Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38610448

RESUMO

This paper presents a high-gain low-noise amplifier (LNA) operating at the 5G mm-wave band. The full design combines two conventional cascode stages: common base (CB) and common emitter (CS). The design technique reduces the miller effect and uses low-voltage supply and low-current-density transistors to simultaneously achieve high gain and low noise figures (NFs). The two-stage LNA topology is analyzed and designed using 0.25 µm SiGe BiCMOS process technology from NXP semiconductors. The measured circuit shows a small signal gain at 26 GHz of 26 dB with a gain error below 1 dB on the entire frequency band (26-28 GHz). The measured average NF is 3.84 dB, demonstrated over the full frequency band under 15 mA current consumption per stage, supplied with a voltage of 3.3 V.

2.
Sensors (Basel) ; 24(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257660

RESUMO

This paper presents the design of a low-noise amplifier (LNA) with a bypass mode for the n77/79 bands in 5G New Radio (NR). The proposed LNA integrates internal matching networks for both input and output, combining two LNAs for the n77 and n79 bands into a single chip. Additionally, a bypass mode is integrated to accommodate the flexible operation of the receiving system in response to varying input signal levels. For each frequency band, we designed a low-noise amplifier for the n77 band to expand the bandwidth to 900 MHz (3.3 GHz to 4.2 GHz) using resistive-capacitance (RC) feedback and series inductive-peaking techniques. For the n79 band, only the RC feedback technique was employed to optimize the performance of the LNA for its 600 MHz bandwidth (4.4 GHz to 5.0 GHz). Because wideband techniques can lead to a trade-off between gain and noise, causing potential degradation in noise performance, appropriate bandwidth design becomes crucial. The designed n77 band low-noise amplifier achieved a simulated gain of 22.6 dB and a noise figure of 1.7 dB. Similarly, the n79 band exhibited a gain of 21.1 dB and a noise figure of 1.5 dB with a current consumption of 10 mA at a 1.2 supply voltage. The bypass mode was designed with S21 of -3.7 dB and -5.0 dB for n77 and n79, respectively.

3.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474950

RESUMO

In the exploration of ocean resources, the submarine electric field signal plays a crucial role through marine electromagnetic methods. However, due to the field signal's low-frequency and weak characteristics, it often encounters interference from the instrument's own 1/f noise during its acquisition. To address this issue, we developed a low-noise amplifier for the submarine electric field signal based on chopping amplification technology. This amplifier utilizes low-temperature electronic components to adapt to the cold submarine environment and enhances its independence by incorporating a square wave generator. Additionally, we conducted simulations and experimental tests on the designed chopper amplifier circuit, evaluating the equivalent input voltage noise spectrum (EIVNS) and the frequency response within 1 mHz~100 Hz. The experimental results indicate that the amplifier designed in this study achieves sufficiently low noise 2 nV/√Hz@1 mHz, effectively amplifying the submarine electric field signal measured with the electric field sensor.

4.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793995

RESUMO

A broadband differential-MMIC low-noise amplifier (DLNA) using metamorphic high-electron-mobility transistors of 70 nm in Gallium Arsenide (70 nm GaAs mHEMT technology) is presented. The design and results of the performance measurements of the DLNA in the frequency band from 1 to 16 GHz are shown, with a high dynamic range, and a noise figure (NF) below 1.3 dB is obtained. In this work, two low-noise amplifiers (LNAs) were designed and manufactured in the OMMIC foundry: a dual LNA, which we call balanced, and a differential LNA, which we call DLNA. However, the paper focuses primarily on DLNA because of its differential architecture. Both use a 70 nm GaAs mHEMT space-qualified technology with a cutoff frequency of 300 GHz. With a low power bias Vbias/Ibias (5 V/40.5 mA), NF < 1.07 dB "on wafer" was achieved, from 2 to 16 GHz; while with the measurements made "on jig", NF = 1.1 dB, from 1 to 10 GHz. Furthermore, it was obtained that NF < 1.5 dB, from 1 to 16 GHz, with a figure of merit equal to 145.5 GHz/mW. Finally, with the proposed topology, several LNAs were designed and manufactured, both in the OMMIC process and in other foundries with other processes, such as UMS. The experimental results showed that the NF of the DLNA MMIC with multioctave bandwidth that was built in the frequency range of the L-, S-, C-, and X-bands was satisfactory.

5.
Sensors (Basel) ; 24(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38676263

RESUMO

This article presents the design of a low-power low noise amplifier (LNA) implemented in 45 nm silicon-on-insulator (SOI) technology using the gm/ID methodology. The Ka-band LNA achieves a very low power consumption of only 1.98 mW andis the first time the gm/ID approach is applied at such a high frequency. The circuit is suitable for Ka-band applications with a central frequency of 28 GHz, as the circuit is intended to operate in the n257 frequency band defined by the 3GPP 5G new radio (NR) specification. The proposed cascode LNA uses the gm/ID methodology in an RF/MW scenario to exploit the advantages of moderate inversion region operation. The circuit occupies a total area of 1.23 mm2 excluding pads and draws 1.98 mW from a DC supply of 0.9 V. Post-layout simulation results reveal a total gain of 11.4 dB, a noise figure (NF) of 3.8 dB, and an input return loss (IRL) better than 12 dB. Compared to conventional circuits, this design obtains a remarkable figure of merit (FoM) as the LNA reports a gain and NF in line with other approaches with very low power consumption.

6.
Sensors (Basel) ; 23(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37960488

RESUMO

The purpose of this communication is to present the modeling of an Artificial Neural Network (ANN) for a differential Complementary Metal Oxide Semiconductor (CMOS) Low-Noise Amplifier (LNA) designed for wireless applications. For satellite transponder applications employing differential LNAs, various techniques, such as gain boosting, linearity improvement, and body bias, have been individually documented in the literature. The proposed LNA combines all three of these techniques differentially, aiming to achieve a high gain, a low noise figure, excellent linearity, and reduced power consumption. Under simulation conditions at 5 GHz using Cadence, the proposed LNA demonstrates a high gain (S21) of 29.5 dB and a low noise figure (NF) of 1.2 dB, with a reduced supply voltage of only 0.9 V. Additionally, it exhibits a reflection coefficient (S11) of less than -10 dB, a power dissipation (Pdc) of 19.3 mW, and a third-order input intercept point (IIP3) of 0.2 dBm. The performance results of the proposed LNA, combining all three techniques, outperform those of LNAs employing only two of the above techniques. The proposed LNA is modeled using PatternNet BR, and the simulation results closely align with the results of the developed ANN. In comparison to the Cadence simulation method, the proposed approach also offers accurate circuit solutions.

7.
Sensors (Basel) ; 23(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571528

RESUMO

In this work, the design of a wideband low-noise amplifier (LNA) using a resistive feedback network is proposed for potential multi-band sensing, communication, and radar applications. For achieving wide operational bandwidth and flat in-band characteristics simultaneously, the proposed LNA employs a variety of circuit design techniques, including a voltage-current (shunt-shunt) negative feedback configuration, inductive emitter degeneration, a main branch with an added cascode stage, and the shunt-peaking technique. The use of a feedback network and emitter degeneration provides broadened transfer characteristics for multi-octave coverage and a real impedance for input matching, respectively. In addition, the cascode stage pushes the band-limiting low-frequency pole, due to the Miller capacitance, to a higher frequency. Lastly, the shunt-peaking approach is optimized for the compensation of a gain reduction at higher frequency bands. The wideband LNA proposed in this study is fabricated using a commercial 0.13 µm silicon-germanium (SiGe) BiCMOS process, employing SiGe heterojunction bipolar transistors (HBTs) as the circuit's core active elements in the main branch. The measurement results show an operational bandwidth of 2.0-29.2 GHz, a noise figure of 4.16 dB (below 26.5 GHz, which was the measurement limit), and a total power consumption of 23.1 mW under a supply voltage of 3.3 V. Regarding the nonlinearity associated with large-signal behavior, the proposed LNA exhibits an input 1-dB compression (IP1dB) point of -5.42 dBm at 12 GHz. These performance numbers confirm the strong viability of the proposed approach in comparison with other state-of-the-art designs.

8.
Sensors (Basel) ; 23(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447658

RESUMO

This paper presents a low-noise amplifier (LNA) with an integrated input and output matching network designed using RF-SOI technology. This LNA was designed with a resistive feedback topology and an inductive peaking technology to provide 600 MHz of bandwidth in the N79 band (4.4 GHz to 5.0 GHz). Generally, the resistive feedback structure used in broadband applications allows the input and output impedance to be made to satisfy the broadband conditions through low-impedance feedback. However, feedback impedance for excessive broadband characteristics can degrade the noise performance as a consequence. To achieve a better noise performance for a bandwidth of 600 MHz, the paper provided an optimized noise performance by selecting the feedback resistor value optimized for the N79 band. Additionally, an inductive peaking technique was applied to the designed low-noise amplifier to achieve a better optimized output matching network. The designed low-noise amplifier simulated a gain of 20.68 dB and 19.94 dB from 4.4 to 5.0 GHz, with noise figures of 1.57 dB and 1.73 dB, respectively. The input and output matching networks were also integrated, and the power consumption was designed to be 9.95 mA at a supply voltage of 1.2 V.


Assuntos
Amplificadores Eletrônicos , Tecnologia , Retroalimentação , Ruído , Impedância Elétrica
9.
Sensors (Basel) ; 23(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37430754

RESUMO

This paper describes Monolithic Microwave Integrated Circuits (MMICs) for an X-band radar transceiver front-end implemented in 0.25 µm GaN High Electron Mobility Transistor (HEMT) technology. Two versions of single pole double throw (SPDT) T/R switches are introduced to realize a fully GaN-based transmit/receive module (TRM), each of which achieves an insertion loss of 1.21 dB and 0.66 dB at 9 GHz, IP1dB higher than 46.3 dBm and 44.7 dBm, respectively. Therefore, it can substitute a lossy circulator and limiter used for a conventional GaAs receiver. A driving amplifier (DA), a high-power amplifier (HPA), and a robust low-noise amplifier (LNA) are also designed and verified for a low-cost X-band transmit-receive module (TRM). For the transmitting path, the implemented DA achieves a saturated output power (Psat) of 38.0 dBm and output 1-dB compression (OP1dB) of 25.84 dBm. The HPA reaches a Psat of 43.0 dBm and power-added efficiency (PAE) of 35.6%. For the receiving path, the fabricated LNA measures a small-signal gain of 34.9 dB and a noise figure of 2.56 dB, and it can endure higher than 38 dBm input power in the measurement. The presented GaN MMICs can be useful in implementing a cost-effective TRM for Active Electronically Scanned Array (AESA) radar systems at X-band.

10.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679663

RESUMO

A 1.4-dB Noise Figure (NF) four-stage K-band Monolithic Microwave Integrated Circuit (MMIC) Low-Noise Amplifier (LNA) in UMS 100 nm GaAs pHEMT technology is presented. The proposed circuit is designed to cover the 5G New Release n258 frequency band (24.25-27.58 GHz). Momentum EM post-layout simulations reveal the circuit achieves a minimum NF of 1.3 dB, a maximum gain of 34 dB, |S11| better than -10 dB from 23 GHz to 29 GHz, a P1dB of -18 dBm and an OIP3 of 24.5 dBm. The LNA draws a total current of 59.1 mA from a 2 V DC supply and results in a chip size of 3300 × 1800 µm2 including pads. We present a design methodology focused on the selection of the active device size and DC bias conditions to obtain the lowest NF when source degeneration is applied. The design procedure ensures a minimum NF design by selecting a device which facilitates a simple input matching network implementation and obtains a reasonable input return loss thanks to the application of source degeneration. With this approach the input matching network is implemented with a shunt stub and a transmission line, therefore minimizing the contribution to the NF achieved by the first stage. Comparisons with similar works demonstrate the developed circuit is very competitive with most of the state-of-the-art solutions.


Assuntos
Micro-Ondas , Próteses e Implantes , Amplificadores Eletrônicos , Tecnologia
11.
Sensors (Basel) ; 23(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37514906

RESUMO

This paper presents a monolithic microwave integrated circuit (MMIC) low noise amplifier (LNA) that is compatible with n257 (26.5-29.5 GHz) and n258 (24.25-27.5 GHz) frequency bands for fifth-generation mobile communications system (5G) and millimeter-wave radar. The total circuit size of the LNA is 2.5 × 1.5 mm2. To guarantee a trade-off between noise figure (NF) and small signal gain, the transmission lines are connected to the source of gallium nitride (GaN)-on-SiC high electron mobility transistors (HEMT) by analyzing the nonlinear small signal equivalent circuit. A series of stability enhancement measures including source degeneration, an RC series network, and RF choke are put forward to enhance the stability of designed LNA. The designed GaN-based MMIC LNA adopts hybrid-matching networks (MNs) with co-design strategy to realize low NF and broadband characteristics across 5G n257 and n258 frequency band. Due to the different priorities of these hybrid-MNs, distinguished design strategies are employed to benefit small signal gain, input-output return loss, and NF performance. In order to meet the testing conditions of MMIC, an impeccable system for measuring small has been built to ensure the accuracy of the measured results. According to the measured results for small signal, the three-stage MMIC LNA has a linear gain of 18.2-20.3 dB and an NF of 2.5-3.1 dB with an input-output return loss better than 10 dB in the whole n257 and n258 frequency bands.

12.
Nano Lett ; 22(21): 8719-8727, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36315497

RESUMO

Ultrathin nanopore sensors allow single-molecule and polymer measurements at sub-microsecond time resolution enabled by high current signals (∼10-30 nA). We demonstrate for the first time the experimental probing of the ultrafast translocation and folded dynamics of double-stranded DNA (dsDNA) through a nanopore at 10 MHz bandwidth with acquisition of data points per 25 ns (150 MB/s). By introducing a rigorous algorithm, we are able to accurately identify each current level present within translocation events and elucidate the dynamic folded and unfolded behaviors. The remarkable sensitivity of this system reveals distortions of short-lived folded states at a lower bandwidth. This work revisits probing of dsDNA as a model polymer and develops broadly applicable methods. The combined improvements in sensor signals, instrumentation, and large data analysis methods uncover biomolecular dynamics at unprecedentedly small time scales.


Assuntos
Nanoporos , Polímeros , Nanotecnologia/métodos , DNA/análise
13.
Sensors (Basel) ; 22(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890926

RESUMO

In this paper, a wide-band noise-canceling (NC) current conveyor (CC)-based CMOS low-noise amplifier (LNA) is presented. The circuit employs a CC-based approach to obtain wide-band input matching without the need for bulky inductances, allowing broadband performance with a very small area used. The NC technique is applied by subtracting the input transistor's noise contribution to the output and achieves a noise figure (NF) reduction from 4.8 dB to 3.2 dB. The NC LNA is implemented in a UMC 65-nm CMOS process and occupies an area of only 160 × 80 µm2. It achieves a stable frequency response from 0 to 6.2 GHz, a maximum gain of 15.3 dB, an input return loss (S11) < −10 dB, and a remarkable IIP3 of 7.6 dBm, while consuming 18.6 mW from a ±1.2 V DC supply. Comparisons with similar works prove the effectiveness of this new implementation, showing that the circuit obtains a noteworthy performance trade-off.


Assuntos
Amplificadores Eletrônicos
14.
Adv Exp Med Biol ; 1339: 221-226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35023109

RESUMO

Conducting cells of the heart and nerve cells of the brain are having the ability to generate and transmit electrical signals. Recording of neural signals became an important research issue for better analysis and better control of neurological functions by using implantable devices. In neural recording systems, the most critical part is the power constraint neural amplifier. The major challenges of neural front ends are low power dissipation and low input-referred noise. This work describes a low-noise amplifier that uses Metal Oxide Semiconductor bipolar pseudo-resistor elements to amplify signals from 0.03 millihertz to 8.4 kilohertz. This design is suitable for neurodegenerative disorders like Parkinson's disease and Alzheimer's. This topology reduces major noise in low-frequency circuits. By choosing input devices as PMOS transistors and also by properly sizing the devices, flicker noise is reduced. Noise and power trade-off is quantified by calculating noise efficiency factor (NEF) which is improved by using the proposed design. The circuit is implemented in 180 nm technology and is operated with a dual power supply range of ±2.5 V.


Assuntos
Doenças Neurodegenerativas , Amplificadores Eletrônicos , Encéfalo , Desenho de Equipamento , Humanos , Neurônios
15.
Sensors (Basel) ; 21(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34960568

RESUMO

This paper presents a wideband low-noise amplifier (LNA) front-end with noise and distortion cancellation for high-frequency ultrasound transducers. The LNA employs a resistive shunt-feedback structure with a feedforward noise-canceling technique to accomplish both wideband impedance matching and low noise performance. A complementary CMOS topology was also developed to cancel out the second-order harmonic distortion and enhance the amplifier linearity. A high-frequency ultrasound (HFUS) and photoacoustic (PA) imaging front-end, including the proposed LNA and a variable gain amplifier (VGA), was designed and fabricated in a 180 nm CMOS process. At 80 MHz, the front-end achieves an input-referred noise density of 1.36 nV/sqrt (Hz), an input return loss (S11) of better than -16 dB, a voltage gain of 37 dB, and a total harmonic distortion (THD) of -55 dBc while dissipating a power of 37 mW, leading to a noise efficiency factor (NEF) of 2.66.


Assuntos
Amplificadores Eletrônicos , Processamento de Sinais Assistido por Computador , Retroalimentação , Transdutores , Ultrassonografia
16.
Nano Lett ; 20(4): 2812-2820, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32203666

RESUMO

Transistors are the backbone of any electronic and telecommunication system but all known transistors are intrinsically nonlinear introducing signal distortion. Here, we demonstrate a novel transistor with the best linearity achieved to date, attained by sequential turn-on of multiple channels composed of a planar top-gate and several trigate Fin field-effect transistors (FETs), using AlGaN/GaN structures. A highly linearized transconductance plateau of >6 V resulted in a record linearity figure of merit OIP3/PDC of 15.9 dB at 5 GHz and a reduced third-order intermodulation power by 400× in reference to a conventional planar device. The proposed architecture also features an exceptional performance at 30 GHz with an OIP3/PDC of ≥8.2 dB and a minimum noise figure of 2.2 dB. The device demonstrated on a scalable Si substrate paves the way for GaN low noise amplifiers (LNAs) to be utilized in telecommunication systems, and is also translatable to other material systems.

17.
Sensors (Basel) ; 20(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167570

RESUMO

In this letter, we present a novel technique to increase the sensitivity of optical read-out with large integrated photodiodes (PD). It consists of manufacturing the PD in several pieces, instead of a single device, and connecting a dedicated transimpedance amplifier (TIA) to each of these pieces. The output signals of the TIAs are combined, achieving a higher signal-to-noise ratio than with the traditional approach. This work shows a remarkable improvement in the sensitivity and transimpedance without the need for additional modifications or compensation techniques. As a result, an increase in sensitivity of 7.9 dBm and transimpedance of 8.7 dBΩ for the same bandwidth is achieved when dividing the photodiode read-out into 16 parallel paths. The proposed divide-and-conquer technique can be applied to any TIA design, and it is also independent of the core amplifier structure and fabrication process, which means it is compatible with every technology allowing the integration of PDs.

18.
Sensors (Basel) ; 20(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781757

RESUMO

This paper presents a procedure to analyse the effects of radiation in an IEEE 802.15.4 RF receiver for wireless sensor networks (WSNs). Specifically, single-event transients (SETs) represent one of the greatest threats to the adequate performance of electronic communication devices in high-radiation environments. The proposed procedure consists in injecting current pulses in sensitive nodes of the receiver and analysing how they propagate through the different circuits that form the receiver. In order to perform this analysis, a Complementary Metal Oxide Semiconductor (CMOS) low-IF receiver has been designed using a 0.18 µm technology from the foundry UMC. In order to analyse the effect of single-event transients in this receiver, it has been studied how current pulses generated in the low-noise amplifier propagate down the receiver chain. The effect of the different circuits that form the receiver on this kind of pulse has been studied prior to the analysis of the complete receiver. First, the effect of SETs in low-noise amplifiers was analysed. Then, the propagation of pulses through mixers was studied. The effect of filters in the analysed current pulses has also been studied. Regarding the analysis of the designed RF receiver, an amplitude and phase shift was observed under the presence of SETs.

19.
Sensors (Basel) ; 20(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050032

RESUMO

Closed-loop implantable electronics offer a new trend in therapeutic systems aimed at controlling some neurological diseases such as epilepsy. Seizures are detected and electrical stimulation applied to the brain or groups of nerves. To this aim, the signal recording chain must be very carefully designed so as to operate in low-power and low-latency, while enhancing the probability of correct event detection. This paper reviews the electrical characteristics of the target brain signals pertaining to epilepsy detection. Commercial systems are presented and discussed. Finally, the major blocks of the signal acquisition chain are presented with a focus on the circuit architecture and a careful attention to solutions to issues related to data acquisition from multi-channel arrays of cortical sensors.


Assuntos
Estimulação Elétrica , Eletrodos Implantados , Epilepsia , Convulsões , Encéfalo , Epilepsia/diagnóstico , Epilepsia/terapia , Desenho de Equipamento , Humanos , Convulsões/diagnóstico , Convulsões/terapia
20.
Sensors (Basel) ; 20(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046233

RESUMO

The recently growing progress in neuroscience research and relevant achievements, as well as advancements in the fabrication process, have increased the demand for neural interfacing systems. Brain-machine interfaces (BMIs) have been revealed to be a promising method for the diagnosis and treatment of neurological disorders and the restoration of sensory and motor function. Neural recording implants, as a part of BMI, are capable of capturing brain signals, and amplifying, digitizing, and transferring them outside of the body with a transmitter. The main challenges of designing such implants are minimizing power consumption and the silicon area. In this paper, multi-channel neural recording implants are surveyed. After presenting various neural-signal features, we investigate main available neural recording circuit and system architectures. The fundamental blocks of available architectures, such as neural amplifiers, analog to digital converters (ADCs) and compression blocks, are explored. We cover the various topologies of neural amplifiers, provide a comparison, and probe their design challenges. To achieve a relatively high SNR at the output of the neural amplifier, noise reduction techniques are discussed. Also, to transfer neural signals outside of the body, they are digitized using data converters, then in most cases, the data compression is applied to mitigate power consumption. We present the various dedicated ADC structures, as well as an overview of main data compression methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA