Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell ; 184(13): 3474-3485.e11, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34143953

RESUMO

The capping of mRNA and the proofreading play essential roles in SARS-CoV-2 replication and transcription. Here, we present the cryo-EM structure of the SARS-CoV-2 replication-transcription complex (RTC) in a form identified as Cap(0)-RTC, which couples a co-transcriptional capping complex (CCC) composed of nsp12 NiRAN, nsp9, the bifunctional nsp14 possessing an N-terminal exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), and nsp10 as a cofactor of nsp14. Nsp9 and nsp12 NiRAN recruit nsp10/nsp14 into the Cap(0)-RTC, forming the N7-CCC to yield cap(0) (7MeGpppA) at 5' end of pre-mRNA. A dimeric form of Cap(0)-RTC observed by cryo-EM suggests an in trans backtracking mechanism for nsp14 ExoN to facilitate proofreading of the RNA in concert with polymerase nsp12. These results not only provide a structural basis for understanding co-transcriptional modification of SARS-CoV-2 mRNA but also shed light on how replication fidelity in SARS-CoV-2 is maintained.


Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus/genética , Exorribonucleases/genética , Metiltransferases/genética , SARS-CoV-2/genética , Sequência de Aminoácidos , COVID-19/virologia , Humanos , RNA Mensageiro/genética , RNA Viral/genética , Alinhamento de Sequência , Transcrição Gênica/genética , Replicação Viral/genética
2.
Mol Cell ; 78(2): 261-274.e5, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32155413

RESUMO

RNA polymerase II (RNA Pol II) is generally paused at promoter-proximal regions in most metazoans, and based on in vitro studies, this function has been attributed to the negative elongation factor (NELF). Here, we show that upon rapid depletion of NELF, RNA Pol II fails to be released into gene bodies, stopping instead around the +1 nucleosomal dyad-associated region. The transition to the 2nd pause region is independent of positive transcription elongation factor P-TEFb. During the heat shock response, RNA Pol II is rapidly released from pausing at heat shock-induced genes, while most genes are paused and transcriptionally downregulated. Both of these aspects of the heat shock response remain intact upon NELF loss. We find that NELF depletion results in global loss of cap-binding complex from chromatin without global reduction of nascent transcript 5' cap stability. Thus, our studies implicate NELF functioning in early elongation complexes distinct from RNA Pol II pause-release.


Assuntos
Fator B de Elongação Transcricional Positiva/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Resposta ao Choque Térmico/genética , Humanos , Camundongos , Nucleossomos/genética , Regiões Promotoras Genéticas
3.
J Cell Sci ; 137(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38841902

RESUMO

The model of RNA stability has undergone a transformative shift with the revelation of a cytoplasmic capping activity that means a subset of transcripts are recapped autonomously of their nuclear counterparts. The present study demonstrates nucleo-cytoplasmic shuttling of the mRNA-capping enzyme (CE, also known as RNA guanylyltransferase and 5'-phosphatase; RNGTT), traditionally acknowledged for its nuclear localization and functions, elucidating its contribution to cytoplasmic capping activities. A unique nuclear export sequence in CE mediates XPO1-dependent nuclear export of CE. Notably, during sodium arsenite-induced oxidative stress, cytoplasmic CE (cCE) congregates within stress granules (SGs). Through an integrated approach involving molecular docking and subsequent co-immunoprecipitation, we identify eIF3b, a constituent of SGs, as an interactive associate of CE, implying that it has a potential role in guiding cCE to SGs. We measured the cap status of specific mRNA transcripts from U2OS cells that were non-stressed, stressed and recovered from stress, which indicated that cCE-target transcripts lost their caps during stress but remarkably regained cap stability during the recovery phase. This comprehensive study thus uncovers a novel facet of cytoplasmic CE, which facilitates cellular recovery from stress by maintaining cap homeostasis of target mRNAs.


Assuntos
Citoplasma , Homeostase , RNA Mensageiro , Grânulos de Estresse , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Grânulos de Estresse/metabolismo , Citoplasma/metabolismo , Capuzes de RNA/metabolismo , Arsenitos/farmacologia , Estresse Oxidativo , Transporte Ativo do Núcleo Celular , RNA Nucleotidiltransferases/metabolismo , RNA Nucleotidiltransferases/genética , Compostos de Sódio/farmacologia , Proteína Exportina 1 , Carioferinas/metabolismo , Carioferinas/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Grânulos Citoplasmáticos/metabolismo , Estabilidade de RNA , Núcleo Celular/metabolismo , Linhagem Celular Tumoral , Nucleotidiltransferases
4.
Biotechnol Bioeng ; 121(1): 206-218, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747706

RESUMO

The messenger RNA (mRNA) 5'-cap structure is indispensable for mRNA translation initiation and stability. Despite its importance, large-scale production of capped mRNA through in vitro transcription (IVT) synthesis using vaccinia capping enzyme (VCE) is challenging, due to the requirement of tedious and multiple pre-and-post separation steps causing mRNA loss and degradation. Here in the present study, we found that the VCE together with 2'-O-methyltransferase can efficiently catalyze the capping of poly dT media-tethered mRNA to produce mRNA with cap-1 structure under an optimized condition. We have therefore designed an integrated purification and solid-based capping protocol, which involved capturing the mRNA from the IVT system by using poly dT media through its affinity binding for 3'-end poly-A in mRNA, in situ capping of mRNA 5'-end by supplying the enzymes, and subsequent eluting of the capped mRNA from the poly dT media. Using mRNA encoding the enhanced green fluorescent protein as a model system, we have demonstrated that the new strategy greatly simplified the mRNA manufacturing process and improved its overall recovery without sacrificing the capping efficiency, as compared with the conventional process, which involved at least mRNA preseparation from IVT, solution-based capping, and post-separation and recovering steps. Specifically, the new process accomplished a 1.76-fold (84.21% over 47.79%) increase in mRNA overall recovery, a twofold decrease in operation time (70 vs. 140 min), and similar high capping efficiency (both close to 100%). Furthermore, the solid-based capping process greatly improved mRNA stability, such that the integrity of the mRNA could be well kept during the capping process even in the presence of exogenously added RNase; in contrast, mRNA in the solution-based capping process degraded almost completely. Meanwhile, we showed that such a strategy can be operated both in a batch mode and in an on-column continuous mode. The results presented in this work demonstrated that the new on-column capping process developed here can accomplish high capping efficiency, enhanced mRNA recovery, and improved stability against RNase; therefore, can act as a simple, efficient, and cost-effective platform technology suitable for large-scale production of capped mRNA.


Assuntos
Poli T , Ribonucleases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Capuzes de RNA/química , Capuzes de RNA/genética
5.
Adv Exp Med Biol ; 1441: 313-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884719

RESUMO

Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.


Assuntos
Processamento Pós-Transcricional do RNA , RNA não Traduzido , Animais , Humanos , Processamento Alternativo/genética , Regulação da Expressão Gênica , Edição de RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845015

RESUMO

As coronaviruses (CoVs) replicate in the host cell cytoplasm, they rely on their own capping machinery to ensure the efficient translation of their messenger RNAs (mRNAs), protect them from degradation by cellular 5' exoribonucleases (ExoNs), and escape innate immune sensing. The CoV nonstructural protein 14 (nsp14) is a bifunctional replicase subunit harboring an N-terminal 3'-to-5' ExoN domain and a C-terminal (N7-guanine)-methyltransferase (N7-MTase) domain that is presumably involved in viral mRNA capping. Here, we aimed to integrate structural, biochemical, and virological data to assess the importance of conserved N7-MTase residues for nsp14's enzymatic activities and virus viability. We revisited the crystal structure of severe acute respiratory syndrome (SARS)-CoV nsp14 to perform an in silico comparative analysis between betacoronaviruses. We identified several residues likely involved in the formation of the N7-MTase catalytic pocket, which presents a fold distinct from the Rossmann fold observed in most known MTases. Next, for SARS-CoV and Middle East respiratory syndrome CoV, site-directed mutagenesis of selected residues was used to assess their importance for in vitro enzymatic activity. Most of the engineered mutations abolished N7-MTase activity, while not affecting nsp14-ExoN activity. Upon reverse engineering of these mutations into different betacoronavirus genomes, we identified two substitutions (R310A and F426A in SARS-CoV nsp14) abrogating virus viability and one mutation (H424A) yielding a crippled phenotype across all viruses tested. Our results identify the N7-MTase as a critical enzyme for betacoronavirus replication and define key residues of its catalytic pocket that can be targeted to design inhibitors with a potential pan-coronaviral activity spectrum.


Assuntos
Exorribonucleases/química , Modelos Moleculares , Conformação Proteica , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Sequência Conservada , Exorribonucleases/genética , Exorribonucleases/metabolismo , Viabilidade Microbiana , Motivos de Nucleotídeos , RNA Viral/química , RNA Viral/genética , Proteínas de Ligação a RNA , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
7.
J Biol Chem ; 297(4): 101205, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34543624

RESUMO

The histone chaperone Spt6 is involved in promoting elongation of RNA polymerase II (RNAPII), maintaining chromatin structure, regulating cotranscriptional histone modifications, and controlling mRNA processing. These diverse functions of Spt6 are partly mediated through its interactions with RNAPII and other factors in the transcription elongation complex. In this study, we used mass spectrometry to characterize the differences in RNAPII-interacting factors between wildtype cells and those depleted for Spt6, leading to the identification of proteins that depend on Spt6 for their interaction with RNAPII. The altered association of some of these factors could be attributed to changes in steady-state protein levels. However, Abd1, the mRNA cap methyltransferase, had decreased association with RNAPII after Spt6 depletion despite unchanged Abd1 protein levels, showing a requirement for Spt6 in mediating the Abd1-RNAPII interaction. Genome-wide studies showed that Spt6 is required for maintaining the level of Abd1 over transcribed regions, as well as the level of Spt5, another protein known to recruit Abd1 to chromatin. Abd1 levels were particularly decreased at the 5' ends of genes after Spt6 depletion, suggesting a greater need for Spt6 in Abd1 recruitment over these regions. Together, our results show that Spt6 is important in regulating the composition of the transcription elongation complex and reveal a previously unknown function for Spt6 in the recruitment of Abd1.


Assuntos
Chaperonas de Histonas/metabolismo , Metiltransferases/metabolismo , Elementos de Resposta , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Cromatina/genética , Cromatina/metabolismo , Chaperonas de Histonas/genética , Espectrometria de Massas , Metiltransferases/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Elongação da Transcrição/genética
8.
Genes Dev ; 28(12): 1323-36, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24939935

RESUMO

Interactions between RNA guanylyltransferase (GTase) and the C-terminal domain (CTD) repeats of RNA polymerase II (Pol2) and elongation factor Spt5 are thought to orchestrate cotranscriptional capping of nascent mRNAs. The crystal structure of a fission yeast GTase•Pol2 CTD complex reveals a unique docking site on the nucleotidyl transferase domain for an 8-amino-acid Pol2 CTD segment, S5PPSYSPTS5P, bracketed by two Ser5-PO4 marks. Analysis of GTase mutations that disrupt the Pol2 CTD interface shows that at least one of the two Ser5-PO4-binding sites is required for cell viability and that each site is important for cell growth at 37°C. Fission yeast GTase binds the Spt5 CTD at a separate docking site in the OB-fold domain that captures the Trp4 residue of the Spt5 nonapeptide repeat T(1)PAW(4)NSGSK. A disruptive mutation in the Spt5 CTD-binding site of GTase is synthetically lethal with mutations in the Pol2 CTD-binding site, signifying that the Spt5 and Pol2 CTDs cooperate to recruit capping enzyme in vivo. CTD phosphorylation has opposite effects on the interaction of GTase with Pol2 (Ser5-PO4 is required for binding) versus Spt5 (Thr1-PO4 inhibits binding). We propose that the state of Thr1 phosphorylation comprises a binary "Spt5 CTD code" that is read by capping enzyme independent of and parallel to its response to the state of the Pol2 CTD.


Assuntos
Modelos Moleculares , Nucleotidiltransferases/metabolismo , RNA Polimerase II , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/enzimologia , Fatores de Elongação da Transcrição , Código Genético , Nucleotidiltransferases/química , Fosforilação , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Treonina/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
9.
Virus Genes ; 55(1): 68-75, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30511208

RESUMO

Peste-des-petits-ruminants is a highly contagious and fatal disease of goats and sheep caused by non-segmented, negative strand RNA virus belonging to the Morbillivirus genus-Peste-des-petits-ruminants virus (PPRV) which is evolutionarily closely related to Rinderpest virus (RPV). The large protein 'L' of the members of this genus is a multifunctional catalytic protein, which transcribes and replicates the viral genomic RNA as well as possesses mRNA capping, methylation and polyadenylation activities; however, the detailed mechanism of mRNA capping by PPRV L protein has not been studied. We have found earlier that the L protein of RPV has RNA triphosphatase (RTPase), guanylyltransferase (GTase) and methyltransferase activities, and unlike vesicular stomatitis virus (VSV), follows the conventional pathway of mRNA capping. In the present work, using a 5'-end labelled viral RNA as substrate, we demonstrate that PPRV L protein has RTPase activity when present in the ribonucleoprotein complex of purified virus as well as recombinant L-P complex expressed in insect cells. Further, a minimal domain in the C-terminal region (aa1640-1840) of the L protein has been expressed in E. coli and shown to exhibit RTPase activity. The RTPase activity of PPRV L protein is metal-dependent and functions with a divalent cation, either magnesium or manganese. In addition, RTPase associated nucleotide triphosphatase activity (NTPase) of PPRV L protein is also demonstrated. This work provides the first detailed study of RTPase activity and identifies the RTPase domain of PPRV L protein.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/fisiologia , Capuzes de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Virais/metabolismo , Animais , Baculoviridae/genética , Chlorocebus aethiops , Clonagem Molecular , Ativação Enzimática , Expressão Gênica , Vetores Genéticos/genética , Células Vero
10.
J Biol Chem ; 292(10): 3958-3969, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28154190

RESUMO

This Reflections article describes my early work on viral enzymes and the discovery of mRNA capping, how my training in medicine and biochemistry merged as I evolved into a virologist, the development of viruses as vaccine vectors, and how scientific and technological developments during the 1970s and beyond set the stage for the interrogation of nearly every step in the reproductive cycle of vaccinia virus (VACV), a large DNA virus with about 200 genes. The reader may view this article as a work in progress, because I remain actively engaged in research at the National Institutes of Health (NIH) notwithstanding 50 memorable years there.


Assuntos
Biologia Molecular , Vaccinia virus/fisiologia , Vacínia/prevenção & controle , Vacínia/virologia , Proteínas Virais/metabolismo , Replicação Viral , Humanos , Vacínia/genética
11.
RNA ; 22(9): 1454-66, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27368341

RESUMO

The eukaryotic mRNA 5' cap structure is indispensible for pre-mRNA processing, mRNA export, translation initiation, and mRNA stability. Despite this importance, structural and biophysical studies that involve capped RNA are challenging and rare due to the lack of a general method to prepare mRNA in sufficient quantities. Here, we show that the vaccinia capping enzyme can be used to produce capped RNA in the amounts that are required for large-scale structural studies. We have therefore designed an efficient expression and purification protocol for the vaccinia capping enzyme. Using this approach, the reaction scale can be increased in a cost-efficient manner, where the yields of the capped RNA solely depend on the amount of available uncapped RNA target. Using a large number of RNA substrates, we show that the efficiency of the capping reaction is largely independent of the sequence, length, and secondary structure of the RNA, which makes our approach generally applicable. We demonstrate that the capped RNA can be directly used for quantitative biophysical studies, including fluorescence anisotropy and high-resolution NMR spectroscopy. In combination with (13)C-methyl-labeled S-adenosyl methionine, the methyl groups in the RNA can be labeled for methyl TROSY NMR spectroscopy. Finally, we show that our approach can produce both cap-0 and cap-1 RNA in high amounts. In summary, we here introduce a general and straightforward method that opens new means for structural and functional studies of proteins and enzymes in complex with capped RNA.


Assuntos
Capuzes de RNA/biossíntese , Processamento Pós-Transcricional do RNA , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Metiltransferases/metabolismo , Complexos Multienzimáticos/metabolismo , Nucleotidiltransferases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Capuzes de RNA/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Virais/metabolismo
12.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28053102

RESUMO

The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5'-phospho-RNA (pRNA) from 5'-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5'-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 µM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m7G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m7GpppA (cap 0), respectively. Furthermore, either the 2'- or 3'-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5'-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups of GDP as essential for the substrate activity. The findings presented here are useful not only for understanding the mechanism of the substrate recognition with PRNTase but also for designing antiviral agents targeting this enzyme.


Assuntos
Guanosina Difosfato/metabolismo , Análogos de Capuz de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Vesiculovirus/enzimologia , Proteínas Virais/metabolismo , Cinética , Especificidade por Substrato
13.
RNA ; 21(1): 113-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25414009

RESUMO

mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The bound CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an "Spt5 CTD code" in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on-off switch that is read by diverse CTD receptors, each in its own distinctive manner.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Fatores de Elongação da Transcrição/química , Sequência de Aminoácidos , Apoenzimas/química , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Treonina/química
14.
Virus Genes ; 52(5): 743-7, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27170418

RESUMO

L protein of the Rinderpest virus, an archetypal paramyxovirus possesses RNA-dependent RNA polymerase activity which transcribes the genome into mRNAs as well as replicates the RNA genome. The protein also possesses RNA triphosphatase (RTPase), guanylyltransferase (GTase) and methyltransferase enzyme activities responsible for capping the mRNAs in a conventional pathway similar to that of the host pathway. Subsequent to the earlier characterization of the GTase activity of L protein and identification of the RTPase domain of the L protein, we report here, additional enzymatic activities associated with the RTPase domain. We have characterized the pyrophosphatase and tripolyphosphatase activities of the L-RTPase domain which are metal-dependent and proceed much faster than the RTPase activity. Interestingly, the mutant proteins E1645A and E1647A abrogated the pyrophosphatase and tripolyphosphatase significantly, indicating a strong overlap of the active sites of these activities with that of RTPase. We discuss the likely role of GTase-associated L protein pyrophosphatase in the polymerase function. We also discuss a possible biological role for the tripolyphosphatase activity hitherto considered insignificant for the viruses possessing such activity.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Pirofosfatases/metabolismo , Vírus da Peste Bovina/metabolismo , Proteínas Virais/metabolismo , Escherichia coli/metabolismo , Nucleotidiltransferases/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Polimerase Dependente de RNA/metabolismo
15.
Biochem Biophys Res Commun ; 464(2): 629-34, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26168720

RESUMO

The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family. We had earlier shown that the large protein L of Rinderpest virus expressed as recombinant L-P complex in insect cells as well as the ribonucleoprotein complex from purified virus possesses RNA triphosphatase (RTPase) and guanylyltransferase activities, in addition to RNA dependent RNA polymerase activity. In the present work, we demonstrate that RTPase as well as nucleoside triphosphatase (NTPase) activities are exhibited by a subdomain of the L protein in the C terminal region (a.a. 1640-1840). The RTPase activity depends absolutely on a divalent cation, either magnesium or manganese. Both the RTPase and NTPase activities of the protein show dual metal specificity. Two mutant proteins having alanine mutations in the glutamic acid residues in motif-A of the RTPase domain did not show RTPase activity, while exhibiting reduced NTPase activity suggesting overlapping active sites for the two enzymatic functions. The RTPase and NTPase activities of the L subdomain resemble those of the Vaccinia capping enzyme D1 and the baculovirus LEF4 proteins.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Capuzes de RNA , RNA Viral/metabolismo , Vírus da Peste Bovina/química , Proteínas Virais/metabolismo , Hidrolases Anidrido Ácido/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteínas Virais/química
16.
Virus Genes ; 51(3): 356-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26446666

RESUMO

Post-transcriptional modification of viral mRNA is essential for the translation of viral proteins by cellular translation machinery. Due to the cytoplasmic replication of Paramyxoviruses, the viral-encoded RNA-dependent RNA polymerase (RdRP) is thought to possess all activities required for mRNA capping and methylation. In the present work, using partially purified recombinant RNA polymerase complex of rinderpest virus expressed in insect cells, we demonstrate the in vitro methylation of capped mRNA. Further, we show that a recombinant C-terminal fragment (1717-2183 aa) of L protein is capable of methylating capped mRNA, suggesting that the various post-transcriptional activities of the L protein are located in independently folding domains.


Assuntos
Metiltransferases/genética , Metiltransferases/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Vírus da Peste Bovina/enzimologia , Sequência de Aminoácidos , Animais , Humanos , Insetos Vetores/genética , Dados de Sequência Molecular , Capuzes de RNA , RNA Mensageiro/genética , RNA Viral/genética , Vírus da Peste Bovina/genética , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Proteínas Virais/genética
17.
Methods Mol Biol ; 2786: 147-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814393

RESUMO

Here we describe the in vitro preparation of mRNA from DNA templates, including setting up the transcription reaction, mRNA capping, and mRNA labeling. We then describe methods used for mRNA characterization, including UV and fluorescence spectrophotometry, as well as gel electrophoresis. Moreover, characterization of the in vitro transcribed RNA using the Bioanalyzer instrument is described, allowing a higher resolution analysis of the target molecules. For the in vitro testing of the mRNA molecules, we include protocols for the transfection of various primary cell cultures and the confirmation of translation by intracellular staining and western blotting.


Assuntos
RNA Mensageiro , Transcrição Gênica , RNA Mensageiro/genética , Humanos , Transfecção/métodos , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , DNA/genética , Animais
18.
Bioengineered ; 13(7-12): 14947-14959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37105766

RESUMO

During the last decades, we have witnessed unprecedented advances in biological engineering and synthetic biology. These disciplines aim to take advantage of gene pathway regulation and gene expression in different organisms, to enable cells to perform desired functions. Yeast has been widely utilized as a model for the study of eukaryotic protein expression while bacteriophage T7RNAP and its promoter constitute the preferred system for prokaryotic protein expression (such as pET-based expression systems). The ability to integrate a T7RNAP-based expression system in yeast could allow for a better understanding of gene regulation in eukaryotic cells, and potentially increase the efficiency and processivity of yeast as an expression system. However, the attempts for the creation of such a system have been unsuccessful to date. This review aims to: (i) summarize the efforts that, for many years, have been devoted to the creation of a T7RNAP-based yeast expression system and ii) provide an overview of the latest advances in knowledge of eukaryotic transcription and translation that could lead to the construction of a successful T7RNAP expression system in yeast. The completion of this new expression system would allow to further expand the toolkit of yeast in synthetic biology and ultimately contribute to boost yeast usage as a key cell factory in sustainable biorefinery and circular economy.


Assuntos
RNA Polimerases Dirigidas por DNA , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Virais , Regiões Promotoras Genéticas/genética
19.
Pharmaceutics ; 14(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35214060

RESUMO

The presence of the cap structure on the 5'-end of in vitro-transcribed (IVT) mRNA determines its translation and stability, underpinning its use in therapeutics. Both enzymatic and co-transcriptional capping may lead to incomplete positioning of the cap on newly synthesized RNA molecules. IVT mRNAs are rapidly emerging as novel biologics, including recent vaccines against COVID-19 and vaccine candidates against other infectious diseases, as well as for cancer immunotherapies and protein replacement therapies. Quality control methods necessary for the preclinical and clinical stages of development of these therapeutics are under ongoing development. Here, we described a method to assess the presence of the cap structure of IVT mRNAs. We designed a set of ribozyme assays to specifically cleave IVT mRNAs at a unique position and release 5'-end capped or uncapped cleavage products up to 30 nt long. We purified these products using silica-based columns and visualized/quantified them using denaturing polyacrylamide gel electrophoresis (PAGE) or liquid chromatography and mass spectrometry (LC-MS). Using this technology, we determined the capping efficiencies of IVT mRNAs with different features, which include: Different cap structures, diverse 5' untranslated regions, different nucleoside modifications, and diverse lengths. Taken together, the ribozyme cleavage assays we developed are fast and reliable for the analysis of capping efficiency for research and development purposes, as well as a general quality control for mRNA-based therapeutics.

20.
Diseases ; 9(1)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535388

RESUMO

With the approval and distribution of demonstrably safe COVID-19 vaccines bearing exceptionally high efficacy profiles, it may be tempting to envision a return to "normal" in the coming months. However, if there is one lesson to be learned from the ongoing pandemic, it is that, in a world of evolving zoonotic viruses, we must be better prepared for the next deadly outbreak. While the acute nature of the COVID-19 pandemic demanded a highly specific approach, it is advisable to consider the breadth of seemingly endless possibilities in our approach to managing the next inevitable occurrence of an outbreak. Though there is little chance of discovering a "magic pill" to combat all future pathogens, the highly conserved nature of non-surface viral proteins exposes an "Achilles' heel" in the structural genome of viral pathogens. Herein, we consider the potential of targeting such proteins to develop broad-spectrum therapeutics for the future. To illustrate this point, we outline the therapeutic potential of targeting the nonstructural protein 16 methyltransferase, which is conserved across most coronaviruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA