Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2321616121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635630

RESUMO

Experimental results are presented showing the variation in the relationship between odd isotopes of tin (Sn) in mass-independent fractionation caused by the magnetic isotope effect (MIE), which has previously only been observed for mercury. These results are consistent with the trend predicted from the difference between the magnitudes of nuclear magnetic moments of odd isotopes with a nuclear spin. However, the correlation between odd isotopes in fractionation induced by the MIE for the reaction system used in this study (solvent extraction using a crown ether) was different from that reported for the photochemical reaction of methyltin. This difference between the two reaction systems is consistent with a theoretical prediction that the correlation between odd isotopes in fractionation induced by the MIE is controlled by the relationship between the spin conversion time and radical lifetime. The characteristic changes in the correlation between odd isotopes in fractionation induced by the MIE observed for Sn in this study provide a guideline for quantitatively determining fractionation patterns caused by the MIE for elements that have multiple isotopes with a nuclear spin. These results improve our understanding of the potential impact of the MIE on mass-independent fractionation observed in natural samples, such as meteorites, and analytical artifacts of high-precision isotope analysis for heavy elements.

2.
J Comput Chem ; 45(14): 1087-1097, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243618

RESUMO

A series of pentagonal bipyramidal anionic germanium clusters doped with heavy rare earth elements, REGe 6 - (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), have been identified at the PBE0/def2-TZVP level using density functional theory (DFT). Our findings reveal that the centrally doped pentagonal ring structure demonstrates enhanced stability and heightened aromaticity due to its uniform bonding characteristics and a larger charge transfer region. Through natural population analysis and spin density diagrams, we observed a monotonic decrease in the magnetic moment from Gd to Yb. This is attributed to the decreasing number of unpaired electrons in the 4f orbitals of the heavy rare earth atoms. Interestingly, the system doped with Er atoms showed lower stability and anti-aromaticity, likely due to the involvement of the 4f orbitals in bonding. Conversely, the systems doped with Gd and Tb atoms stood out for their high magnetism and stability, making them potential building blocks for rare earth-doped semiconductor materials.

3.
J Comput Chem ; 44(29): 2284-2293, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37578012

RESUMO

Growth pattern and electronic and magnetic properties of Agn Cr (n = 1-16) clusters have been investigated via density functional theory (DFT) combined with CALYPSO structure search method. The optimized geometry shows that the growth of the global minimum structures of Agn Cr clusters have obvious rule. when n > 12, silver atoms grow around an icosahedron which is almost unchanged in each structure. Analyses of electronic properties indicate that the doped Cr atom can only enhance the stability of larger silver clusters. Optical absorption and photoelectron spectra of Agn Cr isomers have been predicted and can be used for their structural identification. The icosahedral Ag12 Cr cluster with large energy level gap can be seen as a superatom. The adsorption capacity of Cr atom in Agn Cr cluster to CO is much higher than that of free Cr atom. The intensity of IR and Ramam spectra can be dramatically enhanced when CO is absorbed on Agn Cr cluster that Cr atom is encapsulated by Ag atoms. Moreover, the red shift of IR and Raman spectra of CO adsorbed on these clusters is also very small compared to free CO. Magnetism calculations show that the magnetic moment of Agn Cr clusters decreases linearly from n = 6 to 12 and increases linearly from n = 12 to 16. The total magnetic moment of Agn Cr cluster is mainly localized on the Cr atom. The change of magnetic moment of Cr atom is related to the charge transfer between Cr and Ag atoms.

4.
Nano Lett ; 22(1): 73-80, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962398

RESUMO

The Berry curvature and orbital magnetic moment (OMM) come from either inversion symmetry or time-reversal symmetry breaking in quantum materials. Here, we demonstrate the significance of OMMs and Berry curvature in planar Hall effect (PHE) in antiferromagnetic topological insulator MnBi2Te4 flakes. We observe a PHE with period of π and positive magnitude at low fields, resembling the PHE of the surface states in nonmagnetic topological insulators. Remarkably, a novel predominant PHE with period of π/2 and negative magnitude emerges below the Néel temperature with B > 10 T. Our theoretical calculations reveal that this unusual π/2-periodic PHE originates from the topological OMMs of bulk Dirac electrons. Moreover, the competition between the contributions from the bulk and the surface states leads to nontrivial evolutions of PHE and anisotropic magnetoresistance. Our results reveal intriguing electromagnetic response due to the OMMs and also provide insight into the potential applications of magnetic topological insulators in spintronics.

5.
Entropy (Basel) ; 25(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37190384

RESUMO

We study the evolution of the energy and magnetic moment of a quantum charged particle placed in a homogeneous magnetic field, when this field changes its sign adiabatically. We show that after a single magnetic field passage through zero value, the famous adiabatic invariant ratio of energy to frequency is reestablished again, but with a proportionality coefficient higher than in the initial state. The concrete value of this proportionality coefficient depends on the power index of the frequency dependence on time near zero point. In particular, the adiabatic ratio of the initial ground state (with zero radial and angular quantum numbers) triplicates if the frequency tends to zero linearly as a function of time. If the Larmor frequency attains zero more than once, the adiabatic proportionality coefficient strongly depends on the lengths of the time intervals between zero points, so that the mean energy behavior can be quasi-stochastic after many passages through zero value. The original Born-Fock adiabatic theorem does not work after the frequency passes through zero. However, its generalization is found: the initial Fock state becomes a wide superposition of many instantaneous Fock states, whose weights do not depend on time in the new adiabatic regime.

6.
Chemphyschem ; 23(21): e202200277, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35654746

RESUMO

Dissociation of CO2 on iron clusters was studied by using semilocal density functional theory and basis sets of triple-zeta quality. Fe2 , Fe4 , and Fe16 clusters were selected as the representative host clusters. When searching for isomers of Fen CO2 , n=2, 4 and 16 corresponding to carbon dioxide attachment to the host clusters, its reduction to O and CO, and to the complete dissociation, it was found that the total spin magnetic moments of the lowest energy states of the isomers are often quenched with respect to those of initial reagents Fen +CO2 . Dissociation pathways of the Fe2 +CO2 , Fe4 +CO2 , and Fe16 +CO2 reactions contain several transition states separated by the local minima states; therefore, a natural question is where do the spin flips occur? Since lifetimes of magnetically excited states were shown to be of the order of 100 fs, the search for the CO2 dissociation pathways was performed under the assumption that magnetic deexcitation may occur at the intermediate local minima. Two dissociation pathways were obtained for each Fen +CO2 reaction using the gradient-based methods. It was found that the Fe2 +CO2 reaction is endothermic with respect to both reduction and complete dissociation of CO2 , whereas the Fe4 +CO2 and Fe16 +CO2 reactions are exothermic to both reduction and complete dissociation of carbon dioxide. The CO2 reduction was found to be more favorable than its complete dissociation in the Fe4 case.


Assuntos
Dióxido de Carbono , Ferro , Dióxido de Carbono/metabolismo , Isomerismo
7.
Nanotechnology ; 33(47)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35970138

RESUMO

Magnetic force microscopy (MFM) has become one of the most important instruments for characterizing magnetic materials with nanoscale spatial resolution. When analyzing magnetic particles by MFM, calibration of the magnetic tips using reference magnetic nanoparticles is a prerequisite due to similar orientation and dimension of the yielded magnetic fields. However, in such a calibration process, errors caused by extra electrostatic interactions will significantly affect the output results. In this work, we evaluate the magnetic moment and dipole radius of the MFM tip on Fe3O4nanoparticles by considering the associated electrostatic force. The coupling of electrostatic contribution on the measured MFM phase is eliminated by combining MFM and Kelvin probe force microscopy together with theoretical modeling. Numerical simulations and experiments on nickel nanoparticles demonstrate the effectiveness of decoupling. Results show that the calibrated MFM tip can enable a more accurate analysis of micro-and-nano magnetism. In addition, a fast and easy calibration method by using bimodal MFM is discussed, in which the acquisition of multiple phase shifts at different lift heights is not required.

8.
Nano Lett ; 21(7): 2939-2945, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33739114

RESUMO

Time-dependent rotational electric polarizations have been proposed to generate temporally varying magnetic moments, for example, through a combination of ferroelectric polarization and optical phonons. This phenomenon has been called dynamical multiferroicity, but explicit experimental demonstrations have been elusive to date. Here, we report the detection of a temporal magnetic moment as high as 1.2 µB/atom in a charge-doped thin film of silicon under flexural strain. We demonstrate that the magnetic moment is generated by a combination of electric polarization arising from a flexoelectronic charge separation along the strain gradient and the deformation potential of phonons. The effect can be controlled by adjusting the external strain gradient, doping concentration, and dopant and can be regarded as a dynamical multiferroic effect involving flexoelectronic polarization instead of ferroelectricity. The discovery of a large magnetic moment in silicon may enable the use of nonmagnetic and nonferroelectric semiconductors in various multiferroic and spintronic applications.

9.
Nano Lett ; 21(10): 4287-4291, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33974440

RESUMO

Excellent photovoltaic performance is predicted in a pentagonal covalent network of Si in a hollow structure exhibiting both thermal and dynamical stability. Consisting of a combination of sp2 and sp3 hybridized Si atomic orbitals, the GW0 computed band structure shows an indirect band gap near the zone edge and also a manifold of directly absorbing transitions at frequencies in the window of visible light, in distinction with conventional Si. Hydrogenation of a single sp2 site is predicted to lead to a robust local magnetic moment. We find a low formation energy at low pressure that is compatible with other experimentally known phases, suggesting that a stable phase might be obtained.

10.
Angew Chem Int Ed Engl ; 61(27): e202201007, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35468253

RESUMO

Iron, nitrogen-codoped carbon (Fe-N-C) nanocomposites have emerged as viable electrocatalysts for the oxygen reduction reaction (ORR) due to the formation of FeNx Cy coordination moieties. In this study, results from first-principles calculations show a nearly linear correlation of the energy barriers of key reaction steps with the Fe magnetic moment. Experimentally, when single Cu sites are incorporated into Fe-N-C aerogels (denoted as NCAG/Fe-Cu), the Fe centers exhibit a reduced magnetic moment and markedly enhanced ORR activity within a wide pH range of 0-14. With the NCAG/Fe-Cu nanocomposites used as the cathode catalyst in a neutral/quasi-solid aluminum-air and alkaline/quasi-solid zinc-air battery, both achieve a remarkable performance with an ultrahigh open-circuit voltage of 2.00 and 1.51 V, large power density of 130 and 186 mW cm-2 , and good mechanical flexibility, all markedly better than those with commercial Pt/C or Pt/C-RuO2 catalysts at the cathode.

11.
Sci Technol Adv Mater ; 22(1): 235-271, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33828415

RESUMO

Heusler alloys are theoretically predicted to become half-metals at room temperature (RT). The advantages of using these alloys are good lattice matching with major substrates, high Curie temperature above RT and intermetallic controllability for spin density of states at the Fermi energy level. The alloys are categorised into half- and full-Heusler alloys depending upon the crystalline structures, each being discussed both experimentally and theoretically. Fundamental properties of ferromagnetic Heusler alloys are described. Both structural and magnetic characterisations on an atomic scale are typically carried out in order to prove the half-metallicity at RT. Atomic ordering in the films is directly observed by X-ray diffraction and is also indirectly probed via the temperature dependence of electrical resistivity. Element specific magnetic moments and spin polarisation of the Heusler alloy films are directly measured using X-ray magnetic circular dichroism and Andreev reflection, respectively. By employing these ferromagnetic alloy films in a spintronic device, efficient spin injection into a non-magnetic material and large magnetoresistance are also discussed. Fundamental properties of antiferromagnetic Heusler alloys are then described. Both structural and magnetic characterisations on an atomic scale are shown. Atomic ordering in the Heusler alloy films is indirectly measured by the temperature dependence of electrical resistivity. Antiferromagnetic configurations are directly imaged by X-ray magnetic linear dichroism and polarised neutron reflection. The applications of the antiferromagnetic Heusler alloy films are also explained. The other non-magnetic Heusler alloys are listed. A brief summary is provided at the end of this review.

12.
Nano Lett ; 20(1): 59-65, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31809059

RESUMO

Recently, magnetic antiskyrmions were discovered in Mn1.4Pt0.9Pd0.1Sn, an inverse tetragonal Heusler compound that is nominally a ferrimagnet, but which can only be formed with substantial Mn vacancies. The vacancies reduce considerably the compensation of the moments between the two expected antiferromagnetically coupled Mn sub-lattices so that the overall magnetization is very high and the compound is almost a "ferromagnet". Here, we report the observation of antiskyrmions in a second inverse tetragonal Heusler compound, Mn2Rh0.95Ir0.05Sn, which can be formed stoichiometrically without any Mn vacancies and which thus exhibits a much smaller magnetization. Individual and lattices of antiskyrmions can be stabilized over a wide range of temperature from near room temperature to 100 K, the base temperature of the Lorentz transmission electron microscope used to image them. In low magnetic fields helical spin textures are found which evolve into antiskyrmion structures in the presence of small magnetic fields. A weaker Dzyaloshinskii-Moriya interaction (DMI), that stabilizes the antiskyrmions, is expected for the 4d element Rh as compared to the 5d element Pt, so that the observation of antiskyrmions in Mn2Rh0.95Ir0.05Sn establishes the intrinsic stability of antiskyrmions in these Heusler compounds. Moreover, the finding of antiskyrmions with substantially lower magnetization promises, via chemical tuning, even zero moment antiskyrmions with important technological import.

13.
Nano Lett ; 20(10): 7694-7699, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32955897

RESUMO

The spin Hall effect is the transverse flow of the electron spin in response to an external electric field. Similarly, the temperature gradient in magnets can drive a transverse flow of the magnon spin, which provides a thermal alternative for spin manipulation. Recently, phonon angular momentum (PAM), the angular momentum of atoms resulting from their orbital motion around their equilibrium positions, has garnered attention as a quantity analogous to the magnon spin. Here, we report that the temperature gradient generally induces a transverse flow of PAM, which we term the phonon angular momentum Hall effect (PAMHE). The PAMHE arises whenever there are transverse and longitudinal acoustic phonons, and it is therefore ubiquitous in condensed matter systems. As a consequence of the PAMHE, PAM accumulates at the crystal edges. When the atoms in the crystal carry a non-zero Born effective charge, the edge PAM induces edge magnetization, which can be observed through optical measurement.

14.
Nano Lett ; 20(8): 5991-5996, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32633978

RESUMO

We investigated the magnetoterahertz response of the Dirac semimetal Cd3As2 and observed a particularly low frequency optical phonon as well as a very prominent and field-sensitive cyclotron resonance. As the cyclotron frequency is tuned with the field to pass through the phonon, the phonon becomes circularly polarized, as shown by a notable splitting in its response to right- and left-hand polarized light. This splitting can be expressed as an effective phonon magnetic moment that is approximately 2.7 times the Bohr magneton, which is almost 4 orders of magnitude larger than ab initio calculations predict for phonon magnetic moments in nonmagnetic insulators. This exceedingly large value is due to the coupling of the phonons to the cyclotron motion and is controlled directly by the electron-phonon coupling constant. This field-tunable circular-polarization-selective coupling provides new functionality for nonlinear optics to create light-induced topological phases in Dirac semimetals.

15.
Molecules ; 26(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771073

RESUMO

Based on density functional theory, we have systematically investigated the geometric, magnetic, and electronic properties of fluorographene with three types of vacancy defects. With uneven sublattice, the partial defect structures are significantly spin-polarized and present midgap electronic states. The magnetic moment is mainly contributed by the adjacent C atoms of vacancy defects. Furthermore, the strain dependence of the bandgap is analyzed and shows a linear trend with applied strain. This defect-induced tunable narrow bandgap material has great potential in electronic devices and spintronics applications.

16.
Entropy (Basel) ; 23(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34945884

RESUMO

We consider a quantum spinless nonrelativistic charged particle moving in the xy plane under the action of a time-dependent magnetic field, described by means of the linear vector potential A=B(t)-y(1+α),x(1-α)/2, with two fixed values of the gauge parameter α: α=0 (the circular gauge) and α=1 (the Landau gauge). While the magnetic field is the same in all the cases, the systems with different values of the gauge parameter are not equivalent for nonstationary magnetic fields due to different structures of induced electric fields, whose lines of force are circles for α=0 and straight lines for α=1. We derive general formulas for the time-dependent mean values of the energy and magnetic moment, as well as for their variances, for an arbitrary function B(t). They are expressed in terms of solutions to the classical equation of motion ε¨+ωα2(t)ε=0, with ω1=2ω0. Explicit results are found in the cases of the sudden jump of magnetic field, the parametric resonance, the adiabatic evolution, and for several specific functions B(t), when solutions can be expressed in terms of elementary or hypergeometric functions. These examples show that the evolution of the mentioned mean values can be rather different for the two gauges, if the evolution is not adiabatic. It appears that the adiabatic approximation fails when the magnetic field goes to zero. Moreover, the sudden jump approximation can fail in this case as well. The case of a slowly varying field changing its sign seems especially interesting. In all the cases, fluctuations of the magnetic moment are very strong, frequently exceeding the square of the mean value.

17.
Magn Reson Chem ; 58(7): 648-652, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32012333

RESUMO

Gas-phase 21 Ne nuclear magnetic resonance spectra were measured at the natural abundance of 21 Ne isotope for samples consisting of pressurized neon up to 60 bar at room temperature and applying the magnetic field of the strength B0 = 11.7574 T. It showed that the nuclear magnetic resonance frequency is linearly dependent on the density of gaseous neon. The resonance frequency was extrapolated to the zero-density point, and it permitted the determination of the 21 Ne nuclear magnetic moment, µ(21 Ne) = 0.6617774(10) µN . The present value of µ(21 Ne) is not influenced by the bulk magnetic susceptibility of neon and interactions between neon atoms; therefore, it is more precise and reliable than the previous result obtained for µ(21 Ne).

18.
Small ; 15(15): e1900427, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30844151

RESUMO

Micro-/nanomotors are widely used in micro-/nanoprocessing, cargo transportation, and other microscale tasks because of their ability to move independently. Many biological hybrid motors based on bacteria have been developed. Magnetotactic bacteria (MTB) have been employed as motors in biological systems because of their good biocompatibility and magnetotactic motion in magnetic fields. However, the magnetotaxis of MTB is difficult to control due to the lack of effective methods. Herein, a strategy that enables control over the motion of MTB is presented. By depositing synthetic Fe3 O4 magnetic nanoparticles on the surface of MTB, semiartificial magnetotactic bacteria (SAMTB) are produced. The overall magnetic properties of SAMTB, including saturation magnetization, residual magnetization, and blocking temperature, are regulated in a multivariate and multilevel fashion, thus regulating the magnetic sensitivity of SAMTB. This strategy provides a feasible method to manoeuvre MTB for applications in complex fluid environments, such as magnetic drug release systems and real-time tracking systems. Furthermore, this concept and methodology provide a paradigm for controlling the mobility of micro-/nanomotors based on natural small organisms.


Assuntos
Magnetismo , Nanopartículas de Magnetita/química , Magnetospirillum/fisiologia , Nanopartículas de Magnetita/ultraestrutura , Magnetossomos/ultraestrutura , Espectrofotometria
19.
Eur Biophys J ; 48(6): 513-521, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31203416

RESUMO

Magnetotactic bacteria are microorganisms that present intracellular chains of magnetic nanoparticles, the magnetosome chain. A challenge in the study of magnetotactic bacteria is the measurement of the magnetic moment associated with the magnetosome chain. Several techniques have been used to estimate the average magnetic moment of a population of magnetotactic bacteria, and others permit the measurement of the magnetic moment of individual bacteria. The U-turn technique allows the measurement of the individual magnetic moment and other parameters associated with the movement and magnetotaxis, such as the velocity and the orientation angle of the trajectory relative to the applied magnetic field. The aim of the present paper is to use the U-turn technique in a population of uncultured magnetotactic cocci to measure the magnetic moment, the volume, orientation angle and velocity for the same individuals. Our results showed that the magnetic moment is distributed in a log-normal distribution, with a mean value of 8.2 × 10-15 Am2 and median of 5.4 × 10-15 Am2. An estimate of the average magnetic moment using the average value of the orientation cosine produces a value similar to the median of the distribution and to the average magnetic moment obtained using transmission electron microscopy. A strong positive correlation is observed between the magnetic moment and the volume. There is no correlation between the magnetic moment and the orientation cosine and between the magnetic moment and the velocity. Those null correlations can be explained by our current understanding of magnetotaxis.


Assuntos
Bactérias , Fenômenos Magnéticos , Movimento
20.
J Synchrotron Radiat ; 25(Pt 5): 1400-1407, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179179

RESUMO

Magnetic polarization of Mo atoms in Co96Mo4 alloy film and Co/Mo multilayered structures has been studied by X-ray magnetic circular dichroism. Samples with Mo spacers of two different thicknesses (0.9 nm and 1.8 nm) were investigated. Mo atoms receive a magnetic moment of -0.21µB in the alloy. In the multilayer with the thinner Mo spacer (dMo = 0.9 nm) the magnetic moment is much smaller (-0.03µB). In both cases the measured induced moment at the Mo site is oriented antiparallel to the moment at the Co atoms. The presence of the induced moment in the Mo spacer coincides with antiferromagnetic coupling between the Co component slabs. In contrast, neither measurable induced moment at the Mo site nor interlayer coupling between the Co layers has been found for the multilayer with the thicker Mo spacer. Possible mechanisms of the coupling associated with the induced moment are discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA