Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38730756

RESUMO

The mechanical properties of porcupine quills have attracted the interest of researchers due to their unique structure and composition. However, there is still a knowledge gap in understanding how these properties can be utilized to design biomimetic structures with enhanced performance. This study delves into the nanomechanical and macro-mechanical properties of porcupine quills, unveiling varied elastic moduli across different regions and cross sections. The results indicated that the elastic moduli of the upper and lower epidermis were higher at 8.13 ± 0.05 GPa and 7.71 ± 0.14 GPa, respectively, compared to other regions. In contrast, the elastic modulus of the mid-dermis of the quill mid-section was measured to be 7.16 ± 0.10 GPa. Based on the micro- and macro-structural analysis of porcupine quills, which revealed distinct variations in elastic moduli across different regions and cross sections, various biomimetic porous structures (BPSs) were designed. These BPSs were inspired by the unique properties of the quills and aimed to replicate and enhance their mechanical characteristics in engineering applications. Compression, torsion, and impact tests illustrated the efficacy of structures with filled hexagons and circles in improving performance. This study showed enhancements in maximum torsional load and crashworthiness with an increase in filled structures. Particularly noteworthy was the biomimetic porous circular structure 3 (BPCS_3), which displayed exceptional achievements in average energy absorption (28.37 J) and specific energy absorption (919.82 J/kg). Finally, a response surface-based optimization method is proposed to enhance the design of the structure under combined compression-torsion loads, with the goal of reducing mass and deformation. This research contributes to the field of biomimetics by exploring the potential applications of porcupine quill-inspired structures in fields such as robotics, drive shafts, and aerospace engineering.

2.
Environ Sci Pollut Res Int ; 30(32): 78469-78481, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269526

RESUMO

Microbial-induced calcium carbonate precipitation (MICP) treatment of consolidated loess has the advantages of high efficiency and environmental protection. In this study, changes in the microscopic pore structure of loess before and after MICP treatment were compared and quantified, combined with test results at different scales, to better understand the mechanisms of MICP-consolidated loess. The unconfined compressive strength (UCS) of MICP-consolidated loess is significantly increased, and the stress-strain curve indicates improved strength and stability of the loess. X-ray diffraction (XRD) test results show that the signal strength of calcium carbonate crystals is significantly enhanced after loess consolidation. The microstructure of the loess was determined by scanning electron microscopy (SEM). The loess SEM microstructure images are quantitatively analyzed using comprehensive image processing methods (including gamma adjustment, grayscale threshold selection, median processing). The changes in microscopic pore area and average pore sizes (Feret diameter) of the loess before and after consolidation are described. More than 95% of the pores consist of pores with a pore area of less than 100 µm2 and an average pore size of less than 20 µm. The total percentage of pore numbers with pore areas of 100-200 and 200-1000 µm2 decreased by 1.15% after MICP consolidation, while those with 0-1 and 1-100 µm2 increased. The percentage of pore numbers with an average pore size greater than 20 µm decreased by 0.93%, while the 0-1, 1-10, and 10-20 µm increased. Particle size distributions revealed a significant increase in particle size after MICP consolidation, with an increase of 89 µm in D50.


Assuntos
Carbonato de Cálcio , Carbonato de Cálcio/química , Precipitação Química , Microscopia Eletrônica de Varredura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA