Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Genomics ; : 110913, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151554

RESUMO

Aneuploidy generally has severe phenotypic consequences. However, the molecular basis for this has been focused on single chromosomal dosage changes. It is not clear how the karyotype of complex aneuploidies affects gene expression. Here, we identified six different double-trisomy loquat strains from Q24 progenies of triploid loquat. The differences and similarities of the transcriptional responses of different double trisomy loquat strains were studied systematically via RNA-seq. The global modulation of gene expression indicated that both cis and trans-effects coordinately regulated gene expression in aneuploid loquat to some extent, and this coordinated regulation was determined by different gene functional groups. Aneuploidy can induce specific transcriptional responses on loquat chromosomes. The differentially expressed genes exhibited regional gene expression dysregulation domains along chromosomes. Furthermore, Aneuploidy could also promote the expression of genes with moderate and high in loquats. Our results provide new insights into the genome-wide transcriptional effects of karyotypes with complex aneuploidies.

2.
BMC Genomics ; 25(1): 468, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745142

RESUMO

BACKGROUND: Plant-specific TIFY proteins are widely found in terrestrial plants and play important roles in plant adversity responses. Although the genome of loquat at the chromosome level has been published, studies on the TIFY family in loquat are lacking. Therefore, the EjTIFY gene family was bioinformatically analyzed by constructing a phylogenetic tree, chromosomal localization, gene structure, and adversity expression profiling in this study. RESULTS: Twenty-six EjTIFY genes were identified and categorized into four subfamilies (ZML, JAZ, PPD, and TIFY) based on their structural domains. Twenty-four EjTIFY genes were irregularly distributed on 11 of the 17 chromosomes, and the remaining two genes were distributed in fragments. We identified 15 covariate TIFY gene pairs in the loquat genome, 13 of which were involved in large-scale interchromosomal segmental duplication events, and two of which were involved in tandem duplication events. Many abiotic stress cis-elements were widely present in the promoter region. Analysis of the Ka/Ks ratio showed that the paralogous homologs of the EjTIFY family were mainly subjected to purifying selection. Analysis of the RNA-seq data revealed that a total of five differentially expressed genes (DEGs) were expressed in the shoots under gibberellin treatment, whereas only one gene was significantly differentially expressed in the leaves; under both low-temperature and high-temperature stresses, there were significantly differentially expressed genes, and the EjJAZ15 gene was significantly upregulated under both low- and high-temperature stress. RNA-seq and qRT-PCR expression analysis under salt stress conditions revealed that EjJAZ2, EjJAZ4, and EjJAZ9 responded to salt stress in loquat plants, which promoted resistance to salt stress through the JA pathway. The response model of the TIFY genes in the jasmonic acid pathway under salt stress in loquat was systematically summarized. CONCLUSIONS: These results provide a theoretical basis for exploring the characteristics and functions of additional EjTIFY genes in the future. This study also provides a theoretical basis for further research on breeding for salt stress resistance in loquat. RT-qPCR analysis revealed that the expression of one of the three EjTIFY genes increased and the expression of two decreased under salt stress conditions, suggesting that EjTIFY exhibited different expression patterns under salt stress conditions.


Assuntos
Eriobotrya , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Eriobotrya/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Cromossomos de Plantas/genética
3.
J Exp Bot ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39086268

RESUMO

Changes in both lignin biosynthesis and DNA methylation have been reported to be associated with chilling stress in plants. When stored at low temperatures, red-fleshed loquat is prone to lignification, with increased lignin content and fruit firmness, which has deleterious effects on taste and eating quality. Here, we found that 5°C storage mitigated the increasing firmness and lignin content of red-fleshed 'Dahongpao' ('DHP') loquat fruit that occurred during 0°C storage. EjNAC5 was identified by integrating RNA sequencing with whole-genome bisulfite sequencing analysis of 'DHP' loquat fruit. The transcript levels of EjNAC5 were positively correlated with changes in firmness and negatively correlated with changes in DNA methylation level of a differentially methylated region (DMR) in the EjNAC5 promoter. In white-fleshed 'Baisha' ('BS') loquat fruit, which do not undergo chilling-induced lignification at 0°C, the transcripts of EjNAC5 remained low and the methylation levels of the DMR in the EjNAC5 promoter was higher, compared to 'DHP' loquat fruit. Transient overexpression of EjNAC5 in loquat fruit and stable overexpression in Arabidopsis and liverwort led to an increase in lignin content. Furthermore, EjNAC5 interacts with EjERF39 and EjHB1 and activates the transcription of Ej4CL1 and EjPRX12 genes involved in lignin biosynthesis. This regulatory network involves different TFs to those involved in lignification pathway. Our study indicates that EjNAC5 promoter methylation modulates EjNAC5 transcript levels and identifies novel EjNAC5-EjERF39-Ej4CL1 and EjNAC5-EjHB1-EjPRX12 regulatory modules involved in chilling induced-lignification.

4.
Planta ; 257(6): 114, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166515

RESUMO

MAIN CONCLUSION: Cytochrome P450 CYP77A59 is responsible for the biosynthesis of phenylacetonitrile in loquat flowers. Flowers of some plants emit volatile nitrile compounds, but the biosynthesis of these compounds is unclear. Loquat (Rhaphiolepis bibas) flowers emit characteristic N-containing volatiles, such as phenylacetonitrile (PAN), (E/Z)-phenylacetaldoxime (PAOx), and (2-nitroethyl)benzene (NEB). These volatiles likely play a defense role against pathogens and insects. PAN and NEB are commonly biosynthesized from L-phenylalanine via (E/Z)-PAOx. Two cytochrome P450s-CYP79D80 and "promiscuous fatty acid ω-hydroxylase" CYP94A90, which catalyze the formation of (E/Z)-PAOx from L-phenylalanine and NEB from (E/Z)-PAOx, respectively-are involved in NEB biosynthesis. However, the enzymes catalyzing the formation of PAN from (E/Z)-PAOx in loquat have not been identified. In this study, we aimed to identify candidate cytochrome P450s catalyzing PAN formation in loquat flowers. Yeast whole-cell biocatalyst assays showed that among nine candidate cytochrome P450s, CYP77A58 and CYP77A59 produced PAN from (E/Z)-PAOx. CYP77As catalyzed the dehydration of aldoximes, which is atypical of cytochrome P450; the reaction was NADPH-dependent, with an optimum temperature and pH of 40 °C and 8.0, respectively. CYP77As acted on (E/Z)-PAOx, (E/Z)-4-hydroxyphenylacetaldoxime, and (E/Z)-indole-3-acetaldoxime. Previously characterized CYP77As are known to hydroxylate fatty acids; loquat CYP77As did not act on tested fatty acids. We observed higher expression of CYP77A59 in flowers than in buds; expression of CYP77A58 was remarkably reduced in the flowers. Because the flowers, but not buds, emit PAN, CYP77A59 is likely responsible for the biosynthesis of PAN in loquat flowers. This study will help us understand the biosynthesis of floral nitrile compounds.


Assuntos
Eriobotrya , Nitrilas , Nitrilas/análise , Nitrilas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Flores/metabolismo , Fenilalanina , Ácidos Graxos/análise
5.
Appl Microbiol Biotechnol ; 107(5-6): 1551-1562, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36723702

RESUMO

In this study, loquat extract was selected as a promising substrate for bacterial cellulose (BC) production. A new BC-producing bacterial strain was isolated from residual loquat and identified as Komagataeibacter rhaeticus. BC production with different carbon sources and with loquat extract was investigated. Among all tested carbon sources, glucose was demonstrated to be the best substrate for BC production by K. rhaeticus, with up to 7.89 g/L dry BC obtained under the optimal initial pH (5.5) and temperature (28 °C) with 10 days of fermentation. The total sugar and individual sugars were investigated in different loquat extracts, in which fructose, glucose, and sucrose were the three main sugars. When loquat extract was prepared with a solid‒liquid (S-L) ratio of 2:1, the concentrations of glucose, fructose, and sucrose were 7.91 g/L, 9.31 g/L, and 2.84 g/L, respectively. The BC production obtained from loquat extract was higher than that of other carbon sources except glucose, and 6.69 g/L dry BC was obtained from loquat extract with an S-L ratio of 2:1. After BC production, all sugars substantially decreased, with the utilization of glucose, fructose, and sucrose reaching 93.9%, 87.9%, and 100%, respectively. These results suggested that the different sugars in loquat extract were all carbon sources participating in BC production by K. rhaeticus. Structural and physicochemical properties were investigated by SEM, TGA, XRD, and FT-IR spectroscopy. The results showed that the structural, chemical group, and water holding capacity of BC obtained from loquat extract were similar to those of BC obtained from glucose, but the crystallinity and thermal stability of BC were higher than those of BC from mannose and lactose but lower than those of BC from glucose and fructose. KEY POINTS: • A new BC-producing strain was isolated and identified as Komagataeibacter rhaeticus. • Loquat extract is an alternative substrate for BC production. • The BC obtained from loquat extract owns advanced physicochemical properties.


Assuntos
Celulose , Eriobotrya , Espectroscopia de Infravermelho com Transformada de Fourier , Glucose , Carbono , Frutose
6.
Plant Dis ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691270

RESUMO

Loquat (Rhaphiolepis biabas, heterotypic synonym: Eriobotrya japonica) is an important edible and medicinal plant that is widely cultivated on 133 thousand hectares (recorded in 2022) in China. A stem brown rot was observed on young and old trees in Mengzi city (23°23' N; 103°23' E), Yunnan Province, southwest China, during October 2014 and September 2021. Incidence ranged from 20% of trees in surrounding plantations to 50% incidence of a 160 tree orchard that was the focal point of the disease survey. Circular brown lesions occurred initially on the stems and gradually covered all the epidermis of the stem, leading to irregular dents within the bark that developed a dark brown powdery appearance (Fig.1A). Larger lesions affected vascular tissues, causing diseased trees to wither and die. Diseased tissues were surface-disinfected in a 5% sodium hypochlorite solution for 3 min, rinsed three times with sterile distilled water, placed on potato dextrose agar (PDA), and incubated in the dark at 28°C. Twenty samples were collected for tissue isolation, and 11 isolates were single-spored on water agar. In culture, the colonies on PDA were white to dark-gray, velvet, with dense hyphae, diameter 7.64 cm after 5 days. After 18 days, spherical or subglobose pycnidia were developed and semi-buried in medium, their walls were thicker and dark-brown, which were black particles surrounded by gray-black hyphae. Conidiogenous cells were hyaline, cylindrical, holoblastic, slightly swollen at the base, with rounded apex. Conidia were initially hyaline and aseptate with elliptic or ovate shape, becoming dark brown with a single septate and developing longitudinal striations along thick walls at maturity. Conidia dimensions varied from 8.0 to 12.2 × 3.8 to 6.1µm (n=50) (Fig.1D). The morphological characteristics of eleven isolates were consistent with the description of Lasiodiplodia theobromae (Alves et al. 2008). Further confirmation was also determined by sequencing the internal transcribed spacer (ITS), ß-tubulin genes, partial translation elongation factor-1α (TEF-1α) (White et al. 1990, Carbone et al. 1999, Glass et al.1995). The isolate LSB-1 was selected for DNA sequence analysis. Based on BLASTn analysis, ITS sequences (OM617921) had 98.3% similarity with L. theobromae CBS164.96 (accession AY640255), CBS124.13(accession DQ458890), CAA006 (accession DQ458891) and CBS111530 (accession EF622074), ß-tubulin sequences (OM643838) showed 99.1% similarity with L. theobromae accessions EU673110. The TEF-1α (OM643839) had 99.0% identity with L. theobromae accession EF633054. The isolate LSB-1 clustered on the same clade with other L. theobromae. Pathogenicity testing of isolate LSB-1, LSB-2, LSB-3 was conducted by inoculating the stems of l-year-old seedlings growing in pots. The epidermis at the inoculation site, 15-20 cm below the crown, was wiped with 75% alcohol cotton ball, washed three times with sterile water, and then punctured (5mm diameter) with sterile inoculation needle. A 5mm block of each isolate cultured on PDA for seven days was attached to the inoculation site. Controls were inoculated with sterile PDA blocks. The inoculation area was covered with polyethylene cling film. All inoculated seedlings were kept in controlled greenhouse at 27°C with 80% relative humidity under natural daylight conditions, and watered weekly. Each treatment was repeated three times. Eight days after inoculation, all diseased plants showed dark brown discoloration at the point of inoculation (Fig. 1G) with the bark at the inoculation site gradually raising as the disease progressed. Thirty days after inoculation, all inoculated seedlings produced typical symptoms, whereas the control seedlings remained healthy. Fungal isolates were only recovered from symptomatic stems and were morphologically identical to L. theobromae, completing Koch's postulates. According to the relevant literature, Lasiodiplodia theobromae has a broad host range, causing numerous diseases, including canker and dieback of branch (Aguilera-Cogley et al., 2021), panicle blight (Mahadevakumar et al, 2022), root rot (Abd-El Ghani and Fatouh, 2005), fruit rot(Freire et al., 2011) in diverse geographical regions. To our knowledge, this is the first report of L. theobromae causing stem brown rot of loquat in China and provides a foundation for further study of the epidemiology and integrated management of this disease.

7.
Plant Dis ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966474

RESUMO

Loquat, Rhaphiolepis loquata B.B.Liu & J.Wen (syn. Eriobotrya japonica) (Liu et al., 2020), is a subtropical evergreen fruit tree crop, for which China is the largest producer. Loquat fruit is favored by consumers for its attractive appearance, juicy taste, and rich nutrients (Tian et al., 2007). In May 2020, postharvest fruit rot was observed on loquat (about 10% of the fruits showed disease symptoms) in a local agricultural market (113°36'E, 23°11'N) of the Yuancun district in Guangzhou, China. The symptoms began with white mycelia above the epidermal surface of the fruits, then gradually developed into browning spots and soft lesions. To isolate and identify the pathogen, fruits (n=35) were surface disinfected by 1% NaOCl (1 min), 70% ethanol (30 s) and then washed twice with sterile distilled water and, thirty small pieces (3-5 mm2) were excised from the lesion margins. The excised tissue pieces were cultured on potato dextrose agar (PDA). After the colonies were established on PDA, the fungal strains were purified by the hyphal-tip method. Thirty-four fungal isolates were obtained from the infected isolation fruits (isolation frequency about 76%). Two morphologically similar isolates (PP-8 and PP-9) were used for further study. Fungal colonies were initially white, then turned brown with abundant aerial mycelia, and septate hyphae were 3.9 to 4.5 µm in diameter and branched at right angles with a constriction at the branch point. Binucleate cells were observed using safranin O-KOH solution stain and matched Ceratobasidium spp. (Binucleate Rhizoctonia spp.) morphological descriptions (Zhou et al. 2017). The molecular identity of the isolates was confirmed by sequencing the internal transcribed spacer (ITS) rDNA region and beta-tubulin (TUB) genes using the primer pairs ITS1/4 (White et al. 1990) and BT36F/BT12R, which were used for isolates belonging to the Rhizoctonia species complex (Thon and Royse 1999). BLASTN analysis of the two isolates sequences, which were deposited in GenBank (OP476745 and OP476746 for ITS; OR723969 and OR723968 for TUB), showed 95~97% identity with those of Ceratobasidium sp. (MT796446 and MF992150, DQ085499 and CP059650), respectively. The maximum-likelihood phylogenetic tree was analyzed based on the multiple-gene sequences of ITS and beta-tubulin sequences. The results showed that the isolates (PP-8 and PP-9) were confirmed as Ceratobasidium sp. Pathogenicity test was conducted on loquat. Six healthy fruits were inoculated with mycelial discs (5 mm in diameter) of the isolate after being wounded with a needle or unwounded. As negative control, six fruits were inoculated with PDA agar. All inoculated fruits were incubated in the dark at 26°C and 90% relative humidity for 7 days post inoculation. White mycelia were observed on the epidermal surface of both unwounded and wounded fruits, furthermore, the latter showed browning spots and rot lesions. Control fruits remained asymptomatic. Pathogenicity test was performed three times. The same fungal pathogen was re-isolated from inoculated fruits and identified by morphological observation and molecular analysis, thus confirming Koch's postulates. Ceratobasidium includes pathogens of members of the Annonaceae, Rosaceae, Rubiaceae, Rutaceae and Theaceae families, found in tropical agroecosystems in Africa, Asia and South America (Farr et al. 2022). To our knowledge, this is the first report of Ceratobasidium sp. causing postharvest fruit rot of loquat in China, further monitoring should be performed to quantify yield impacts and develop effective management strategies for this disease.

8.
J Basic Microbiol ; 63(6): 594-603, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36646522

RESUMO

This study was aim at investigating antifungal activities of Bacillus velezensis FJAT-52631 and its lipopeptides against Colletotrichum acutatum ex situ and in situ. The results showed that the strain FJAT-52631 and its crude lipopeptides (10 mg/ml) exhibited strong inhibitory effects on growth of C. acutatum FJAT-30256 with an inhibition rate of 75.3% and an inhibition zone diameter of 17.66 mm, respectively. Both the viable bacterial cultures and lipopeptides of FJAT-52631 could delay the onset of loquat anthracnose by 1 day and lower the incidence of loquat anthracnose in situ. The whole cultures of B. velezensis FJAT-52631 displayed a 50% biocontrol efficacy on loquat anthracnose at the fourth day after inoculation, but the crude lipopeptides not. The average lesion diameter of the whole-culture treated group was 5.62 mm, which was smaller than that of control group (6.81 mm). All the three types of lipopeptides including iturin A, fengycin, and surfactin A secreted from the strain FJAT-52631 exhibited antifungal activities. Among them, surfactin A displayed higher antifungal activity at a concentration of 1.25 mg/mL than other two lipopeptides even if at a concentration of 60 mg/mL. Thus, the results indicated that surfactin A produced by FJAT-52631 played a major role in the biocontrol of the loquat anthracnose. Scanning electron microscopy (SEM) observation revealed the structural deformities in the mycelia of C. acutatum. The above results suggested that the antifungal lipopeptides from B. velezensis FJAT-52631 would be potential in biocontrol against anthracnose disease of loquat caused by C. acutatum.


Assuntos
Bacillus , Colletotrichum , Antifúngicos/farmacologia , Antifúngicos/química , Lipopeptídeos/farmacologia , Lipopeptídeos/química
9.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37108110

RESUMO

Loquat (Eriobotrya japonica Lindl.) is an evergreen fruit tree of Chinese origin, and its autumn-winter flowering and fruiting growth habit means that its fruit development is susceptible to low-temperature stress. In a previous study, the triploid loquat (B431 × GZ23) has been identified with high photosynthetic efficiency and strong resistance under low-temperature stress. Analysis of transcriptomic and lipidomic data revealed that the fatty acid desaturase gene EjFAD8 was closely associated with low temperatures. Phenotypic observations and measurements of physiological indicators in Arabidopsis showed that overexpressing-EjFAD8 transgenic plants were significantly more tolerant to low temperatures compared to the wild-type. Heterologous overexpression of EjFAD8 enhanced some lipid metabolism genes in Arabidopsis, and the unsaturation of lipids was increased, especially for SQDG (16:0/18:1; 16:0/18:3), thereby improving the cold tolerance of transgenic lines. The expression of ICE-CBF-COR genes were further analyzed so that the relationship between fatty acid desaturase and the ICE-CBF-COR pathway can be clarified. These results revealed the important role of EjFAD8 under low-temperature stress in triploid loquat, the increase expression of FAD8 in loquat under low temperatures lead to desaturation of fatty acids. On the one hand, overexpression of EjFAD8 in Arabidopsis increased the expression of ICE-CBF-COR genes in response to low temperatures. On the other hand, upregulation of EjFAD8 at low temperatures increased fatty acid desaturation of SQDG to maintain the stability of photosynthesis under low temperatures. This study not only indicates that the EjFAD8 gene plays an important role in loquat under low temperatures, but also provides a theoretical basis for future molecular breeding of loquat for cold resistance.


Assuntos
Arabidopsis , Eriobotrya , Eriobotrya/metabolismo , Temperatura , Arabidopsis/genética , Diglicerídeos/metabolismo , Triploidia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo
10.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203258

RESUMO

The newly released 'Snow White' (SW), a white-fleshed loquat (Eriobotrya japonica Lindl.) cultivar, holds promise for commercial production. However, the specifics of the phenolic composition in white-fleshed loquats, along with the antioxidant substances and their regulatory mechanisms, are not yet fully understood. In this study, we examined the dynamic changes in the phenolic compounds, enzyme activities, antioxidant capacity, and gene expression patterns of SW during the key stages of fruit development and ripening. A total of 18 phenolic compounds were identified in SW, with chlorogenic acid, neochlorogenic acid, and coniferyl alcohol being the most predominant. SW demonstrated a stronger antioxidant capacity in the early stages of development, largely due to total phenolics and flavonoids. Neochlorogenic acid may be the most significant antioxidant contributor in loquat. A decline in enzyme activities corresponded with fruit softening. Different genes within a multigene family played distinct roles in the synthesis of phenolics. C4H1, 4CL2, 4CL9, HCT, CCoAOMT5, F5H, COMT1, CAD6, and POD42 were implicated in the regulation of neochlorogenic acid synthesis and accumulation. Consequently, these findings enhance our understanding of phenolic metabolism and offer fresh perspectives on the development of germplasm resources for white-fleshed loquats.


Assuntos
Ácido Clorogênico/análogos & derivados , Eriobotrya , Ácido Quínico/análogos & derivados , Eriobotrya/genética , Antioxidantes , Frutas/genética , Expressão Gênica
11.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445735

RESUMO

Sichuan is the China's leading producer of loquat, with the largest cultivation area and yield ranked first in China. Loquat is a seasonal fruit highly appreciated by consumers; however, the fruit is prone to browning and lignification after harvest, affecting its storage quality. The effects of L-Cysteine (L-Cys, 0.01, 0.05, 0.1, 0.2%) and γ-aminobutyric acid (GABA, 0.025, 0.05, 0.075, 0.1%) on the sensory quality and antioxidant activity of loquat fruit during cold storage at 4 °C for 35 days and simulated shelf life for 5 days were investigated. The results showed that after 40 days of storage, compared with the control, 0.05% L-Cys and 0.05% GABA treatment of 'Zaozhong No. 6' loquat fruit effectively reduced the weight loss rate, browning index, decay index, respiratory rate, firmness, and lignin content and slowed the decreases in total soluble solids, soluble sugar, titratable acidityand vitamin C contents. The application of 0.05% L-Cys and 0.05% GABA significantly increased the contents of total phenols, total flavonoids, flavanols, and carotenoids; delayed the increase of relative electric conductivity, MDA, POD, and PPO activities; and significantly enhanced the activities of SOD and CAT, DPPH free radical scavenging ability, and FRAP, thereby improving antioxidant capacity. In summary, 0.05% L-Cys and 0.05% GABA treatment promotes the quality of loquat fruit after 40 days of storage, and significantly enhances antioxidant capacity, thus delaying senescence after harvest.


Assuntos
Antioxidantes , Eriobotrya , Antioxidantes/farmacologia , Antioxidantes/análise , Cisteína/análise , Eriobotrya/química , Frutas/química , Ácido gama-Aminobutírico/farmacologia
12.
J Environ Manage ; 344: 118612, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480637

RESUMO

In the framework of circular bio-economy, waste loquat seeds were utilized for the production of two added-value products. The seeds were hydrothermally carbonized at a temperature range of 150-250 °C and time range 2-6 h and the resultant hydrochars and aqueous phases were characterized using various methods. The optimum higher heating value of 30.64 MJ kg-1, ash content of 1.99 wt % and alkali index of 0.05 were achieved for the hydrochar prepared at 250 °C and 6 h, establishing its suitability for energy-related applications. The aqueous phase obtained at 250 °C and 6 h achieved 90% scavenging of the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical and had a IC50 value of 43.71 µg mL-1. Principal component analysis showed that the production of phenols, ketones, alkenes and organic acids was favored at >200 °C, whereas furans and aldehydes were primarily formed at 150 °C. Conclusively, both added-value products were obtained at the same optimum hydrothermal carbonization conditions of 250 °C and 6 h treatment time. In a bio-refinery context, this has the practical implication that both bio-products be obtained simultaneously, without the need to switch between different temperatures and residence times.


Assuntos
Aldeídos , Eriobotrya , Álcalis , Alcenos
13.
J Integr Plant Biol ; 65(5): 1241-1261, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36541724

RESUMO

Sorbitol is an important signaling molecule in fruit trees. Here, we observed that sorbitol increased during flower bud differentiation (FBD) in loquat (Eriobotrya japonica Lindl.). Transcriptomic analysis suggested that bud formation was associated with the expression of the MADS-box transcription factor (TF) family gene, EjCAL. RNA fluorescence in situ hybridization showed that EjCAL was enriched in flower primordia but hardly detected in the shoot apical meristem. Heterologous expression of EjCAL in Nicotiana benthamiana plants resulted in early FBD. Yeast-one-hybrid analysis identified the ERF12 TF as a binding partner of the EjCAL promoter. Chromatin immunoprecipitation-PCR confirmed that EjERF12 binds to the EjCAL promoter, and ß-glucuronidase activity assays indicated that EjERF12 regulates EjCAL expression. Spraying loquat trees with sorbitol promoted flower bud formation and was associated with increased expression of EjERF12 and EjCAL. Furthermore, we identified EjUF3GaT1 as a target gene of EjCAL and its expression was activated by EjCAL. Function characterization via overexpression and RNAi reveals that EjUF3GaT1 is a biosynthetic gene of flavonoid hyperoside. The concentration of the flavonoid hyperoside mirrored that of sorbitol during FBD and exogenous hyperoside treatment also promoted loquat bud formation. We identified a mechanism whereby EjCAL might regulate hyperoside biosynthesis and confirmed the involvement of EjCAL in flower bud formation in planta. Together, these results provide insight into bud formation in loquat and may be used in efforts to increase yield.


Assuntos
Eriobotrya , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Eriobotrya/genética , Eriobotrya/metabolismo , Sorbitol/metabolismo , Hibridização in Situ Fluorescente , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/metabolismo , Flavonoides/metabolismo
14.
Plant J ; 106(4): 942-952, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33624402

RESUMO

Crop domestication and evolution represent key fields of plant and genetics research. Here, we re-sequenced and analyzed whole genome data from 51 wild accessions and 53 representative cultivars of Eriobotrya japonica, an important semi-subtropical fruit crop. Population genomics analysis suggested that modern cultivated E. japonica experienced a two-staged domestication fitting the "marginality model," being initially domesticated in west-northern Hubei province from a mono-phylogenetic wild progenitor, then refined mainly in Jiangsu, Zhejiang and Fujian provinces of China. Cultivated E. japonica has experienced little reduction in genome-wide nucleotide polymorphism compared with wild forms. Genes responsible for sugar biosynthesis were enriched in regions harboring putative selective sweeps. An approach based on co-clustering into gene families and evaluating chromosome colinearity of orthologous and paralogous genes was used to identify convergent/parallel selective sweeps among different crops. Specifically, more than one hundred of orthologs and paralogs undergoing selective sweeps were identified between loquat, apple and peach, among which 14 encoded "UDP glycosyltransferase 1." In sum, the study not only provided valuable information for breeding of E. japonica, but also enriched knowledge of crop domestication.


Assuntos
Eriobotrya/genética , Genoma de Planta/genética , Malus/genética , Metagenômica , Polimorfismo Genético/genética , Prunus persica/genética , Produtos Agrícolas , Domesticação , Filogenia , Melhoramento Vegetal
15.
BMC Plant Biol ; 22(1): 473, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199018

RESUMO

BACKGROUND: Bud dormancy is a phenological adaptation of temperate perennials that ensures survival under winter temperature conditions by ceasing growth and increasing cold hardiness. SHORT VEGETATIVE PHASE (SVP)-like factors, and particularly a subset of them named DORMANCY-ASSOCIATED MADS-BOX (DAM), are master regulators of bud dormancy in perennials, prominently Rosaceae crops widely adapted to varying environmental conditions. RESULTS: SVP-like proteins from recently sequenced Rosaceae genomes were identified and characterized using sequence, phylogenetic and synteny analysis tools. SVP-like proteins clustered in three clades (SVP1-3), with known DAM proteins located within SVP2 clade, which also included Arabidopsis AGAMOUS-LIKE 24 (AthAGL24). A more detailed study on these protein sequences led to the identification of a 15-amino acid long motif specific to DAM proteins, which affected protein heteromerization properties by yeast two-hybrid system in peach PpeDAM6, and the unexpected finding of predicted DAM-like genes in loquat, an evergreen species lacking winter dormancy. DAM gene expression in loquat trees was studied by quantitative PCR, associating with inflorescence development and growth in varieties with contrasting flowering behaviour. CONCLUSIONS: Phylogenetic, synteny analyses and heterologous overexpression in the model plant Arabidopsis thaliana supported three major conclusions: 1) DAM proteins might have emerged from the SVP2 clade in the Amygdaloideae subfamily of Rosaceae; 2) a short DAM-specific motif affects protein heteromerization, with a likely effect on DAM transcriptional targets and other functional features, providing a sequence signature for the DAM group of dormancy factors; 3) in agreement with other recent studies, DAM associates with inflorescence development and growth, independently of the dormancy habit.


Assuntos
Arabidopsis , Eriobotrya , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
J Exp Bot ; 73(5): 1668-1682, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34893804

RESUMO

Loquat fruit are susceptible to chilling injuries induced by postharvest storage at low temperature. The major symptoms are increased lignin content and flesh firmness, which cause a leathery texture. Pretreatment with methyl jasmonate (MeJA) can alleviate this low-temperature-induced lignification, but the mechanism is not understood. In this study, we characterized a novel class III peroxidase, EjPRX12, and studied its relationship to lignification. Transcript levels of EjPRX12 were attenuated following MeJA pretreatment, consistent with the reduced lignin content in fruit. In vitro enzyme activity assay indicated that EjPRX12 polymerized sinapyl alcohol, and overexpression of EjPRX12 in Arabidopsis promoted lignin accumulation, indicating that it plays a functional role in lignin polymerization. We also identified an HD-ZIP transcription factor, EjHB1, repressed by MeJA pretreatment, which directly bound to and significantly activated the EjPRX12 promoter. Overexpression of EjHB1 in Arabidopsis promoted lignin accumulation with induced expression of lignin-related genes, especially AtPRX64. Furthermore, a JAZ-interacting repressor, EjbHLH14, was characterized, and it is proposed that MeJA pretreatment caused EjbHLH14 to be released to repress the expression of EjHB1. These results identified a novel regulatory pathway involving EjbHLH14-EjHB1-EjPRX12 and revealed the molecular mechanism whereby MeJA alleviated lignification of loquat fruit at low temperature.


Assuntos
Eriobotrya , Acetatos , Ciclopentanos , Eriobotrya/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Oxilipinas , Extratos Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Genomics ; 113(6): 3750-3761, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34464718

RESUMO

This study aimed to explore the effects of recombinant serine protease treatment on the development of post-harvest loquat diseases, fruit quality, and disease resistance enzyme activities. It also sought to analyze differential genes expression using RNA-seq technology. Transcriptomics analysis revealed 708 and 398 differentially expressed genes (DEGs) in loquat fruits treated with serine protease for 24 and 48 h. Furthermore, 2198 DEGs were obtained between 24 and 48 h after treatment. The genes encoding JAZ, MYC2 and ERF in the plant signal transduction pathway were significantly up-regulated. The resistance-related genes, such as PPO, PAL, TLP, WRKY, and transcription factors were also significantly up-regulated. These results indicated that the recombinant serine protease can induce plant signal transduction pathway in loquat fruit. The expression of some resistance-related genes enhanced the disease resistance of loquat fruit and revealed the molecular mechanism of loquat fruit resistance induced by recombinant serine protease.


Assuntos
Eriobotrya , Eriobotrya/genética , Eriobotrya/metabolismo , Frutas/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Serina Proteases/genética , Serina Proteases/metabolismo , Transcriptoma
18.
Int J Phytoremediation ; 24(7): 753-762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34514885

RESUMO

Cadmium (Cd) contamination of orchard soils is a global problem that has been increasing. To decrease the Cd accumulation in fruits, intercropping the orchard crops with hyperaccumulator plants has been used for soil remediation. A pot and a field experiment were conducted to study the effects of intercropping the potential Cd-hyperaccumulator Solanum photeinocarpum and its post-grafting generations with loquat (Eriobotrya japonica) on the growth and Cd uptake of these two plant species. In the pot experiment, intercropping improved the biomass, Cd content, Cd extraction, and root-to-shoot Cd translocation in both species. Intercropping increased the DNA methylation levels, antioxidant enzyme activity, and soluble protein content of loquat seedlings. These results indicate that intercropping could improve the phytoremediation of S. photeinocarpum and its post-grafting generations and increase the Cd uptake in loquat seedlings. In the field experiment, intercropping increased the Cd contents in the old branches, while it decreased that in the young branches and fruits of loquat. These findings indicate that intercropping could increase the Cd uptake in old tissues but reduce the Cd uptake in young tissues and fruits of loquat. So, intercropping loquat with S. photeinocarpum and its post-grafting generations could be used in Cd-contaminated orchards.


Intercropping the potential Cd-hyperaccumulator Solanum photeinocarpum and its post-grafting generations with loquat mutually promoted the growth of two plant species, and also promoted the cadmium uptakes in S. photeinocarpum and old branches of loquat, while inhibited the Cd uptake in the loquat young tissues (young branches and fruits). These results are the new findings of the intercropping.


Assuntos
Eriobotrya , Poluentes do Solo , Solanum , Biodegradação Ambiental , Cádmio/metabolismo , Eriobotrya/metabolismo , Raízes de Plantas/metabolismo , Plântula , Solo , Poluentes do Solo/metabolismo , Solanum/metabolismo
19.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362065

RESUMO

Fruit size is an important fruit quality trait that influences the production and commodity values of loquats (Eriobotrya japonica Lindl.). The Small Auxin Upregulated RNA (SAUR) gene family has proven to play a vital role in the fruit development of many plant species. However, it has not been comprehensively studied in a genome-wide manner in loquats, and its role in regulating fruit size remains unknown. In this study, we identified 95 EjSAUR genes in the loquat genome. Tandem duplication and segmental duplication contributed to the expansion of this gene family in loquats. Phylogenetic analysis grouped the SAURs from Arabidopsis, rice, and loquat into nine clusters. By analyzing the transcriptome profiles in different tissues and at different fruit developmental stages and comparing two sister lines with contrasting fruit sizes, as well as by functional predictions, a candidate gene (EjSAUR22) highly expressed in expanding fruits was selected for further functional investigation. A combination of Indoleacetic acid (IAA) treatment and virus-induced gene silencing revealed that EjSAUR22 was not only responsive to auxin, but also played a role in regulating cell size and fruit expansion. The findings from our study provide a solid foundation for understanding the molecular mechanisms controlling fruit size in loquats, and also provide potential targets for manipulation of fruit size to accelerate loquat breeding.


Assuntos
Arabidopsis , Eriobotrya , Eriobotrya/genética , Frutas/genética , RNA , Filogenia , Melhoramento Vegetal , Ácidos Indolacéticos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
20.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232635

RESUMO

Previous studies indicated that extensive genetic variations could be generated due to polyploidy, which is considered to be closely associated with the manifestation of polyploid heterosis. Our previous studies confirmed that triploid loquats demonstrated significant heterosis, other than the ploidy effect, but the underlying mechanisms are largely unknown. This study aimed to overcome the narrow genetic distance of loquats, increase the genetic variation level of triploid loquats, and systematically illuminate the heterosis mechanisms of triploid loquats derived from two cross combinations. Here, inter-simple sequence repeats (ISSRs) and simple sequence repeats (SSRs) were adopted for evaluating the genetic diversity, and transcriptome sequencing (RNA-Seq) was performed to investigate gene expression as well as pathway changes in the triploids. We found that extensive genetic variations were produced during the formation of triploid loquats. The polymorphism ratios of ISSRs and SSRs were 43.75% and 19.32%, respectively, and almost all their markers had a PIC value higher than 0.5, suggesting that both ISSRs and SSRs could work well in loquat assisted breeding. Furthermore, our results revealed that by broadening the genetic distance between the parents, genetic variations in triploids could be promoted. Additionally, RNA-Seq results suggested that numerous genes differentially expressed between the triploids and parents were screened out. Moreover, KEGG analyses revealed that "photosynthetic efficiency" and "glyco-metabolism" were significantly changed in triploid loquats compared with the parents, which was consistent with the results of physiological indicator analyses, leaf micro-structure observations, and qRT-PCR validation. Collectively, our results suggested that extensive genetic variations occurred in the triploids and that the changes in the "photosynthetic efficiency" as well as "glyco-metabolism" of triploids might have further resulted in heterosis manifestation in the triploid loquats.


Assuntos
Eriobotrya , Triploidia , Eriobotrya/genética , Vigor Híbrido/genética , Melhoramento Vegetal , Ploidias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA