Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Chemistry ; 29(18): e202203702, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656133

RESUMO

Construction of sub-5 nm long-range ordered structures through self-assembly has received increasing attention. Herein, a series of ODMS-based thermotropic liquid crystals (LCs) containing perylene diimide (PDI) were designed and synthesized. These LCs can form ordered nanostructures with periodic sizes around 5 nm including smectic J (SmJ), oblique columnar (Colob ), and hexagonal columnar (Colh ) phases with change in the volume fraction of ODMS, where the layer spacing of the SmJ phase is less than 5 nm. Thin films with parallel oriented nanolines with line width less than 5 nm can be obtained on PDMS-modified silicon substrates by spin-casting and simple thermal annealing processes. Moreover, owing to the strong π-π interaction between PDI cores, these nanolines are long-range ordered with uniaxial orientation in relatively large areas (1.5×1.5 µm2 ) with over 300 continuous microdomains without pre-patterning. These nanostructures provide the possibility of preparing nanotemplates by oxygen plasma etching.

2.
Angew Chem Int Ed Engl ; 60(3): 1290-1297, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32996683

RESUMO

Arranging ionic liquids (ILs) with long-range order can not only enhance their performance in a desired application, but can also help elucidate the vital between structure and properties. However, this is still a challenge and no example has been reported to date. Herein, we report a feasible strategy to achieve a crystalline IL via coordination self-assembly based reticular chemistry. IL1 MOF, was prepared by designing an IL bridging ligand and then connecting them with metal clusters. IL1 MOF has a unique structure, where the IL ligands are arranged on a long-range ordered framework but have a labile ionic center. This structure enables IL1 MOF to break through the typical limitation where the solid ILs have lower proton conductivity than their counterpart bulk ILs. IL1 MOF shows 2-4 orders of magnitude higher proton conductivity than its counterpart IL monomer across a wide temperature range. Moreover, by confining the IL within ultramicropores (<1 nm), IL1 MOF suppresses the liquid-solid phase transition temperatures to lower than -150 °C, allowing it to function with high conductivity in a subzero temperature range.

3.
Proc Natl Acad Sci U S A ; 114(34): 8974-8979, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784754

RESUMO

Long-range alignment ordering of fibroblasts have been observed in the vicinity of cancerous tumors and can be recapitulated with in vitro experiments. However, the mechanisms driving their ordering are not understood. Here, we show that local collision-driven nematic alignment interactions among fibroblasts are insufficient to explain observed long-range alignment. One possibility is that there exists another orientation field coevolving with the cells and reinforcing their alignment. We propose that this field reflects the mechanical cross-talk between the fibroblasts and the underlying fibrous material on which they move. We show that this long-range interaction can give rise to high nematic order and to the observed patterning of the cancer microenvironment.


Assuntos
Algoritmos , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Fibroblastos/fisiologia , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Animais , Contagem de Células , Tamanho Celular , Simulação por Computador , Fibroblastos/citologia , Humanos , Cinética
4.
Small ; 15(7): e1804572, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30673173

RESUMO

Magnetic control has been a prosperous and powerful contactless approach in arraying materials into high-order nanostructures. However, it is tremendously difficult to control organic polymers in this way on account of the weak magnetic response. The preparation of block copolymers (BCPs) with high magnetostatic energy is reported here, relying on an effective electrostatic coupling between paramagnetic ions and polymer side chains. As a result, the BCPs undergo a magnetically directed self-assembly to form microphase-segregated nanostructures with long-range order. It is emphasized that such a precisely controlled alignment of the BCPs is performed upon a single commercial magnet with low-intensity field (0.35 Tesla). This strategy is profoundly easy-to-handle in contrast to routine electromagnetic methods with high-intensity field (5-10 Tesla). More significantly, the paramagnetic metal component in the BCP samples can be smartly removed, providing a template effect with a preservation of the directed self-assembled nanofeatures for patterning follow-up functionalized species through the original binding site.

5.
Philos Trans A Math Phys Eng Sci ; 376(2113)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29311206

RESUMO

Phase-field analysis for the kinetic transition in an ordered crystal structure growing from an undercooled liquid is carried out. The results are interpreted on the basis of analytical and numerical solutions of equations describing the dynamics of the phase field, the long-range order parameter as well as the atomic diffusion within the crystal/liquid interface and in the bulk crystal. As an example, the growth of a binary A50B50 crystal is described, and critical undercoolings at characteristic changes of growth velocity and the long-range order parameter are defined. For rapidly growing crystals, analogies and qualitative differences are found in comparison with known non-equilibrium effects, particularly solute trapping and disorder trapping. The results and model predictions are compared qualitatively with results of the theory of kinetic phase transitions (Chernov 1968 Sov. Phys. JETP26, 1182-1190) and with experimental data obtained for rapid dendritic solidification of congruently melting alloy with order-disorder transition (Hartmann et al. 2009 Europhys. Lett.87, 40007 (doi:10.1209/0295-5075/87/40007)).This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.

6.
Entropy (Basel) ; 20(4)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33265368

RESUMO

We employ the spinor analysis method to evaluate exact expressions of spin-spin correlation functions of the two-dimensional rectangular Ising model on a finite lattice, special process enables us to actually carry out the calculation process. We first present some exact expressions of correlation functions of the model with periodic-periodic boundary conditions on a finite lattice. The corresponding forms in the thermodynamic limit are presented, which show the short-range order. Then, we present the exact expression of the correlation function of the two farthest pair of spins in a column of the model with periodic-free boundary conditions on a finite lattice. Again, the corresponding form in the thermodynamic limit is discussed, from which the long-range order clearly emerges as the temperature decreases.

7.
Angew Chem Int Ed Engl ; 54(2): 500-5, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25377526

RESUMO

Long-range structural order and alignment over different scales are of key importance for the regulation of structure and functionality in biology. However, it remains a great challenge to engineer and assemble such complex functional synthetic systems with order over different length scales from simple biologically relevant molecules, such as peptides and porphyrins. Herein we describe the successful introduction of hierarchical long-range order in dipeptide-adjusted porphyrin self-assembly by a thermodynamically driven self-orienting assembly pathway associated with multiple weak interactions. The long-range order and alignment of fiber bundles induced new properties, including anisotropic birefringence, a large Stokes shift, amplified chirality, and excellent photostability as well as sustainable photocatalytic activity. We also demonstrate that the aligned fiber bundles are able to induce the epitaxially oriented growth of Pt nanowires in a photocatalytic reaction.


Assuntos
Peptídeos/farmacologia , Porfirinas/química , Catálise , Microscopia Eletrônica de Transmissão , Fotoquímica , Espectrofotometria Ultravioleta
8.
Angew Chem Int Ed Engl ; 54(19): 5583-7, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25784624

RESUMO

The tape-like chain {[(tptz)Mn(II) (H2 O)Mn(III) (CN)6 ]2 Mn(II) (H2 O)2 }n ⋅4n MeOH⋅2n H2 O based on the anisotropic building block hexacyanomanganate(III) exhibits long-range magnetic ordering below 5.1 K as well as single-chain magnetic behavior at lower temperatures with an effective energy barrier of 40.5(7) K.

9.
J Phys Condens Matter ; 35(46)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37579757

RESUMO

We report the results of thermodynamic measurements in external magnetic field of the cubic Ce-based cage compounds CeT2Cd20(T= Ni,Pd). Our analysis of the heat-capacity data shows that the Γ7doublet is the ground state multiplet of the Ce3+ions. Consequently, for the Γ7doublet it can be theoretically shown that the Ruderman-Kittel-Kasuya-Yosida interaction between the localized Ce moments mediated by the conduction electrons, must vanish at temperatures much lower than the energy separating the ground state doublet from the first excited Γ8quartet. Our findings provide an insight as to why no long range order has been observed in these compounds down to temperatures in the milliKelvin range.

10.
Front Mol Biosci ; 10: 1021733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845544

RESUMO

Kinetic stability, defined as the rate of protein unfolding, is central to determining the functional lifetime of proteins, both in nature and in wide-ranging medical and biotechnological applications. Further, high kinetic stability is generally correlated with high resistance against chemical and thermal denaturation, as well as proteolytic degradation. Despite its significance, specific mechanisms governing kinetic stability remain largely unknown, and few studies address the rational design of kinetic stability. Here, we describe a method for designing protein kinetic stability that uses protein long-range order, absolute contact order, and simulated free energy barriers of unfolding to quantitatively analyze and predict unfolding kinetics. We analyze two ß-trefoil proteins: hisactophilin, a quasi-three-fold symmetric natural protein with moderate stability, and ThreeFoil, a designed three-fold symmetric protein with extremely high kinetic stability. The quantitative analysis identifies marked differences in long-range interactions across the protein hydrophobic cores that partially account for the differences in kinetic stability. Swapping the core interactions of ThreeFoil into hisactophilin increases kinetic stability with close agreement between predicted and experimentally measured unfolding rates. These results demonstrate the predictive power of readily applied measures of protein topology for altering kinetic stability and recommend core engineering as a tractable target for rationally designing kinetic stability that may be widely applicable.

11.
Adv Mater ; 34(12): e2108709, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34997941

RESUMO

Recently, disordered metasurfaces have attracted considerable interest due to their potential applications in imaging, holography, and wavefront shaping. However, how to emerge long-range ordered phase distribution in disordered metasurfaces remains an outstanding problem. Here, a general framework is proposed to generate a spatially homogeneous in-plane phase distribution from a disordered metasurface, by engineering disorder parameters together with topology optimization. As a proof-of-concept demonstration, an all-dielectric disordered supercell metasurface with relatively homogeneous in-plane phase fluctuation is designed by disorder parameter engineering, manifesting as polarization conversion-dependent random scattering or unidirectional transmission. Then, a topology optimization approach is utilized to overcome the lattice coupling effect and to further improve the homogeneity of complex electric field fluctuation. In comparison with the initial supercell metasurface, both the phase fluctuation range and the relative efficiency of the topology-optimized freeform metasurface are significantly improved, leading to a long-range ordered electric field distribution. Moreover, three experimental realizations are performed, all of which agree well with the theoretical results. This methodology may inspire more exotic optical phenomena and find more promising applications in disordered metasurfaces and disordered optics.

12.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407895

RESUMO

The static and dynamic magnetic properties and the specific heat of K2Ni2TeO6 and Li2Ni2TeO6 were examined and it was found that they undergo a long-range ordering at TN = 22.8 and 24.4 K, respectively, but exhibit a strong short-range order. At high temperature, the magnetic susceptibilities of K2Ni2TeO6 and Li2Ni2TeO6 are described by a Curie-Weiss law, with Curie-Weiss temperatures Θ of approximately -13 and -20 K, respectively, leading to the effective magnetic moment of about 4.46 ± 0.01 µB per formula unit, as expected for Ni2+ (S = 1) ions. In the paramagnetic region, the ESR spectra of K2Ni2TeO6 and Li2Ni2TeO6 show a single Lorentzian-shaped line characterized by the isotropic effective g-factor, g = 2.19 ± 0.01. The energy-mapping analysis shows that the honeycomb layers of A2Ni2TeO6 (A = K, Li) and Li3Ni2SbO6 adopt a zigzag order, in which zigzag ferromagnetic chains are antiferromagnetically coupled, because the third nearest-neighbor spin exchanges are strongly antiferromagnetic while the first nearest-neighbor spin exchanges are strongly ferromagnetic, and that adjacent zigzag-ordered honeycomb layers prefer to be ferromagnetically coupled. The short-range order of the zigzag-ordered honeycomb lattices of K2Ni2TeO6 and Li2Ni2TeO6 is equivalent to that of an antiferromagnetic uniform chain, and is related to the short-range order of the ferromagnetic chains along the direction perpendicular to the chains.

13.
ACS Appl Mater Interfaces ; 14(48): 54101-54110, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36399402

RESUMO

Heterometallic metal-organic frameworks based on rare-earth metals (RE-MOFs) have potential in a number of applications where energy transfer between nearby metal atoms is required. This observation implies that it is important to understand the level of local mixing that is achieved between metals of different types during synthesis of RE-MOFs. Density functional theory calculations can give quantitative information on the relative energy of different configurations of RE-MOFs, but these calculations cannot be applied to the full range of medium- and long-range orderings that are possible in heterometallic materials. This limitation can be overcome using force field (FF)-based calculations if appropriate FFs are available. We show that an existing generic FF for MOFs, UFF4MOF, does not accurately predict energies of mixing in heterometallic Nd/Yb MOFs and introduce a modified FF to address this shortcoming. The resulting FF is used to explore metal orderings in large simulation volumes for a Nd/Yb MOF, illustrating the complexities that can arise in the structure of heterometallic RE-MOFs.

14.
Adv Mater ; 34(9): e2106857, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34908188

RESUMO

On-chip integration of solution-processable materials imposes stringent and simultaneous requirements of controlled nucleation and growth, tunable geometry and dimensions, and long-range-ordered assembly, which is challenging in solution process far from thermodynamic equilibrium. Superwetting interfaces, underpinned by programmable surface chemistry and topography, are promising for steering transport, dewetting, and microfluid dynamics of liquids, thus opening a new paradigm for micro-/nanostructure assembly in solution process. Herein, assembly methods on the basis of superwetting interfaces are reviewed for constructing long-range-ordered micro-/nanostructures. Confined capillary liquids, including capillary bridges and capillary corner menisci realized by controlling local wettability and surface topography, are highlighted for simultaneously attained deterministic patterning and long-range order. The versatility and robustness of confined capillary liquids are discussed with assembly of single-crystalline micro-/nanostructures of organic semiconductors, metal-halide perovskites, and colloidal-nanoparticle superlattices, which lead to enhanced device performances and exotic functionalities. Finally, a perspective for promising directions in this realm is provided.

15.
ACS Appl Mater Interfaces ; 14(7): 9398-9407, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35134294

RESUMO

Colloidal crystals made from sub-100 nm silica nanoparticles have provided a versatile platform for the template-assisted synthesis of three-dimensionally interconnected semiconducting, metallic, and magnetic replicas. However, the detailed structure of these materials has not yet been characterized. In this study, we investigated the structures of colloidal crystalline films and germanium replicas by scanning electron microscopy and small angle X-ray scattering. The structures of colloidal crystals made by evaporative assembly depends on the size of l-arginine-capped silica nanoparticles. Particles smaller than ∼31 nm diameter assemble into non-close-packed arrangements (bcc) whereas particles larger than 31 nm assemble into random close-packed structures with disordered hexagonal phase. Polycrystalline films of these materials retain their structures and long-range order upon infiltration at high temperature and pressure, and the structure is preserved in Ge replicas. The shear force during deposition and dispersity of silica nanoparticles contributes to the size-based variation in the structure and to the size of crystal domains in the colloidal crystal films.

16.
Artigo em Inglês | MEDLINE | ID: mdl-33470987

RESUMO

Polycrystalline La1-xPbxMnO3±y(x = 0.3, 0.35, 0.4) solid solutions were prepared by solid state reaction method and their magnetic properties have been investigated. Rietveld refinement of X-ray powder diffraction patterns showed that all samples are single phase and crystallized with the rhombohedral structure in the R-3c space group. A second order paramagnetic to ferromagnetic phase transition was observed for all materials. The Griffiths phase (GP), identified from the temperature dependence of the inverse susceptibility, was suppressed by increasing magnetic field and showed a significant dependence on A-site chemical substitution. The critical behaviour of the compounds was investigated near to their Curie temperatures, using intrinsic magnetic field data. The critical exponents (ß, γ and δ) are close to the mean-field approximation values for all three compounds. The observed mean-field like behaviour is a consequence of the GP and the formation of ferromagnetic clusters. Long-range ferromagnetic order is established as the result of long-range interactions between ferromagnetic clusters. The magnetocaloric effect was studied in terms of the isothermal entropy change. Our study shows that the material with the lowest chemical substitution (x = 0.3) has the highest potential (among the three compounds) as magnetic refrigerant, owing to its higher relative cooling power (258 J/kg at 5 T field) and a magnetic phase transition near room temperature.

17.
ACS Nano ; 14(10): 13865-13875, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32914965

RESUMO

We report two families of naphthalenediimides (NDIs) symmetrically functionalized with discrete carbon chains comprising up to 55 carbon atoms (Cn-NDI-Cn, n = 39, 44, 50, and 55) and their self-assembly at the 1-phenyloctane/highly oriented pyrolytic graphite interface (1-PO/HOPG interface). The compounds differ by the presence or absence of two or three internal double bonds in the carbon chains (unsaturated and saturated Cn-NDI-Cn, respectively). Combinatorial distributions of geometrical isomers displaying either the E- or Z-configuration at each double bond are obtained for the unsaturated compounds. Analysis of the self-assembled monolayers of equally long unsaturated and saturated Cn-NDI-Cn by scanning tunneling microscopy (STM) reveal that all Cn-NDI-Cn tend to form lamellar systems featuring alternating areas of aromatic cores and carbon chains. Extended chain lengths are found to significantly increase disorder in the self-assembled monolayers due to misalignments and enhanced strength of interchain interactions. This phenomenon is antagonized by the local order-inducing effect of the internal double bonds: unsaturated Cn-NDI-Cn give qualitatively more ordered self-assembled monolayers compared to their saturated counterparts. The use of combinatorial distributions of unsaturated Cn-NDI-Cn geometrical isomers does not represent a limitation to achieve local order in the self-assembled monolayers. The self-assembly process operates a combinatorial search and selects the geometrical isomer(s) affording the most thermodynamically stable pattern, highlighting the adaptive character of the system. Finally, the antagonistic interplay between the extended carbon chain lengths and the presence of internal double bonds brings to the discovery of the lamellar "phase C" morphology for unsaturated Cn-NDI-Cn with n ≥ 50.

18.
Adv Mater ; 32(48): e2005128, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118245

RESUMO

The polymorphism of borophene makes it a promising system to realize tunable physical or chemical properties. Various pure borophene phases consisting of quasi-1D boron chains with different widths have been commonly obtained in experimental studies. Here, it is shown that, due to a substrate mediation effect, artificial long-range ordered phases of borophene consisting of different combinations of boron chains seamlessly joined together can be achieved on Ag(100). Scanning tunneling microscopy measurements and theoretical calculations reveal that mixed-chain phases are more stable than the pure phase, and interact only weakly with the substrate. The mixed-chain phases with various proportions of different chains can be well separated based on the crystal direction of the substrate. The successful growth of mixed-chain phases is expected to deepen the impact of substrate tailored synthesis of borophene.

19.
Ultramicroscopy ; 204: 91-100, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31132736

RESUMO

Recent advancements in data mining methods in atom probe microscopy have enabled new quantitative chemical and microstructural characterization beyond the standard three-dimensional reconstruction. For example, spatial distribution maps have been developed to enable visualisation of the local lattice occupation of a selected region of interest. However, the precision of such studies yet remains unknown as correlation with complementary methods would be required. Therefore, a correlative study of atom probe microscopy, neutron diffraction and microstructural modelling of long-range ordered, nano-scale domains in a well-researched Fe-Co-Mo Maraging-type steel is presented here. Its microstructure consists of Mo-enriched µ-phase (Fe,Co)7Mo6 particles embedded into a body-centred cubic FeCo matrix. Previous research has shown that under slow cooling conditions, this matrix partially decomposes into nano-scale B2 long-range ordered domains surrounded by disordered regions, resulting in reduced toughness in potential cutting applications. Usually, a long-range order parameter S referring to ideal B2 long-range order is assumed within such domains according to neutron diffraction. However, atom probe microscopy and modelling results presented in the current study indicate lattice imperfections with a partial substitution of atoms on the Fe- and Co-sublattices. After considering preferential retention effects during the atom probe experiment, a model unit cell is presented to define the observed imperfect B2 long-range order as pseudo-D03 long-range order, and the potential impact on the materials properties is discussed.

20.
Chem Asian J ; 14(8): 1175-1183, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625259

RESUMO

The morphology and crystallinity of the polymers used to fabricate bulk heterojuction (BHJ) solar cells significantly influences the efficiency of the cells. We have used variable-temperature (VT) spectroscopy techniques, namely VT emission and VT resonance Raman spectroscopy (VT-RRS), to examine how the backbone linearity of a conducting polymer affects its electronic response to temperature and variations in solution behavior. We have studied two types of donor-acceptor polymers used in BHJ cells with differing backbone structures; they are poly-{5,6-bis(tetradecyloxy)-4-(thiophen-2-yl)benzo[c]-1,2,5-thiadiazole} (PTBT) which has a curved backbone and poly-{5,6-bis(tetradecyloxy)-4-(thieno[3,2-b]-thiophen-2-yl)benzo[c]-1,2,5-thiadiazole} (PTTBT) which has a linear chain structure. Time-dependent density functional theory (TD-DFT) calculations and resonance Raman spectra (RRS) of PTTBT revealed the presence of three electronic transitions, with character that varies between π to π*, mixed π to π*/charge transfer and pure charge transfer in nature. Emission spectra of PTTBT showed spectral changes at 650 and 710 nm with varied temperature (-10 to 60 °C). Variable-temperature RRS was measured in resonance with the lowest and highest energy electronic transitions. The changes were interpreted using two-dimensional correlation spectroscopy (2DCOS) analysis. PTTBT showed gradual shifts to lower wavenumbers of modes at around 1425, 1450 and 1500 cm-1 . For PTBT larger and more rapid spectral changes are observed at 1440 and 1460 cm-1 consistent with greater variation in the electronic nature upon heating. Further study into the influence of polymer linearity on crystallinity and long range order was carried out using low-frequency Raman (LFR) to examine drop cast films under a variety of different conditions. LFR spectra showed that PTTBT has a band at 73 cm-1 . This is observed under a variety of film-forming conditions. PTBT does not show distinct low frequency modes, consistent with its low crystallinity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA