Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Eur J Neurol ; 28(5): 1557-1565, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33449400

RESUMO

BACKGROUND: Parkinson´s disease (PD) has a large phenotypic variability, which may, at least partly, be genetically driven including alterations of gene products. Candidates might not only be proteins associated with disease risk but also pathways that play a role in aging. OBJECTIVE: To evaluate phenotype-modifying effects of genetic variants in Klotho, a longevity gene. METHODS: We analyzed two longitudinal cohorts: one local cohort comprising 459 PD patients who underwent genotyping for the KL-VS haplotype in Klotho including a subgroup of 125 PD patients and 50 healthy controls who underwent biochemical cerebrospinal fluid (CSF) analyses of Klotho and fibroblast growth factor 23 as well as vitamin D metabolites. The second cohort comprised 297 patients from the Parkinson's Progression Markers Initiative (PPMI) for validation of genetic-clinical findings. RESULTS: PD patients carrying the KL-VS haplotype demonstrated a shorter interval between PD onset and onset of cognitive impairment (both cohorts) and higher Unified Parkinson´s Disease Rating Scale part III (UPDRS III) scores (PPMI). CSF protein levels of Klotho and fibroblast growth factor 23 were lower in PD patients irrespective of gender compared to controls. Moreover, low CSF levels of Klotho were associated with higher scores in the UPDRS III and Hoehn and Yahr Scale. CONCLUSIONS: Our results indicate that genetic variants in Klotho together with its corresponding CSF protein profiles are associated with aspects of disease severity in PD. These findings suggest that pathways associated with aging might be targets for future biomarker research in PD.


Assuntos
Doença de Parkinson , Biomarcadores , Proteínas do Líquido Cefalorraquidiano , Estudos de Coortes , Humanos , Longevidade , Testes de Estado Mental e Demência , Doença de Parkinson/genética
2.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801956

RESUMO

Diabetes mellitus is a major healthcare problem. It is not only characterized by hyperglycemia and chronic complications, but in longer lasting diabetes and a longer living population, it is also associated with accelerated arterial ageing, which importantly contributes to cardiovascular complications. The accelerated arterial ageing in patients with diabetes should be considered separately from arterial ageing in patients without diabetes. Basic and clinical research have allowed better insight into the mechanisms of arterial ageing. In a simplified mechanistic way, it could be considered that the three tightly connected cornerstone characteristics of arterial ageing in patients with diabetes are: phenotypic presentation as endothelial dysfunction and arterial stiffness, and the underlying basic ageing-facilitating mechanism represented as the impaired expression of genetic longevity pathways. Currently, specific drugs for preventing/treating arterial ageing are not available. Therefore, we aimed to review the capacity of available drugs, particularly antidiabetic drugs, to interfere with the arterial ageing process. In the near future, these characteristics could help to guide therapy in patients with diabetes. Overall, it appears that arterial ageing could become a new target in diabetes. The expanding knowledge regarding the capability of antidiabetic drugs and other available drugs to inhibit/delay arterial aging is therefore essential.


Assuntos
Envelhecimento , Artérias/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Diabetes Mellitus/fisiopatologia , Calcificação Vascular/fisiopatologia , Rigidez Vascular/fisiologia , Artérias/efeitos dos fármacos , Artérias/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/metabolismo , Rigidez Vascular/efeitos dos fármacos
3.
Cas Lek Cesk ; 159(2): 81-87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32434341

RESUMO

Aging is an extremely complex phenomenon that has many manifestations at the molecular, cellular, and whole-body levels, and in some form involves virtually all living beings. It is a process characterized by a general progressive deterioration of the physiological functions of the organism leading to increased susceptibility to diseases. This article summarizes the basic features and molecular hallmarks of aging and describes some of the genetic mechanisms of this phenomenon. It deals with the particular genes and molecular pathways involved in the regulation of aging as well as promising possibilities of interventions affecting this process.


Assuntos
Envelhecimento , Longevidade , Envelhecimento/genética , Humanos
4.
Int J Mol Sci ; 20(8)2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31013989

RESUMO

The incidence of aging-related disorders may be decreased through strategies influencing the expression of longevity genes. Although numerous approaches have been suggested, no effective, safe, and easily applicable approach is yet available. Efficacy of low-dose fluvastatin and valsartan, separately or in combination, on the expression of the longevity genes in middle-aged males, was assessed. Stored blood samples from 130 apparently healthy middle-aged males treated with fluvastatin (10 mg daily), valsartan (20 mg daily), fluvastatin-valsartan combination (10 and 20 mg, respectively), and placebo (control) were analyzed. They were taken before and after 30 days of treatment and, additionally, five months after treatment discontinuation. The expression of the following longevity genes was assessed: SIRT1, PRKAA, KLOTHO, NFE2L2, mTOR, and NF-κB. Treatment with fluvastatin and valsartan in combination significantly increased the expression of SIRT1 (1.8-fold; p < 0.0001), PRKAA (1.5-fold; p = 0.262) and KLOTHO (1.7-fold; p < 0.0001), but not NFE2L2, mTOR and NF-κB. Both fluvastatin and valsartan alone significantly, but to a lesser extent, increased the expression of SIRT1, and did not influence the expression of other genes. Five months after treatment discontinuation, genes expression decreased to the basal levels. In addition, analysis with previously obtained results revealed significant correlation between SIRT1 and both increased telomerase activity and improved arterial wall characteristics. We showed that low-dose fluvastatin and valsartan, separately and in combination, substantially increase expression of SIRT1, PRKAA, and KLOTHO genes, which may be attributed to their so far unreported pleiotropic beneficial effects. This approach could be used for prevention of ageing (and longevity genes)-related disorders.


Assuntos
Fluvastatina/farmacologia , Expressão Gênica/efeitos dos fármacos , Longevidade/genética , Doenças Neurodegenerativas/prevenção & controle , Valsartana/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Adulto , Envelhecimento/genética , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Relação Dose-Resposta a Droga , Feminino , Fluvastatina/uso terapêutico , Glucuronidase/genética , Humanos , Proteínas Klotho , Masculino , Pessoa de Meia-Idade , Efeito Placebo , Sirtuína 1/genética , Telomerase/metabolismo , Valsartana/uso terapêutico
5.
Int J Mol Sci ; 19(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469478

RESUMO

Low-grade chronic inflammation is a common denominator in atherogenesis and related diseases. Solid evidence supports the occurrence of an impairment in the innate and adaptive immune system with senescence, favoring the development of acute and chronic age-related diseases. Cardiovascular (CV) diseases (CVD), in particular, are a leading cause of death even at older ages. Inflammation-associated mechanisms that contribute to CVD development include dysregulated redox and metabolic pathways, genetic modifications, and infections/dysbiosis. In this review, we will recapitulate the determinants and consequences of the immune system dysfunction at older age, with particular focus on the CV system. We will examine the currently available and potential future strategies to counteract accelerated CV aging, i.e., nutraceuticals, probiotics, caloric restriction, physical activity, smoking and alcohol cessation, control of low-grade inflammation sources, senolytic and senescence-modulating drugs, and DNA-targeting drugs.


Assuntos
Envelhecimento/imunologia , Sistema Cardiovascular/imunologia , Imunossenescência , Animais , Sistema Cardiovascular/crescimento & desenvolvimento , Humanos , Inflamação/imunologia
6.
Biochem Biophys Res Commun ; 472(1): 114-7, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26903298

RESUMO

The autonomic nervous system (ANS) responds to many kinds of stressors to maintain homeostasis. Although the ANS is believed to regulate stress tolerance, the exact mechanism underlying this is not well understood. To understand this, we focused on longevity genes, which have functions such as lifespan extension and promotion of stress tolerance. To understand the relationship between ANS and longevity genes, we analyzed stress tolerance of Caenorhabditis elegans treated with octopamine, which has an affinity to noradrenaline in insects, and acetylcholine. Octopamine and acetylcholine did not show resistance against H2O2, but the neurotransmitters promoted thermotolerance via DAF-16. However, chronic treatment with octopamine and acetylcholine did not extend the lifespan, although DAF-16 plays an important role in longevity. In conclusion, our results show that octopamine and acetylcholine activate DAF-16 in response to stress, but chronic induction of octopamine and acetylcholine is not beneficial for increasing longevity.


Assuntos
Acetilcolina/farmacologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Octopamina/farmacologia , Acetilcolina/fisiologia , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genes de Helmintos , Proteínas de Choque Térmico/genética , Longevidade/efeitos dos fármacos , Longevidade/genética , Longevidade/fisiologia , Octopamina/fisiologia , Estresse Oxidativo , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Temperatura
7.
Nutr Metab Cardiovasc Dis ; 25(7): 686-93, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25921843

RESUMO

BACKGROUND AND AIMS: Prediabetes increases cardiovascular risk and is associated with excess mortality. In preclinical models, metformin has been shown to exert anti-ageing effects. In this study, we sought to assess whether metformin modulates putative effector longevity programs in prediabetic subjects. METHODS AND RESULTS: In a randomized, single-blind, placebo-controlled trial, 38 prediabetic subjects received metformin (1500 mg/day) or placebo for 2 months. At baseline and after treatment, we collected anthropometric and metabolic parameters. Gene and protein levels of SIRT1, mTOR, p53, p66Shc, SIRT1 activity, AMPK activation, telomere length, and SIRT1 promoter chromatin accessibility were determined in peripheral blood mononuclear cells (PBMCs). Plasma N-glycans, non-invasive surrogate markers of ageing, were also analysed. Compared to baseline, metformin significantly improved metabolic parameters and insulin sensitivity, increased SIRT1 gene/protein expression and SIRT1 promoter chromatin accessibility, elevated mTOR gene expression with concomitant reduction in p70S6K phosphorylation in subjects' PBMCs, and modified the plasma N-glycan profile. Compared to placebo, metformin increased SIRT1 protein expression and reduced p70S6K phosphorylation (a proxy of mTOR activity). Plasma N-glycans were also favourably modified by metformin compared to placebo. CONCLUSION: In individuals with prediabetes, metformin ameliorated effector pathways that have been shown to regulate longevity in animal models. ClinicalTrials. gov identifier: NCT01765946 - January 2013.


Assuntos
Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Monócitos/efeitos dos fármacos , Estado Pré-Diabético/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/sangue , Biomarcadores/sangue , Glicemia/metabolismo , Morte Celular/efeitos dos fármacos , Feminino , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Polissacarídeos/sangue , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Encurtamento do Telômero/efeitos dos fármacos
8.
Mitochondrion ; 59: 17-29, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839321

RESUMO

The purpose of our study is to determine the protective effects of the newly discovered molecule DDQ (diethyl (3,4-dihydroxyphenethylamino)(quinolin-4-yl) methylphosphonate) against mutant APP and amyloid-beta (Aß) in Alzheimer's disease (AD). To achieve our objective, we used a well characterized amyloid-beta precursor protein (APP) transgenic mouse model (Tg2576 strain). We administered DDQ, a 20 mg/kg body weight (previously determined in our laboratory) intra-peritoneally 3-times per week for 2 months, starting at the beginning of the 12th month, until the end of the 14th month. Further, using biochemical and molecular methods, we measured the levels of DDQ in the blood, skeletal muscle, and brain. Using Morris Water Maze, Y-maze, open field, and rotarod tests, we assessed cognitive behavior after DDQ treatment. Using q-RT-PCR, immunoblotting, transmission electron microscopy, and Golgi-cox staining methods, we studied mRNA and protein levels of longevity genes SIRTUINS, mitochondrial number & length, and dendritic spine number and length in DDQ-treated APP mice. Our extensive pharmacodynamics analysis revealed high peak levels of DDQ in the skeletal muscle, followed by serum and brain. Our behavioral analysis of rotarod, open field, Y-maze, and Morris Water Maze tests revealed that DDQ ameliorated cognitive decline (Morris Water Maze), improved working memory (Y-Maze), exploratory behavior (open field), and motor coordination (rotarod) in DDQ-treated APP mice. Interestingly, longevity genes SIRTUINS, mitochondrial biogenesis, fusion, mitophagy, autophagy and synaptic genes were upregulated in DDQ-treated APP mice relative to untreated APP mice. Dendritic spines and the quality mitochondria were significantly increased in DDQ treated APP mice. Current study findings, together with our previous study observations, strongly suggest that DDQ has anti-aging, and anti-amyloid-beta effects and a promising molecule to reduce age-and amyloid-beta-induced toxicities in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intraperitoneais , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Mutação , Sirtuínas/genética , Sirtuínas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacocinética
9.
Mol Neurobiol ; 58(7): 3588-3600, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33768469

RESUMO

The purpose of our study is to determine the protective effects of the newly discovered molecule DDQ (diethyl (3,4-dihydroxyphenethylamino)(quinolin-4-yl) methylphosphonate) against aging in an in vitro, mouse primary hippocampal neurons, HT22 cells, and in vivo, 24-month-old C57BL6/J mice. Using biochemical and molecular methods, we studied the half-life period in the blood and brain, optimized the dose, determined dose-response (using 1, 5, 10, 20, and 50 mg/kg body weight), and measured the levels of blood, skeletal muscle, and brain. Using Morris water maze (cognitive behavior), q-RT-PCR (mRNA and protein levels of longevity genes SIRTUINS), transmission electron microscopy (mitochondrial number and length), and Golgi-Cox staining (dendritic spine number and length) were assessed in 24-month-old C57BL6/J mice. Out of 5 different doses of DDQ, the 20 mg/kg body weight dose showed the strongest protective effects against aging in C57BL6/J mice. The half-life time of DDQ is 20 h in the serum and 12 h in the brain. Our extensive pharmacodynamics analysis revealed high peak levels of DDQ in the skeletal muscle, followed by serum and brain. Using mouse primary hippocampal (HT22) neurons and 24-month-old C57BL6/J mice, we tested the protective effects of DDQ. Interestingly, longevity genes SIRTUINS were upregulated in DDQ-treated HT22 cells, and DDQ-treated aged wild-type mice relative to DDQ-untreated cells and untreated aged control mice. Dendritic spines and the quality of mitochondria were significantly increased in DDQ-treated aged mice. Current study findings, together with our previous study observations, strongly suggest that DDQ has anti-aging effects and warrants further investigations of anti-inflammatory, anti-DNA damage, and telomerase activity studies.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Dopaminérgicos/farmacologia , Envelhecimento/metabolismo , Animais , Antioxidantes/química , Encéfalo/metabolismo , Linhagem Celular , Dopaminérgicos/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
10.
Vavilovskii Zhurnal Genet Selektsii ; 24(5): 451-458, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33659828

RESUMO

Conservation of plant genetic diversity, including economically important crops, is the foundation for food safety. About 90 % of the world's crop genetic diversity is stored as seeds in genebanks. During storage seeds suffer physiological stress consequences, one of which is the accumulation of free radicals, primarily reactive oxygen species (ROS). An increase in ROS leads to oxidative stress, which negatively affects the quality of seeds and can lead to a complete loss of their viability. The review summarizes data on biochemical processes that affect seed longevity. The data on the destructive effect of free radicals towards plant cell macromolecules are analyzed, and the ways to eliminate excessive ROS in plants, the most important of which is the glutathioneascorbate pathway, are discussed. The relationship between seed dormancy and seed longevity is examined. Studying seeds of different plant species revealed a negative correlation between seed dormancy and longevity, while various authors who researched Arabidopsis seeds reported both positive and negative correlations between dormancy and seed longevity. A negative correlation between seed dormancy and viability probably means that seeds are able to adapt to changing environmental conditions. This review provides a summary of Arabidopsis genes associated with seed viability. By now, a significant number of loci and genes affecting seed longevity have been identified. This review contains a synopsis of modern studies on the viability of barley seeds. QTLs associated with barley seed longevity were identified on chromosomes 2H, 5H and 7H. In the QTL regions studied, the Zeo1, Ale, nud, nadp-me, and HvGR genes were identified. However, there is still no definite answer as to which genes would serve as markers of seed viability in a certain plant species.

11.
Front Genet ; 9: 586, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542372

RESUMO

Mutations of a single gene can lead to a major increase in longevity in organisms ranging from yeast and worms to insects and mammals. Discovering these mutations (sometimes referred to as "longevity genes") led to identification of evolutionarily conserved molecular, cellular, and organismal mechanisms of aging. Studies in mice provided evidence for the important role of growth hormone (GH) signaling in mammalian aging. Mice with mutations or gene deletions leading to GH deficiency or GH resistance have reduced body size and delayed maturation, but are healthier and more resistant to stress, age slower, and live longer than their normal (wild type) siblings. Mutations of the same genes in people can provide remarkable protection from age-related disease, but have no consistent impact on lifespan. Ongoing research indicates that genetic defects in GH signaling are linked to extension of healthspan and lifespan via a variety of interlocking mechanism, including improvements in genome and stem cell maintenance, stress resistance, glucose homeostasis, and thermogenesis, along with reductions in the mechanistic target of rapamycin (mTOR) C1 complex signaling and in chronic low grade inflammation.

12.
Aging Cell ; 16(6): 1267-1275, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28836369

RESUMO

Hundreds of genes, when manipulated, affect the lifespan of model organisms (yeast, worm, fruit fly, and mouse) and thus can be defined as longevity-associated genes (LAGs). A major challenge is to determine whether these LAGs are model-specific or may play a universal role as longevity regulators across diverse taxa. A wide-scale comparative analysis of the 1805 known LAGs across 205 species revealed that (i) LAG orthologs are substantially overrepresented, from bacteria to mammals, compared to the entire genomes or interactomes, and this was especially noted for essential LAGs; (ii) the effects on lifespan, when manipulating orthologous LAGs in different model organisms, were mostly concordant, despite a high evolutionary distance between them; (iii) LAGs that have orthologs across a high number of phyla were enriched in translational processes, energy metabolism, and DNA repair genes; (iv) LAGs that have no orthologs out of the taxa in which they were discovered were enriched in autophagy (Ascomycota/Fungi), G proteins (Nematodes), and neuroactive ligand-receptor interactions (Chordata). The results also suggest that antagonistic pleiotropy might be a conserved principle of aging and highlight the importance of overexpression studies in the search for longevity regulators.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/genética , Longevidade/genética , Saccharomyces cerevisiae/genética , Animais , Humanos
13.
Age (Dordr) ; 28(4): 313-32, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22253498

RESUMO

Centenarians represent a rare phenotype appearing in roughly 10-20 per 100,000 persons in most industrialized countries but as high as 40-50 per 100,000 persons in Okinawa, Japan. Siblings of centenarians in Okinawa have been found to have cumulative survival advantages such that female centenarian siblings have a 2.58-fold likelihood and male siblings a 5.43-fold likelihood (versus their birth cohorts) of reaching the age of 90 years. This is indicative of a strong familial component to longevity. Centenarians may live such extraordinarily long lives in large part due to genetic variations that either affect the rate of aging and/or have genes that result in decreased susceptibility to age-associated diseases. Some of the most promising candidate genes appear to be those involved in regulatory pathways such as insulin signaling, immunoinflammatory response, stress resistance or cardiovascular function. Although gene variants with large beneficial effects have been suggested to exist, only APOE, an important regulator of lipoproteins has been consistently associated with a longer human lifespan across numerous populations. As longevity is a very complex trait, several issues challenge our ability to identify its genetic influences, such as control for environmental confounders across time, the lack of precise phenotypes of aging and longevity, statistical power, study design and availability of appropriate study populations. Genetic studies on the Okinawan population suggest that Okinawans are a genetically distinct group that has several characteristics of a founder population, including less genetic diversity, and clustering of specific gene variants, some of which may be related to longevity. Further work on this population and other genetic isolates would be of significant interest to the genetics of human longevity.

14.
Mol Aspects Med ; 50: 88-108, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27164416

RESUMO

Frailty is associated with loss of functional reserve as well as with the prediction of adverse events in the old population. The traditional criteria of frailty are based on five physical determinations described in the Cardiovascular Health Study. We propose that biological and genetic markers of frailty should be used to increase the predictive capacity of the established clinical indeces. In recent times, research for biological markers of frailty has gained impetus. Finding a biological markers with diagnostic and prognostic capacity would be a major milestone to identify frailty risk, and also pre-frailty status. In the first section of the manuscript, we review the available biomarkers that help to monitor and prevent the evolution and the efficacy of interventions to delay the onset of frailty and to prevent its progression to incapacity. We also discuss the contribution of genetics to frailty. There are scientific bases that support that genetics influences frailty, although environmental factors probably will have the highest contribution. We review the known SNPs of the genes associated with frailty and classify them, taking into account the pathway in which they are involved. We also highlight the importance of longevity genes and their possible relation with frailty, citing centenarians who reach a very old age as an example of successful ageing. Finally, the reversibility of frailty is discussed. It can potentially be treated with nutritional or pharmacological interventions. However, physical exercise seems to be the most effective strategy to treat and prevent frailty. The last section of the manuscript is devoted to explaining the recommendations on the appropriate design of an exercise protocol to maximize its beneficial effects in a population of frail individuals.


Assuntos
Envelhecimento/fisiologia , Avaliação Geriátrica , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores , Epistasia Genética , Exercício Físico , Idoso Fragilizado , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Longevidade/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Polimorfismo de Nucleotídeo Único , Transdução de Sinais
15.
Ageing Res Rev ; 24(Pt B): 218-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318059

RESUMO

Drosophila is one of the most convenient model organisms in the genetics of aging and longevity. Unlike the nematodes, which allow for the detection of new pro-aging genes by knockout and RNAi-mediated knock-down, Drosophila also provides an opportunity to find new pro-longevity genes by driver-induced overexpression. Similar studies on other models are extremely rare. In this review, we focused on genes whose overexpression prolongs the life of fruit flies. The majority of longevity-associated genes regulates metabolism and stress resistance, and belongs to the IGF-1R, PI3K, PKB, AMPK and TOR metabolic regulation cluster and the FOXO, HDAC, p53 stress response cluster.


Assuntos
Envelhecimento/fisiologia , Proteínas de Drosophila/genética , Longevidade/genética , Animais , Drosophila melanogaster , Humanos
16.
Front Genet ; 6: 204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106407

RESUMO

Indy (I'm Not Dead Yet) encodes the fly homolog of a mammalian SLC13A5 plasma membrane transporter. INDY is expressed in metabolically active tissues functioning as a transporter of Krebs cycle intermediates with the highest affinity for citrate. Decreased expression of the Indy gene extends longevity in Drosophila and C. elegans. Reduction of INDY or its respective homologs in C. elegans and mice induces metabolic and physiological changes similar to those observed in calorie restriction. It is thought that these physiological changes are due to altered levels of cytoplasmic citrate, which directly impacts Krebs cycle energy production as a result of shifts in substrate availability. Citrate cleavage is a key event during lipid and glucose metabolism; thus, reduction of citrate due to Indy reduction alters these processes. With regards to mammals, mice with reduced Indy (mIndy(-/-)) also exhibit changes in glucose metabolism, mitochondrial biogenesis and are protected from the negative effects of a high calorie diet. Together, these data support a role for Indy as a metabolic regulator, which suggests INDY as a therapeutic target for treatment of diet and age-related disorders such as Type II Diabetes and obesity.

17.
Front Genet ; 4: 3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23346098

RESUMO

BACKGROUND AND OBJECTIVE: The influence of genes on human lifespan is mediated by biological processes that characterize body's functioning. The age trajectories of these processes contain important information about mechanisms linking aging, health, and lifespan. The objective of this paper is to investigate regularities of aging changes in different groups of individuals, including individuals with different genetic background, as well as their connections with health and lifespan. DATA AND METHOD: To reach this objective we used longitudinal data on four physiological variables, information about health and lifespan collected in the Framingham Heart Study (FHS), data on longevity alleles detected in earlier study, as well as methods of statistical modeling. RESULTS: We found that phenotypes of exceptional longevity and health are linked to distinct types of changes in physiological indices during aging. We also found that components of aging changes differ in groups of individuals with different genetic background. CONCLUSIONS: These results suggest that factors responsible for exceptional longevity and health are not necessary the same, and that postponing aging changes is associated with extreme longevity. The genetic factors which increase lifespan are associated with physiological changes typical of healthy and long-living individuals, smaller mortality risks from cancer and CVD and better estimates of adaptive capacity in statistical modeling. This indicates that extreme longevity and health related traits are likely to be less heterogeneous phenotypes than lifespan, and studying these phenotypes separately from lifespan may provide additional information about mechanisms of human aging and its relation to chronic diseases and lifespan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA