Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
BMC Genomics ; 25(1): 622, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902599

RESUMO

BACKGROUND: Global per capita meat consumption continues to rise, especially pork. Meat quality is influenced by the content of intramuscular fat (IMF) as a key factor. The longissimus dorsi muscle of Dahe pigs (DHM, IMF: 7.98% ± 1.96%) and Dahe black pigs (DHBM, IMF: 3.30% ± 0.64%) was studied to explore cellular heterogeneity and differentially expressed genes (DEGs) associated with IMF deposition using single-nucleus RNA sequencing (snRNA-seq). The lipid composition was then analyzed using non-targeted lipidomics. RESULTS: A total of seven cell subpopulations were identified, including myocytes, fibroblast/fibro/adipogenic progenitors (FAPs), satellite cells, endothelial cells, macrophages, pericytes, and adipocytes. Among them, FAPs and adipocytes were more focused because they could be associated with lipid deposition. 1623 DEGs in the FAPs subpopulation of DHBM were up-regulated compared with DHM, while 1535 were down-regulated. These DEGs enriched in the glycolysis/gluconeogenesis pathway. 109 DEGs were up-regulated and 806 were down-regulated in the adipocyte subpopulation of DHBM compared with DHM, which were mainly enriched in the PPAR signaling pathway and fatty acid (FA) biosynthesis. The expression level of PPARG, ABP4, LEP, and ACSL1 genes in DHM was higher than that in DHBM. Lipidomics reveals porcine lipid composition characteristics of muscle tissue. A total of 41 lipid classes and 2699 lipid species were identified in DHM and DHBM groups. The top ten relative peak areas of lipid classes in DHM and DHBM were triglyceride (TG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), diglyceride (DG), cardiolipin (CL), ceramides (Cer), Simple Glc series (Hex1Cer), sphingomyelin (phSM), and phosphatidylinositol (PI). The relative peak areas of 35 lipid species in DHM were lower than DHBM, and 28 lipid species that were higher. There was a significant increase in the TG fatty acyl chains C6:0, C17:0, and C11:4, and a significant decrease in C16:0, C18:1, C18:2, and C22:4 in DHBM (p < 0.05). CONCLUSIONS: C16:0 FA may downregulate the expression level of PPARG gene, which leads to the downregulation of fat metabolism-related genes such as ACSL, PLIN2, and FABP4 in DHBM compared with DHM. This may be the reason that the lipid deposition ability of Dahe pigs is stronger than that of Dahe black pigs, which need further investigation.


Assuntos
Metabolismo dos Lipídeos , Músculo Esquelético , Animais , Suínos , Músculo Esquelético/metabolismo , Metabolismo dos Lipídeos/genética , Lipidômica , Análise de Sequência de RNA , Análise de Célula Única , Lipídeos/análise , Perfilação da Expressão Gênica
2.
Curr Issues Mol Biol ; 46(1): 340-354, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38248324

RESUMO

The development of skeletal muscle in pigs might determine the quality of pork. In recent years, long non-coding RNAs (lncRNAs) have been found to play an important role in skeletal muscle growth and development. In this study, we investigated the whole transcriptome of the longissimus dorsi muscle (LDM) of Jinfen White pigs at three developmental stages (1, 90, and 180 days) and performed a comprehensive analysis of lncRNAs, mRNAs, and micro-RNAs (miRNAs), aiming to find the key regulators and interaction networks in Jinfen White pigs. A total of 2638 differentially expressed mRNAs (DE mRNAs) and 982 differentially expressed lncRNAs (DE lncRNAs) were identified. Compared with JFW_1d, there were 497 up-regulated and 698 down-regulated DE mRNAs and 212 up-regulated and 286 down-regulated DE lncRNAs in JFW_90d, respectively. In JFW_180d, there were 613 up-regulated and 895 down-regulated DE mRNAs and 184 up-regulated and 131 down-regulated DE lncRNAs compared with JFW_1d. There were 615 up-regulated and 477 down-regulated DE mRNAs and 254 up-regulated and 355 down-regulated DE lncRNAs in JFW_180d compared with JFW_90d. Compared with mRNA, lncRNA has fewer exons, fewer ORFs, and a shorter length. We performed GO and KEGG pathway functional enrichment analysis for DE mRNAs and the potential target genes of DE lncRNAs. As a result, several pathways are involved in muscle growth and development, such as the PI3K-Akt, MAPK, hedgehog, and hippo signaling pathways. These are among the pathways through which mRNA and lncRNAs function. As part of this study, bioinformatic screening was used to identify miRNAs and DE lncRNAs that could act as ceRNAs. Finally, we constructed an lncRNA-miRNA-mRNA regulation network containing 26 mRNAs, 7 miRNAs, and 17 lncRNAs; qRT-PCR was used to verify the key genes in these networks. Among these, XLOC_022984/miR-127/ENAH and XLOC_016847/miR-486/NRF1 may function as key ceRNA networks. In this study, we obtained transcriptomic profiles from the LDM of Jinfen White pigs at three developmental stages and screened out lncRNA-miRNA-mRNA regulatory networks that may provide crucial information for the further exploration of the molecular mechanisms during skeletal muscle development.

3.
BMC Vet Res ; 20(1): 67, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38395831

RESUMO

BACKGROUND: Yaks (Bos grunniens), prized for their ability to thrive in high-altitude environments, are indispensable livestock in the plateau region. Modifying their feeding systems holds significant promise for improving their growth and meat quality. Tenderness, a key determinant of yak meat quality and consumer appeal, is demonstrably influenced by dietary regimen. Indoor feeding regimes have been shown to enhance tenderness by lowering shear stress and optimizing pH values. CircRNAs, well-known modulators of circulatory function, also play a crucial role in skeletal muscle development across various animal species. However, their functional significance in yak skeletal muscle remains largely unexplored. RESULTS: In this study, we identified a total of 5,534 circRNAs within the longissimus dorsi muscle, and we found 51 differentially expressed circRNAs (20 up-regulated and 31 down-regulated) between the two feeding groups. Constructing a comprehensive ceRNA network illuminated intricate regulatory mechanisms, with PGP and circRNA_0617 converging on bta-miR-2285q, mirrored by KLF15/circRNA_0345/bta-miR-20b and CTSF/circRNA_0348/bta-miR-146a. These findings shed light on the potential of circRNAs to influence yak muscle development and meat quality, offering valuable insights for future research. CONCLUSIONS: This investigation unraveled a complex interaction network between circRNAs、mRNAs and miRNAs in yak skeletal muscle. We further elucidated the target genes regulated by these target genes within the network, offering valuable insights into the potential regulatory mechanisms governing muscle development and meat quality-related traits in yaks.


Assuntos
MicroRNAs , RNA Circular , Bovinos/genética , Animais , RNA Circular/genética , RNA Endógeno Competitivo , MicroRNAs/genética , RNA Mensageiro/genética , Carne/análise
4.
BMC Vet Res ; 20(1): 95, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461255

RESUMO

BACKGROUND: We investigated breed and gender variations in the compositions of long-chain (≥ C20) omega-3 polyunsaturated fatty acids (LC omega-3 PUFA), fat melting point (FMP) and intramuscular fat (IMF) contents in biopsy samples of the M. longissimus dorsi muscle of grazing beef cattle. The hypothesis that biopsy compositions of health-beneficial LC omega-3 PUFA, FMP and IMF in a pasture-based production system will vary with breed, was tested. Muscle biopsies were taken from 127 yearling pasture-based Angus, Hereford, and Wagyu heifers and young bulls exclusive to the Australian Bowen Genetics Forest Pastoral breeding stud averaging 12 ± 2.43 months of age and under the same management routine. RESULTS: Breed had a significant influence on IMF, FMP, and the compositions of oleic acid, α-linolenic acid (ALA), eicosapentaenoic (EPA), docosahexaenoic (DHA), docosapentaenoic (DPA), and total EPA + DHA + DPA in the M. longissimus dorsi muscle biopsies (P ≤ 0.03). The Wagyu breed had the highest (11.1%) and Hereford the lowest (5.9%) IMF (P = 0.03). The reverse trend was observed in FMP values where the Hereford breed had the highest (55 °C), Angus intermediate (46.5 °C), and Wagyu the lowest (33 °C) FMP. The Wagyu and Angus breeds had similar oleic fatty acid (18:1n-9) content, while the Hereford breed had the lowest (P < 0.01). The highest ALA, DPA, total EPA + DHA, total EPA + DHA + DPA and total ALA + EPA + DHA + DPA contents were detected in the Wagyu breed (P ≤ 0.03). The Hereford had similar EPA and DPA contents to the Angus (P ≥ 0.46). Total EPA + DHA + DPA contents in Wagyu, Angus, and Hereford were 28.8, 21.5, and 22.1 mg/100g tissue (P = 0.01), respectively. Sex was an important source of variation that influenced LC omega-3 PUFA composition, FMP and IMF, where yearling heifers had higher IMF (11.9% vs 5.3%), lower FMP (33°C vs 37°C), and higher LC omega-3 PUFA than bulls. CONCLUSION: All the results taken together indicate that the Wagyu breed at 28.8 mg/100g tissue, was the closest to meeting the Australia and New Zealand recommended source level threshold of 30 mg/100g tissue of health-beneficial ≥ C20 omega-3 FA content. Since gender was a significant determinant of LC omega-3 PUFA composition, IMF content and FMP, it should be factored into enhancement strategies of healthy meat eating quality traits in grazing cattle. These findings also suggest that the Bowen Genetics Forest Pastoral beef cattle studs are important sources of LC omega-3 PUFA that can be used to cover the deficit in these health claimable fatty acids in Western diets.


Assuntos
Dipeptídeos , Ácidos Graxos Ômega-3 , Bovinos/genética , Animais , Masculino , Feminino , Austrália , Ácidos Graxos , Músculos
5.
Anim Genet ; 55(2): 238-248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38175181

RESUMO

Intramuscular fat refers to the adipose tissue distributed in the muscle. It is an important indicator that affects the quality of goat meat, and can directly affect the tenderness and flavor of goat meat. Our previous study revealed the mRNA that may be crucial for intramuscular fat deposition during goat growth; however, how the microRNAs (miRNAs) are involved in the process is largely unclear. In the present study, a total of 401 known miRNAs and 120 goat novel miRNAs, including 110 differentially expressed (DE) miRNAs, were identified among longissimus dorsi from three growth stages (2, 9, and 24 months) by miRNA sequencing. Combining analysis of the DE mRNAs and DE miRNAs was then performed by miRDB and miRwalk, and miR-145-5p and FOXO1, miR-487b-3p, and PPARG coactivator 1 α (PPARGC1A), miR-345-3p, and solute carrier family 2 member 4 (SLC2A4), etc. were shown to closely associate with lipid metabolism, which was then validated by a correlation analysis. The final DE mRNAs were significantly enriched in fatty acid transmembrane transport, fatty acid homeostasis, apelin signaling pathway, glucagon signaling pathway, insulin signaling pathway, and AMPK signaling pathway by gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Besides, miR-145-5p showed a certain effect on goat intramuscular fat metabolism by acting on the possible target gene Forkhead Box O1 (FOXO1). These data provide some theoretical support for improving the quality of goat meat.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , RNA Mensageiro/genética , Cabras/genética , Cabras/metabolismo , Tecido Adiposo/metabolismo , Ácidos Graxos
6.
Anim Biotechnol ; 35(1): 2294785, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38193799

RESUMO

Yak is an important dominant livestock species at high altitude, and the growth performance of yak has obvious differences under different feeding methods. This experiment was conducted to compare the effects of different feeding practices on growth performance and meat quality of yaks through combined transcriptomic and metabolomic analyses. In terms of yak growth performance, compared with traditional grazing, in-house feeding can significantly improve the average daily weight gain, carcass weight and net meat weight of yaks; in terms of yak meat quality, in-house feeding can effectively improve the quality of yak meat. A combined transcriptomic and metabolomic analysis revealed 31 co-enriched pathways, among which arginine metabolism, proline metabolism and glycerophospholipid metabolism may be involved in the development of the longissimus dorsi muscle of yak and the regulation of meat quality-related traits. The experimental results increased our understanding of yak meat quality and provided data materials for subsequent deep excavation of the mechanism of yak meat quality.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Bovinos/genética , Animais , Perfilação da Expressão Gênica/veterinária , Músculo Esquelético/metabolismo , Carne/análise
7.
Anim Biotechnol ; : 2379883, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051919

RESUMO

This study investigates the transcriptome-level alterations that influence production traits and early fattening stage myogenesis in Hanwoo cattle, specifically focusing on the highly prized Longissimus dorsi (LD) and Psoas major (PM) skeletal muscles, which hold significant commercial value. We conducted RNA sequencing analysis on LD and PM muscles from 14 Hanwoo steers (n = 7, each group) at the age of 10 months, all fed the same diet. Our results unveiled a total of 374 and 206 up-regulated differentially expressed genes (DEGs) in LD and PM muscles, respectively, with statistical significance (p < 0.05) and a log2fold change ≥ 1. Genes governing muscle development processes, such as PAX3, MYL3, COL11A1, and MYL6B, were found to be expressed at higher levels in both tissues. Conversely, genes regulating lipid metabolism, including FABP3, FABP4, LEP, ADIPOQ, and PLIN1, exhibited higher expression in the PM muscle. Functional enrichment analysis revealed a tissue-specific response, as PM muscle showed increased lipid metabolism allied pathways, including the PPAR signaling pathway and regulation of lipolysis in adipocytes, while LD was characterized by growth and proliferative processes. Our findings validate the presence of a muscle-dependent transcription and co-expression pattern that elucidates the transcriptional landscape of bovine skeletal muscle.

8.
J Dairy Sci ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389303

RESUMO

The objective of this study was to evaluate changes in longissimus dorsi muscle depth (LDD) across lactation (0 to 300 DIM) and identify the impact of low versus high muscle reserves immediately after parturition on body weight and body reserve changes as well as production variables across a 300-d lactation. Forty multiparous cows were classified as high muscle (HM; LDD > 5.0 cm; n = 18) or low muscle (LM; LDD ≤ 5.0 cm; n = 22) based on LDD measurements collected within 24 h of parturition. Body weights (BW) and ultrasound scans to assess LDD and back fat depth (BFD) were collected monthly from parturition until 300 DIM. Ultrasound scans captured and measured using available software. Blood samples were taken at 7, 150 and 300 DIM, and plasma was analyzed for markers of metabolic status by measuring insulin, nonesterified fatty acids (NEFA), creatinine, and 3-methylhistidine (3-MH). Milk yield was recorded daily and milk components were analyzed monthly. Data analysis was performed and the statistical models included the fixed effect of muscle group, time, their interaction, and the random effect of cow nested within muscle group with repeated measures using a first-order autoregressive covariance structure. Muscle group was not related with BW or BFD for any of the time points measured. Cows lost BW from 0 to 60 DIM and gained weight from 60 to 300 DIM. Similarly, BFD decreased between 0 to 90 DIM and increased BFD after 90 DIM until 300 DIM. A muscle group by time interaction was observed for LDD. The HM cows had more muscle at 0 DIM, indicative of treatment assignment (1.34 cm more), and 300 DIM (0.78 cm more) and tended to have more muscle at 60 DIM (0.66 cm more) compared with LM. After 240 DIM, both muscle groups began net accretion of muscle reserves until 300 DIM. No differences were observed for blood metabolites measured based on muscle group. However, there were significant time effects for creatinine, 3-MH, and NEFA concentrations, which reflected the observed changes in BFD and LDD measured in ultrasound scans. For statistical analysis of daily milk production, observations were grouped into 3 stages of lactation, early (0-60 DIM), mid (60-240 DIM), and late lactation (240-300 DIM). There was a muscle group by stage of lactation interaction, where in early and mid-lactation, HM cows produced, on average, 1.9 kg more milk/d; however, in late lactation, LM cows produced 1.8 kg more milk/d. Our results indicate that muscle reserves are depleted in early lactation, and accreted in late lactation, whereas BW and BFD started to increase by 90 DIM. Data also supports that cows with more extensive muscle depletion in early lactation had greater milk production, however, substantial muscle accretion in late lactation may result in reduced milk production.

9.
J Dairy Sci ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098492

RESUMO

Periparturient dairy cattle undergo physiological adaptations to support fetal growth and colostrum synthesis in late gestation and milk production in early lactation. To support energy and protein demands dairy cattle mobilize body tissue reserves. The objective of this study was to determine the effects of prepartum skeletal muscle reserves and supplementation of branched-chain volatile fatty acids (BCVFA) on body composition measurements, metabolic markers related to health, protein, and energy status, and subsequent milk yield in multiparous dairy cows. Skeletal muscle reserves were assessed by 3 ultrasounds of the longissimus dorsi muscle depth (LDD) measured 42 d before expected calving (BEC), and cows (n = 48) were assigned to either high muscle (HM; > 4.6 cm) or low muscle (LM; ≤ 4.6 cm) groups. Cows were then randomly assigned to either control (CON) of soyhull pellets (80 g/d) or BCVFA treatment which contained isobutyrate (40 g/d), isovalerate (20 g/d), and 2-methylbutyrate (20 g/d) calcium salt products. Treatments were top dressed from 42 BEC until parturition, resulting in 4 combinations of muscle groups and treatments: HM-CON (n = 13), HM-BCVFA (n = 13), LM-CON (n = 11), and LM-BCVFA (n = 11). Measurements of the LDD, BW, and BCS were taken on the following days relative to calving -42, -35, -21, -7, 0, 7, 14, 21, 28. Weekly blood samples were taken to measure glucose, BHB, and insulin concentrations, and 5 of the blood sample time points were utilized to determine 3-methylhistidine and creatinine blood concentrations. Milk yield was recorded daily for the first 28 d of lactation, and samples were taken from both milkings once a wk for the first 4 wk to determine components. The statistical model included the fixed effects of treatment, group, time, their interactions, and the random effect of cow nested within group and treatment. Prepartum muscle mobilization varied between muscle groups, as LM cows accreted muscle prepartum, and HM cows mobilized muscle. The HM cows had higher milk fat, protein, lactose, and energy corrected milk yields. The BCVFA supplementation tended to increase blood glucose concentrations both prepartum and postpartum and decreased milk urea nitrogen concentrations. Higher prepartum skeletal muscle reserves improve productivity of early lactation cows likely due to differences in muscle mobilization, and BCVFA supplementation improves glucose dynamics during the transition period, which may improve the metabolic health of the periparturient dairy cow.

10.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39337635

RESUMO

As a class of regulatory factors, microRNAs (miRNAs) play an important role in regulating normal muscle development and fat deposition. Muscle and adipose tissues, as major components of the animal organism, are also economically important traits in livestock production. However, the effect of miRNA expression profiles on the development of muscle and adipose tissues in yak is currently unknown. In this study, we performed RNA sequencing (RNA-Seq) on Tianzhu white yak longissimus dorsi muscle tissue obtained from calves (6 months of age, M6, n = 6) and young (30 months of age, M30, n = 6) and adult yak (54 months of age, M54, n = 6) to identify which miRNAs are differentially expressed and to investigate their temporal expression profiles, establishing a regulatory network of miRNAs associated with the development of muscle and adipose. The results showed that 1191 miRNAs and 22061 mRNAs were screened across the three stages, of which the numbers of differentially expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) were 225 and 450, respectively. The expression levels of the nine DE miRNAs were confirmed using a reverse transcription quantitative PCR (RT-qPCR) assay, and the trend of the assay results was generally consistent with the trend of the transcriptome profiles. Based on the expression trend, DE miRNAs were categorized into eight different expression patterns. Regarding the expression of DE miRNAs in sub-trends Profile 1 and Profile 2 (p < 0.05), the gene expression patterns were upregulated (87 DE miRNAs). Gene ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) analyses showed that the identified DE miRNAs and DE mRNAs were enriched in pathway entries associated with muscle and intramuscular fat (IMF) growth and development. On this basis, we constructed a DE miRNA-mRNA interaction network. We found that some DE mRNAs of interest overlapped with miRNA target genes, such as ACSL3, FOXO3, FBXO30, FGFBP4, TSKU, MYH10 (muscle development), ACOX1, FADS2, EIF4E2, SCD1, EL0VL5, and ACACB (intramuscular fat deposition). These results provide a valuable resource for further studies on the molecular mechanisms of muscle tissue development in yak and also lay a foundation for investigating the interactions between genes and miRNAs.


Assuntos
MicroRNAs , Desenvolvimento Muscular , Músculo Esquelético , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Bovinos , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tecido Adiposo/metabolismo
11.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892283

RESUMO

Skeletal muscle grows in response to a combination of genetic and environmental factors, and its growth and development influence the quality of pork. Elucidating the molecular mechanisms regulating the growth and development of skeletal muscle is of great significance to both animal husbandry and farm management. The Jiangquan black pig is an excellent pig breed based on the original Yimeng black pig, importing the genes of the Duroc pig for meat traits, and cultivated through years of scientific selection and breeding. In this study, full-length transcriptome sequencing was performed on three growth stages of Jiangquan black pigs, aiming to study the developmental changes in Jiangquan black pigs at different developmental stages at the molecular level and to screen the key genes affecting the growth of skeletal muscle in Jiangquan black pigs. We performed an enrichment analysis of genes showing differential expression and constructed a protein-protein interaction network with the aim of identifying core genes involved in the development of Jiangquan black pigs. Notably, genes such as TNNI2, TMOD4, PLDIM3, MYOZ1, and MYH1 may be potential regulators of muscle development in Jiangquan black pigs. Our results contribute to the understanding of the molecular mechanisms of skeletal muscle development in this pig breed, which will facilitate molecular breeding efforts and the development of pig breeds to meet the needs of the livestock industry.


Assuntos
Perfilação da Expressão Gênica , Músculo Esquelético , Transcriptoma , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Suínos/genética , Suínos/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Cruzamento , Mapas de Interação de Proteínas/genética
12.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256277

RESUMO

The introduction of single-cell RNA sequencing (scRNA-seq) technology has spurred additional advancements in analyzing the cellular composition of tissues. The longissimus dorsi (LD) in pigs serves as the primary skeletal muscle for studying meat quality in the pig industry. However, the single-cell profile of porcine LD is still in its infancy stage. In this study, we profiled the transcriptomes of 16,018 cells in the LD of a newborn Suhuai pig at single-cell resolution. Subsequently, we constructed a cellular atlas of the LD, identifying 11 distinct cell populations, including endothelial cells (24.39%), myotubes (18.82%), fibro-adipogenic progenitors (FAPs, 18.11%), satellite cells (16.74%), myoblasts (3.99%), myocytes (5.74%), Schwann cells (3.81%), smooth muscle cells (3.22%), dendritic cells (2.99%), pericytes (1.86%), and neutrophils (0.33%). CellChat was employed to deduce the cell-cell interactions by evaluating the gene expression of receptor-ligand pairs across different cell types. The results show that FAPs and pericytes are the primary signal contributors in LD. In addition, we delineated the developmental trajectory of myogenic cells and examined alterations in the expression of various marker genes and molecular events throughout various stages of differentiation. Moreover, we found that FAPs can be divided into three subclusters (NR2F2-FAPs, LPL-FAPs, and TNMD-FAPs) according to their biological functions, suggesting that the FAPs could be associated with the differentiation of tendon cell. Taken together, we constructed the cellular atlas and cell communication network in LD of a newborn Suhuai pig, and analyzed the developmental trajectory of myogenic cells and the heterogeneity of FAPs subpopulation cells. This enhances our comprehension of the molecular features involved in skeletal muscle development and the meat quality control in pigs.


Assuntos
Células Endoteliais , Fibras Musculares Esqueléticas , Suínos , Animais , Diferenciação Celular , Pericitos , Análise de Sequência de RNA
13.
J Sci Food Agric ; 104(10): 6242-6251, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38456730

RESUMO

BACKGROUND: The pickling process with NaCl is an essential step for pork preservation. This study aimed to investigate the effect of different ultrasonic intensities of tri-frequency simultaneous ultrasound (TSIU) pickling on the NaCl content and quality of pork (longissimus dorsi). After 30 min pickling, the NaCl content, moisture content, pickling yield, cooking loss, textural properties, color, pH, moisture migration and distribution as well as microstructure of pork were assessed. RESULTS: Results showed that among all the ultrasonic treatment intensities (85-150 W L-1), the NaCl content of the sample pickled by an intensity of 101.3 W L-1 was higher than that of other intensities. TSIU 101.3 W L-1 showed 59.95% higher NaCl content than the control sample. In addition, the sample treated with TSIU of 101.3 W L-1 had higher pickling yield and moisture content, better textural properties of pork (including hardness and chewiness), and less cooking loss. The results of the low-field nuclear magnetic resonance showed that, compared with the control group, the relaxation time T21 of the ultrasound-assisted pickling samples increased, while the proportion of T22 (A22) reduction ranged from 175.0% to 379.9%. The microstructure designated that the ultrasonic treatment could facilitate changes in meat texture. CONCLUSION: Ultrasound marination of different intensities promoted the diffusion of NaCl and affected the quality of pork tenderloins. The TSIU at 101.3 W L-1 could better accelerate NaCl transport and homogeneous distribution on meat, thereby improving the sample quality. © 2024 Society of Chemical Industry.


Assuntos
Culinária , Manipulação de Alimentos , Cloreto de Sódio , Animais , Cloreto de Sódio/química , Cloreto de Sódio/análise , Suínos , Manipulação de Alimentos/métodos , Culinária/métodos , Melhoria de Qualidade , Ultrassom/métodos , Produtos da Carne/análise , Conservação de Alimentos/métodos , Cor , Músculo Esquelético/química , Músculo Esquelético/efeitos da radiação
14.
BMC Genomics ; 24(1): 499, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644462

RESUMO

This paper aims to explore the role of circRNA expression profiles and circRNA-associated ceRNA networks in the regulation of myogenesis in the longissimus dorsi of cattle breeds surviving under subtropical conditions in southern China by RNA sequencing and bioinformatics analysis. It also aims to provide comprehensive understanding of the differences in muscle fibers in subtropical cattle breeds and to expand the knowledge of the molecular networks that regulate myogenesis. With regard to meat quality indicators, results showed that the longissimus dorsi of LQC had lower pH (P < 0.0001), lower redness (P < 0.01), lower shear force (P < 0.05), and higher brightness (P < 0.05) than the longissimus dorsi of LFC. With regard to muscle fiber characteristics, the longissimus dorsi of LQC had a smaller diameter (P < 0.0001) and higher density of muscle fibers (P < 0.05). The analysis results show that the function of many circRNA-targeted mRNAs was related to myogenesis and metabolic regulation. Furthermore, in the analysis of the function of circRNA source genes, we hypothesized that btacirc_00497 and btacirc_034497 may regulate the function and type of myofibrils by affecting the expression of MYH6, MYH7, and NEB through competitive linear splicing.


Assuntos
Biologia Computacional , RNA Circular , Animais , Bovinos/genética , China , Carne , Músculos Paraespinais
15.
BMC Genomics ; 24(1): 239, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142996

RESUMO

BACKGROUND: N6-methyladenosine (m6A) refers to the methylation modification of N6 position of RNA adenine, a dynamic reversible RNA epigenetic modification that plays an important regulatory role in a variety of life processes. In this study, we used MeRIP-Seq and RNA-Seq of the longissimus dorsi (LD) muscle of adult (QA) and newborn (QN) Queshan Black pigs to screen key genes with m6A modification involved in muscle growth by bioinformatics analysis. RESULTS: A total of 23,445 and 25,465 m6A peaks were found in the whole genomes of QA and QN, respectively. Among them, 613 methylation peaks were significantly different (DMPs) and 579 genes were defined as differentially methylated genes (DMGs). Compared with the QN group, there were 1,874 significantly differentially expressed genes (DEGs) in QA group, including 620 up-regulated and 1,254 down-regulated genes. In order to investigate the relationship between m6A and mRNA expression in the muscle of Queshan Black pigs at different periods, a combined analysis of MeRIP-Seq and RNA-Seq showed that 88 genes were significantly different at both levels. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that DEGs and DMGs were mainly involved in skeletal muscle tissue development, FoxO signaling pathway, MAPK signaling pathway, insulin signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway. Four DEGs (IGF1R, CCND2, MYOD1 and FOS) and four DMGs (CCND2, PHKB, BIN1 and FUT2), which are closely related to skeletal muscle development, were selected as candidate genes for verification, and the results were consistent with the sequencing results, which indicated the reliability of the sequencing results. CONCLUSIONS: These results lay the foundation for understanding the specific regulatory mechanisms of growth in Queshan Black pigs, and provide theoretical references for further research on the role of m6A in muscle development and breed optimization selection.


Assuntos
RNA , Transcriptoma , Suínos/genética , Animais , Metilação , RNA/genética , Fosfatidilinositol 3-Quinases/genética , Reprodutibilidade dos Testes , Desenvolvimento Muscular/genética
16.
Genome ; 66(4): 68-79, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876850

RESUMO

Fetal myogenesis represents a critical period of porcine skeletal muscle development and requires coordinated expression of thousands of genes. Epigenetic mechanisms, including DNA methylation, drive transcriptional regulation during development; however, these processes are understudied in developing porcine tissues. We performed bisulfite sequencing to assess DNA methylation in pig longissimus dorsi muscle at 41- and 70-days gestation (dg), as well as RNA- and small RNA-sequencing to identify coordinated changes in methylation and expression between myogenic stages. We identified 45 739 differentially methylated regions (DMRs) between stages, and the majority (N = 34 232) were hypomethylated at 70 versus 41 dg. Integration of methylation and transcriptomic data revealed strong associations between differential gene methylation and expression. Differential miRNA methylation was significantly negatively correlated with abundance, and dynamic expression of assayed miRNAs persisted postnatally. Motif analysis revealed significant enrichment of myogenic regulatory factor motifs among hypomethylated regions, suggesting that DNA hypomethylation may function to increase accessibility of muscle-specific transcription factors. We show that developmental DMRs are enriched for GWAS SNPs for muscle- and meat-related traits, demonstrating the potential for epigenetic processes to influence phenotypic diversity. Our results enhance understanding of DNA methylation dynamics of porcine myogenesis and reveal putative cis-regulatory elements governed by epigenetic processes.


Assuntos
Metilação de DNA , MicroRNAs , Suínos/genética , Animais , Epigênese Genética , MicroRNAs/genética , DNA , Desenvolvimento Muscular/genética
17.
Anim Genet ; 54(6): 709-720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796678

RESUMO

As a major source of protein in human diets, pig meat plays a crucial role in ensuring global food security. Key determinants of meat production refer to the chemical and physical compositions or characteristics of muscle fibers, such as the number, hypertrophy potential, fiber-type conversion and intramuscular fat deposition. However, the growth and formation of muscle fibers comprises a complex process under spatio-temporal regulation, that is, the intermingled and concomitant proliferation, differentiation, migration and fusion of myoblasts. Recently, with the fast and continuous development of next-generation sequencing technology, the integration of quantitative trait loci mapping with genome-wide association studies (GWAS) has greatly helped animal geneticists to discover and explore thousands of functional or causal genetic elements underlying muscle growth and development. However, owing to the underlying complex molecular mechanisms, challenges to in-depth understanding and utilization remain, and the cost of large-scale sequencing, which requires integrated analyses of high-throughput omics data, is high. In this review, we mainly elaborate on research advances in integrative analyses (e.g. GWAS, omics) for identifying functional genes or genomic elements for longissimus dorsi muscle growth and development for different pig breeds, describing several successful transcriptome analyses and functional genomics cases, in an attempt to provide some perspective on the future functional annotation of genetic elements for muscle growth and development in pigs.


Assuntos
Estudo de Associação Genômica Ampla , Músculo Esquelético , Humanos , Suínos/genética , Animais , Músculo Esquelético/metabolismo , Estudo de Associação Genômica Ampla/veterinária , Fibras Musculares Esqueléticas , Perfilação da Expressão Gênica , Crescimento e Desenvolvimento
18.
Anim Genet ; 54(3): 315-327, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36866648

RESUMO

Intramuscular fat (IMF) is a significant marker for pork quality. The Anqing Six-end-white pig has the characteristics of high meat quality and IMF content. Owing to the influence of European commercial pigs and a late start in resource conservation, the IMF content within local populations varies between individuals. This study analyzed the longissimus dorsi transcriptome of purebred Anqing Six-end-white pigs with varying IMF content to recognize differentially expressed genes. We identified 1528 differentially expressed genes between the pigs with high (H) and low (L) IMF content. Based on these data, 1775 Gene Ontology terms were significantly enriched, including lipid metabolism, modification and storage, and regulation of lipid biosynthesis. Pathway analysis revealed 79 significantly enriched pathways, including the Peroxisome proliferator-activated receptor and mitogen-activated protein kinase signaling pathways. Moreover, gene set enrichment analysis indicated that the L group had increased the expression of genes related to ribosome function. Additionally, the protein-protein interaction network analyses revealed that VEGFA, KDR, LEP, IRS1, IGF1R, FLT1 and FLT4 were promising candidate genes associated with the IMF content. Our study identified the candidate genes and pathways involved in IMF deposition and lipid metabolism and provides data for developing local pig germplasm resources.


Assuntos
Transcriptoma , Suínos , Animais , Análise de Sequência de RNA
19.
Anim Biotechnol ; 34(7): 3085-3098, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271875

RESUMO

Domestic donkeys (Equus asinus) have been maintained mainly for service purposes in the past. Nowadays, there is an increasing interest in donkey milk and meat production in several countries, including China. Donkey meat is highly consumed because of its nutritional value and unique flavor. However, genomic studies on donkey meat are limited. Therefore, in this study, we aimed to examine the molecular difference of longissimus dorsi muscles of donkey, cow, and goat. RNA sequencing and Proteome sequencing technology were used to analyze the transcriptome and proteome of the longissimus dorsi muscle of donkey, cow, and goat. A total of 1338 and 1780 differentially expressed genes (DEGs) were identified in donkey meat compared with that in cow and goat meat, respectively. Most of the DEGs were involved in biological processes, including small GTPase-mediated signal transduction, protein ubiquitination, protein glycosylation, and MAP kinase tyrosine/serine/threonine phosphatase activity. Additionally, 764 and 1024 differentially expressed proteins (DEPs) were identified in cow vs. donkey, and goat vs. donkey, respectively; these DEPs were mainly involved in metabolism. Genetic variation and regulatory factors can combine as a database to provide more valuable molecular information for further analysis.


Assuntos
Equidae , Transcriptoma , Bovinos/genética , Feminino , Animais , Equidae/genética , Proteoma/genética , Proteoma/metabolismo , Músculo Esquelético/metabolismo , Carne/análise , Cabras/genética
20.
Anim Biotechnol ; 34(4): 1022-1029, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34874232

RESUMO

Yunling cattle (YL) is a recently developed beef breed harboring a quarter of Yunnan ancestral cattle genome, spanning over past 30 years. Compared with Diqing cattle (DQ), a Yunnan native cattle breed, YL presents various advantages, including rapid growth and exquisite meat quality. However, the molecular mechanisms underlying these phenotypic differences are not clearly understood. To further identify the candidate genes responsible for the quality of the meat in the muscle, longissimus dorsi (LD) muscle was used for RNA-Seq analysis. A total of 508 differentially expressed genes (DEGs) were identified in YL (adjusted p-value <0.01 and log2FoldChange >1), of which 243 were up-regulated and 265 were down-regulated. Functional association analysis showed that the identified DEGs mainly enriched the lipid and fat metabolism pathways. Moreover, it was also observed that several fat-related genes were differentially expressed in both cattle breeds, including three up-regulated genes (MOGAT1, ACSM3, PLPP2) and two down-regulated genes (ADIG, GPAT3). In addition, alternative splice analysis was also performed revealing an important 9-11 exon skipping variation of GPAM gene (crucial for beef marbling) in YL, which is three times higher than that in DQ, suggesting that this variation might have played the central role in the 'snow beef' effect in YL. We believe that our results will help in understanding the mechanism of muscle development and promote the further breeding programs in YL cattle.


Assuntos
Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Bovinos/genética , Animais , Metabolismo dos Lipídeos/genética , China , Perfilação da Expressão Gênica/veterinária , Músculos/metabolismo , Carne/análise , Transcriptoma/genética , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA