Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 119(1-2): 50-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27397597

RESUMO

Glutaric aciduria type I (GA-I) is an autosomal recessive organic aciduria resulting from a functional deficiency of glutaryl-CoA dehydrogenase, encoded by GCDH. Two clinically indistinguishable diagnostic subgroups of GA-I are known; low and high excretors (LEs and HEs, respectively). Early medical and dietary interventions can result in significantly better outcomes and improved quality of life for patients with GA-I. We report on nine cases of GA-I LE patients all sharing the M405V allele with two cases missed by newborn screening (NBS) using tandem mass spectrometry (MS/MS). We describe a novel case with the known pathogenic M405V variant and a novel V133L variant, and present updated and previously unreported clinical, biochemical, functional and molecular data on eight other patients all sharing the M405V allele. Three of the nine patients are of African American ancestry, with two as siblings. GCDH activity was assayed in six of the nine patients and varied from 4 to 25% of the control mean. We support the use of urine glutarylcarnitine as a biochemical marker of GA-I by demonstrating that glutarylcarnitine is efficiently cleared by the kidney (50-90%) and that plasma and urine glutarylcarnitine follow a linear relationship. We report the allele frequencies for three known GA-I LE GCDH variants (M405V, V400M and R227P) and note that both the M405V and V400M variants are significantly more common in the population of African ancestry compared to the general population. This report highlights the M405V allele as another important molecular marker in patients with the GA-I LE phenotype. Therefore, the incorporation into newborn screening of molecular screening for the M405V and V400M variants in conjunction with MS/MS could help identify asymptomatic at-risk GA-I LE patients that could potentially be missed by current NBS programs.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Biomarcadores , Encefalopatias Metabólicas/genética , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Triagem Neonatal , Negro ou Afro-Americano/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/fisiopatologia , Feminino , Frequência do Gene , Glutaratos/metabolismo , Humanos , Recém-Nascido , Masculino , Mutação , Fenótipo , Espectrometria de Massas em Tandem
2.
JIMD Rep ; 63(4): 379-387, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35822093

RESUMO

Glutaric aciduria type 1 (GA1) is a rare neurometabolic disorder that can lead to encephalopathic crises and severe dystonic movement disorders. Adherence to strict dietary restriction, in particular a diet low in lysine, carnitine supplementation and emergency treatment in pre-symptomatic patients diagnosed by high-risk screen (HRS) or newborn screen (NBS) leads to a favourable outcome. We present biochemical and clinical characteristics and long-term outcome data of 34 Irish patients with GA1 aged 1-40 years. Sixteen patients were diagnosed clinically, and 17 patients by HRS, prior to introduction of NBS for GA1 in the Republic of Ireland in 2018. One patient was diagnosed by NBS. Clinical diagnosis was at a median of 1 year (range 1 month to 8 years) and by HRS was at a median of 4 days (range 3 days to 11 years). 14/18 (77.8%) diagnosed by HRS or NBS had neither clinical manifestations nor radiological features of GA1, or had radiological features only, compared to 0/16 (0%) diagnosed clinically (p < 0.001). Patients diagnosed clinically who survived to school-age were more likely to have significant cerebral palsy and dystonia (7/11; 63.6% vs. 0/13; 0%, p < 0.001). They were less likely to be in mainstream school versus the HRS group (5/10; 50% vs. 12/13; 92.3%; p = 0.012). Clinical events occurring after 6 years of age were unusual, but included spastic diplegia, thalamic haemorrhage, Chiari malformation, pituitary hormone deficiency and epilepsy. The exact aetiology of these events is unclear.

3.
JIMD Rep ; 60(1): 67-74, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258142

RESUMO

BACKGROUND: Glutaric acidemia type I (GA1) is an organic acidemia that is often unrecognized in the newborn period until patients suffer an acute encephalopathic crisis, which can be mistaken for nonaccidental trauma. Presymptomatic identification of GA1 patients is possible by newborn screening (NBS). However, the biochemical "low-excretor" (LE) phenotype with nearly normal levels of disease metabolites can be overlooked, which may result in untreated disease and irreversible neurological sequelae. The LE phenotype is also a potential source of false negative (FN) NBS results that merits further investigation. METHODS: Samples from six LE GA1 patients were analyzed by biochemical and molecular methods and newborn screen outcomes were retrospectively investigated. RESULTS: Five LE GA1 patients were identified that had normal NBS results and three of these presented clinically with GA1 symptoms. One additional symptomatic patient was identified who did not undergo screening. Semiquantitative urine organic acid analysis was consistent with a GA1 diagnosis in two (33%) of the six patients, while plasma glutarylcarnitine was elevated in four (67%) of the six and urine glutarylcarnitine was elevated in four (80%) of five patients. Five GCDH variants were identified in these patients; three of which have not been previously linked to the biochemical LE phenotype. CONCLUSIONS: The data presented here raise awareness of potential FN NBS results for LE GA1 patients. The LE phenotype is not protective against adverse clinical outcomes, and the possibility of FN NBS results calls for high vigilance amongst clinicians, even in the setting of a normal NBS result.

4.
JIMD Rep ; 58(1): 12-20, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33728242

RESUMO

A 4-year-old girl was referred for reassessment of dyskinetic cerebral palsy. Initial investigations in her country of birth, India, had not yielded a diagnosis. MRI brain in infancy revealed bilateral putamen hyperintensity. She had generalized dyskinesia predominantly bulbar and limbs. Motor and speech development were most affected with preservation of cognitive development. There was no history of acute encephalopathic crisis or status dystonicus. Initial urine organic acids and amino acids and acylcarnitine profile (ACP) were normal. A dystonia genetic panel showed compound heterozygosity with a pathogenic variant and a variant of uncertain significance in the GCDH gene. The latter is hitherto undescribed and is indicative of a potential diagnosis of glutaric aciduria type 1 (alternatively glutaric acidemia type 1) (GA-1), an autosomal recessive disorder of mitochondrial lysine/hydroxylysine and tryptophan metabolism. Repeat urine organic acids showed isolated slightly increased 3-hydroxy glutarate excretion consistent with GA-1 and characterizing the patient as a "low excretor," a diagnostic sub-group where diagnosis is more challenging but prognosis is similar. Repeat MRI Brain at age 4 showed volume loss and symmetric T2 hyperintensity in the posterior putamina bilaterally. This case highlights the diagnostic dilemma of GA-1 where differing clinical courses, genetic variants, neuroradiological findings, and biochemical excretion patterns may lead to a later diagnosis. The presence of newborn screening for GA-1 should not dull the clinician's suspicion of the possibility that GA-1 may present with a complex movement disorder. Timely diagnosis and treatment is essential, as neurological sequelae are largely irreversible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA