Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 11(9)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505889

RESUMO

Phase diagrams of n-type low bandgap poly{(N,N'-bis(2-octyldodecyl)naphthalene -1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-5,5',-(2,2'-bithiophene)} (P(NDI2OD-T2)) solutions and blends were constructed. To this end, we employed the Flory-Huggins (FH) lattice theory for qualitatively understanding the phase behavior of P(NDI2OD-T2) solutions as a function of solvent, chlorobenzene, chloroform, and p-xylene. Herein, the polymer-solvent interaction parameter (χ) was obtained from a water contact angle measurement, leading to the solubility parameter. The phase behavior of these P(NDI2OD-T2) solutions showed both liquid-liquid (L-L) and liquid-solid (L-S) phase transitions. However, depending on the solvent, the relative position of the liquid-liquid phase equilibria (LLE) and solid-liquid phase equilibria (SLE) (i.e., two-phase co-existence curves) could be changed drastically, i.e., LLE > SLE, LLE ≈ SLE, and SLE > LLE. Finally, we studied the phase behavior of the polymer-polymer mixture composed of P(NDI2OD-T2) and regioregular poly(3-hexylthiophene-2,5-dyil) (r-reg P3HT), in which the melting transition curve was compared with the theory of melting point depression combined with the FH model. The FH theory describes excellently the melting temperature of the r-reg P3HT/P(NDI2OD-T2) mixture when the entropic contribution to the polymer-polymer interaction parameter (χ = 116.8 K/T -0.185, dimensionless) was properly accounted for, indicating an increase of entropy by forming a new contact between two different polymer segments. Understanding the phase behavior of the polymer solutions and blends affecting morphologies plays an integral role towards developing polymer optoelectronic devices.

2.
ACS Appl Mater Interfaces ; 10(25): 21499-21509, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29847088

RESUMO

We developed a novel all-optical method for monitoring the diffusion of a small quencher molecule through a polymer layer in a bilayer architecture. Experimentally, we injected C60 molecules from a C60 layer into the adjacent donor layer by stepwise heating, and we measured how the photoluminescence (PL) of the donor layer becomes gradually quenched by the incoming C60 molecules. By analyzing the temporal evolution of the PL, the diffusion coefficient of C60 can be extracted, as well as its activation energy and an approximate concentration profile in the film. We applied this technique to three carbazole-based low-bandgap polymers with different glass temperatures with a view to study the impact of structural changes of the polymer matrix on the diffusion process. We find that C60 diffusion is thermally activated and not driven by WFL-type collective motion above Tg but rather by local motions mediated by the sidechains. The results are useful as guidance for material design and device engineering, and the approach can be adapted to a wide range of donor and acceptor materials.

3.
ACS Appl Mater Interfaces ; 9(22): 19011-19020, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28524650

RESUMO

In this Article, low-bandgap pTTDPP-BT polymers based on electron-accepting pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP) and benzothiadiazole (BT) and electron-donating thienothiophene (TT) moieties were synthesized. Phototransistors have been fabricated using ambipolar-behaving pTTDPP-BT polymers as active channel materials. The electrical and photoresponsive properties of the pTTDPP-BT phototransistors were strongly dependent on the film annealing temperature. As-spun pTTDPP-BT phototransistors exhibited a low hole mobility of 0.007 cm2/(V·s) and a low electron mobility of 0.005 cm2/(V·s), which resulted in low photocurrent detection due to the limited transport of the charge carriers. Thermal treatment of the polymer thin films led to a significant enhancement in the carrier mobilities (hole and electron mobilities of 0.066 and 0.115 cm2/(V·s), respectively, for 200 °C annealing) and thus significantly improved photoresponsive properties. The 200 °C-annealed phototransistors showed a wide-range wavelength (405-850 nm) of photoresponse, and a high photocurrent/dark-current ratio of 150 with a fast photoswitching speed of less than 100 ms. This work demonstrates that a dual acceptor-containing low band gap polymer can be an important class of material in broadband photoresponsive transistors, and the crystallinity of the semiconducting polymer layer has a significant effect on the photoresponse characteristics.

4.
ACS Appl Mater Interfaces ; 9(34): 28817-28827, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28783949

RESUMO

High carrier mobilities have recently been achieved in polymer field effect transistors (FETs). However, many of these polymer FET devices require the use of chlorinated solvents such as chloroform (CF), chlorobenzene (CB), and o-dichlorobenzene (DCB) during fabrication. The use of these solvents is highly restricted in industry because of health and environmental issues. Here, we report the synthesis of a low band gap (1.43 eV, 870 nm) semiconducting polymer (PDPP2DT-F2T2) having a planar geometry, which can be readily processable with nonchlorinated solvents such as toluene (TOL), o-xylene (XY), and 1,2,4-trimethylbenzene (TMB). We performed structural characterization of PDPP2DT-F2T2 films prepared from different solvents, and the electrical properties of the films were measured in the context of FETs. The devices exhibited an ambipolar behavior with hole dominant transport. Hole mobilities increased with increasing boiling point (bp) of the nonchlorinated solvents: 0.03, 0.05, and 0.10 cm2 V-1 s-1 for devices processed using TOL, XY, and TMB, respectively. Thermal annealing further improved the FET performance. TMB-based polymer FETs annealed at 200 °C yielded a maximum hole mobility of 1.28 cm2 V-1 s-1, which is far higher than the 0.43 cm2 V-1 s-1 obtained from the CF-based device. This enhancement was attributed to increased interchain interactions as well as improved long-range interconnection between fibrous domains. Moreover, all of the nonchlorinated solutions generated purely edge-on orientations of the polymer chains, which is highly beneficial for carrier transport in FET devices. Furthermore, we fabricated an array of flexible TMB-processed PDPP2DT-F2T2 FETs on the plastic PEN substrates. These devices demonstrated excellent carrier mobilities and negligible degradation after 300 bending cycles. Overall, we demonstrated that the organized assembly of polymer chains can be achieved by slow drying using high bp nonchlorinated solvents and a post thermal treatment. Furthermore, we showed that polymer FETs processed using high bp nonhalogenated solvents may outperform those processed using halogenated solvents.

5.
ACS Appl Mater Interfaces ; 8(24): 15724-31, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27253271

RESUMO

The development of thick organic photovoltaics (OPV) could increase absorption in the active layer and ease manufacturing constraints in large-scale solar panel production. However, the efficiencies of most low-bandgap OPVs decrease substantially when the active layers exceed ∼100 nm in thickness (because of low crystallinity and a short exciton diffusion length). Herein, we report the use of solvent additive diphenyl ether (DPE) that facilitates the fabrication of thick (180 nm) active layers and triples the power conversion efficiency (PCE) of conventional thienothiophene-co-benzodithiophene polymer (PTB7)-based OPVs from 1.75 to 6.19%. These results demonstrate a PCE 20% higher than those of conventional (PTB7)-based OPV devices using 1,8-diiodooctane. Morphology studies reveal that DPE promotes the formation of nanofibrillar networks and ordered packing of PTB7 in the active layer that facilitate charge transport over longer distances. We further demonstrate that DPE improves the fill factor and photocurrent collection by enhancing the overall optical absorption, reducing the series resistance, and suppressing bimolecular recombination.

6.
ACS Appl Mater Interfaces ; 7(51): 28459-65, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26636343

RESUMO

A new organic-inorganic ternary bulk heterojunction (TBHJ) hybrid configuration comprised of nanostructured (CH3)3NHPbI3 (MAPbI3) perovskite-low bandgap PCPDTBT-PCBM was investigated. Well-organized TBHJ films were readily prepared by sequential spin-casting of sparsely covered MAPbI3 nano dots and PCPDTBT-PCBM bulk heterojunction (BHJ) composites on ITO/PEDOT:PSS substrates. The TBHJ hybrid device configuration comprising diiooctane (DIO) treated MAPbI3 perovskite nano dots and a PCPDTBT-PCBM BHJ composite processed with DIO additive exhibited excellent performances. The DIO additive played a key role in developing perovskite structures of MAPbI3 nano dots and induced the (110) directional crystallinity growth of longitudinal constructive morphologies such as nano rods. The improved photocurrent and fill factor compared to those of conventional BHJ devices led to an increase in efficiency of ∼28%. This improved photovoltaic performance originated from the higher quantum efficiencies contributed by the charge transfer from nanostructured MAPbI3 perovskite to PCBM. These TBHJs composed of nanostructured MAPbI3 perovskite, PCPDTBT, and PCBM also facilitated the exciton dissociation in the multi-BHJ system between MAPbI3 perovskite, PCPDTBT, and PCBM.

7.
Adv Mater ; 26(42): 7224-30, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25238661

RESUMO

All-polymer solar cells based on a pair of crystalline low-bandgap polymers (NT and N2200) are demonstrated to achieve a high short-circuit current density of 11.5 mA cm-2 and a power conversion efficiency of up to 5.0% under the standard AM1.5G spectrum with one sun intensity. The high performance of these NT:N2200-based cells can be attributed to the low optical bandgaps of the polymers and the reasonably high and balanced electron and hole mobilities of the NT:N2200 blends due to the crystalline nature of the two polymers.

8.
ACS Appl Mater Interfaces ; 6(20): 17551-5, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25244405

RESUMO

Ternary hybrid solar cells based on zinc oxide with wide bandgap poly(3-hexylthiophene) (P3HT) and narrow bandgap poly[2,3-bis(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (PTQ1) exhibit improved photovoltaic performance compared to that of individual binary hybrid solar cells. The increase in the photocurrent is partly due to the complementary absorption bands, which can extend the light-harvesting range from visible to near-infrared regions, and partly due to efficient energy transfer from P3HT to PTQ1, by which P3HT excitons are more efficiently collected at the PTQ1/ZnO interface and hence convert to charge carriers effectively. Furthermore, the improvement in the fill factor may be due to efficient hole transfer from PTQ1 to P3HT with higher hole mobility, and thereby, hole polarons are more efficiently collected on the electrode.

9.
Adv Mater ; 25(34): 4766-71, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23939927

RESUMO

Modification of a ZnO cathode by doping it with a hydroxyl-containing derivative - giving a ZnO-C60 cathode - provides a fullerene-derivative-rich surface and enhanced electron conduction. Inverted polymer solar cells with the ZnO-C60 cathode display markedly improved power conversion efficiency compared to those with a pristine ZnO cathode, especially when the active layer includes the low-bandgap polymer PTB7-Th.


Assuntos
Fulerenos/química , Nanoestruturas/química , Polímeros/química , Energia Solar , Óxido de Zinco/química , Eletrodos , Teoria Quântica , Tiofenos/química
10.
Materials (Basel) ; 5(2): 317-326, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28817047

RESUMO

We synthesized poly(isothianaphthene methine)s with chiral alkyl chains in the substituent. Resultant polymers are soluble in THF and CHCl3. Structure of the polymers was characterized with FT-IR, FT-Raman, and UV-Vis-NIR optical absorption spectroscopy. They showed low-bandgap both in solution and in a form of film. Optical activity of the polymers was confirmed with optical rotatory dispersion. Doping effects on the polymer were also examined with UV-Vis-NIR spectroscopy and ESR measurement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA