-dimensional structure with specific surface area greater than 1000 m(2)/g. When evaluated as an electrode for electrochemical double layer capacitors, the porous carbon structure demonstrated excellent volumetric capacitance (>360 F/cm(3)) with excellent cycling stability. This simple approach to low-cost carbonaceous materials with unique architecture and functionality could be a promising alternative to fabrication of porous carbon structures for many practical applications, including batteries and fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA