RESUMO
Flexible polymer-based magnetoelectric (ME) materials have broad application prospects and are considered as a new research field. In this article, FeCoSiB thin films were deposited on poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) substrate by DC magnetron sputtering. The structure of PVDF-TrFE/FeCoSiB heterostructure thin films was similar to 2-2. Under a bias magnetic field of 70 Oe, the composites have a dramatically increased ME voltage coefficient as high as 111 V/cmâ Oe at a frequency of about 85 kHz. The piezoelectric coefficient of PVDF-TrFE thin films is 34.87 pC/N. The surface morphology of PVDF-TrFE thin films were studied by FESEM, and the results of XRD and FTIR showed that the ß-phase of PVDF-TrFE thin films was dominant. Meanwhile, the effects of different heating conditions on the crystallization and piezoelectric properties of PVDF-TrFE films were also studied. The flexible ME heterojunction composite has a significant ME voltage coefficient and excellent piezoelectric properties at room temperature, which allows it to be a candidate material for developing flexible magnetoelectric devices.
Assuntos
Polímeros de Fluorcarboneto , Calefação , CristalizaçãoRESUMO
The strain-driven interfacial coupling between the ferromagnetic and ferroelectric constituents of magnetoelectric (ME) composites makes them potential candidates for novel multifunctional devices. ME composites in the form of thin-film heterostructures show promising applications in miniaturized ME devices. This article reports the recent advancement in ME thin-film devices, such as highly sensitive magnetic field sensors, ME antennas, integrated tunable ME inductors, and ME band-pass filters, is discussed. (Pb1-xZrx)TiO3 (PZT), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), Aluminium nitride (AlN), and Al1-xScxN are the most commonly used piezoelectric constituents, whereas FeGa, FeGaB, FeCo, FeCoB, and Metglas (FeCoSiB alloy) are the most commonly used magnetostrictive constituents in the thin film ME devices. The ME field sensors offer a limit of detection in the fT/Hz1/2 range at the mechanical resonance frequency. However, below resonance, different frequency conversion techniques with AC magnetic or electric fields or the delta-E effect are used. Noise floors of 1-100 pT/Hz1/2 at 1 Hz were obtained. Acoustically actuated nanomechanical ME antennas operating at a very-high frequency as well as ultra-high frequency (0.1-3 GHz) range, were introduced. The ME antennas were successfully miniaturized by a few orders smaller in size compared to the state-of-the-art conventional antennas. The designed antennas exhibit potential application in biomedical devices and wearable antennas. Integrated tunable inductors and band-pass filters tuned by electric and magnetic field with a wide operating frequency range are also discussed along with miniaturized ME energy harvesters.
RESUMO
Traditional fabrication methods for creating flexible magnetoelectric sensors are often laborious and challenging when it comes to personalization. This article employs fused deposition modeling 3D printing technology to produce flexible multifunctional sensors. (0-3) type composite filaments were prepared using polyvinylidene fluoride and cobalt ferrite (CoFe2O4, abbreviated as CFO). These filaments can be printed into various shapes, exhibiting good mechanical and electrical properties. Crucial parameters, such as different component ratios and CFO particle sizes, were analyzed. This study can serve as a valuable reference for the future development of personalized wearable sensors.
RESUMO
Magnetoelectric (ME) film composites consisting of piezoelectric and magnetostrictive materials are promising candidates for application in magnetic field sensors, energy harvesters, and ME antennas. Conventionally, high-temperature annealing is required to crystallize piezoelectric films, restricting the use of heat-sensitive magnetostrictive substrates that enhance ME coupling. Herein, a synergetic approach is demonstrated for fabricating ME film composites that combines aerosol deposition and instantaneous thermal treatment based on intense pulsed light (IPL) radiation to form piezoelectric Pb(Zr,Ti)O3 (PZT) thick films on an amorphous Metglas substrate. IPL rapidly anneals PZT films within a few milliseconds without damaging the underlying Metglas. To optimize the IPL irradiation conditions, the temperature distribution inside the PZT/Metglas film is determined using transient photothermal computational simulation. The PZT/Metglas films are annealed using different IPL pulse durations to determine the structure-property relationship. IPL treatment results in an enhanced crystallinity of the PZT, thus improving the dielectric, piezoelectric, and ME properties of the composite films. An ultrahigh off-resonance ME coupling (≈20 V cm-1 Oe-1 ) is obtained for the PZT/Metglas film that is IPL annealed at a pulse width of 0.75 ms (an order of magnitude higher than that reported for other ME films), confirming the potential for next-generation, miniaturized, and high-performance ME devices.
RESUMO
Flexible electromechanical conversion devices have attracted enormous attention as energy harvesters and self-powered sensors in the fields of wearable electronics and robotics. However, current flexible devices composed of plastic polymers and metals suffer from non-degradability and limited recyclability. Herein, a biodegradable and recyclable hydrogel-based magnetoelectric (ME) composite is fabricated via introducing NdFeB magnetic particles and copper wires into the regenerated bacterial cellulose (rBC) hydrogel. The developed hydrogel-based ME composites can effectively convert the mechanical kinetic energy into electrical energy based on the principle of electromagnetic induction, which maximum voltage reaches 15 µV. In addition, degradation experiments are conducted in this work to demonstrate the hydrogel can be rapidly degraded within 3 h under the condition of enzyme and completely natural degraded within 49 days in water, respectively. Moreover, the left NdFeB particles and copper wires can be recyclable and reused for the same devices, leaving no environmentally hazardous electronic waste.
Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Celulose , Cobre , Condutividade Elétrica , Plásticos , ÁguaRESUMO
Flexible magnetoelectric (ME) device is one of the indispensable elements. However, the complicated fabrication process and low sensitivity hinder the practical applications. Here, flexible NiFe anisotropic magnetoelastic composites were prepared by cluster-supersonic expansion method assistant with polyvinylidene fluoride (PVDF) substrates. The NiFe/PVDF composites possess sensitive angle-resolution ME coupling coefficient at room temperature, and the value can reach 0.66µV deg-1. The strong anisotropic magnetoelasticity phenomenon is reminiscent of the short-range ordered cluster structure. The anisotropic magnetoelastic coefficient can be deduced by temperature- and magnetic field strength-dependent anisotropic magnetoresistance. The magnetic torque results also prove the strong anisotropic magnetoelastic trait. The coupling between piezoelectricity and anisotropic magnetostrictive effect endows great possibilities toward flexible electronic compass. These results shed light on future in non-invasive tracking of vital biological health via wearable electronic devices.
RESUMO
This study reports a strong ME effect in thin-film composites consisting of nickel, iron, or cobalt foils and 550 nm thick AlN films grown by PE-ALD at a (low) temperature of 250 °C and ensuring isotropic and highly conformal coating profiles. The AlN film quality and the interface between the film and the foils are meticulously investigated by means of high-resolution transmission electron microscopy and the adhesion test. An interface (transition) layer of partially amorphous AlxOy/AlOxNy with thicknesses of 10 and 20 nm, corresponding to the films grown on Ni, Fe, and Co foils, is revealed. The AlN film is found to be composed of a mixture of amorphous and nanocrystalline grains at the interface. However, its crystallinity is improved as the film grew and shows a highly preferred (002) orientation. High self-biased ME coefficients (αME at a zero-bias magnetic field) of 3.3, 2.7, and 3.1 V·cm-1·Oe-1 are achieved at an off-resonance frequency of 46 Hz in AlN/Ni thin-film composites with different Ni foil thicknesses of 7.5, 15, and 30 µm, respectively. In addition, magnetoelectric measurements have also been carried out in composites made of 550 nm thick films grown on 12.5 µm thick Fe and 15 µm thick Co foils. The maximum magnetoelectric coefficients of AlN/Fe and AlN/Co composites are 0.32 and 0.12 V·cm-1·Oe-1, measured at 46 Hz at a bias magnetic field (Hdc) of 6 and 200 Oe, respectively. The difference of magnetoelectric transducing responses of each composite is discussed according to interface analysis. We report a maximum delivered power density of 75 nW/cm3 for the AlN/Ni composite with a load resistance of 200 kΩ to address potential energy harvesting and electromagnetic sensor applications.
RESUMO
We investigated the opportunities for obtaining hexaferrites Pb1-xLaxFe12-xZnxO19 (x = 0-1) from citrate-glycerin gel and showed that synthesis occurs via the formation of the Fe3O4 phase; products with a small amount of hematite impurity Fe2O3 can be obtained after firing at 800 to 900 °C with 0 ≤ x ≤ 0.5. If x > 0.5, perovskite-like LaFeO3 is formed in samples, so that if x = 0.9-1, the synthesis products virtually do not contain phases with hexaferrite structures and represent a mixture of LaFeO3, Fe2O3, and Fe3O4. Within the range of 0 ≤ x ≤ 0.5, the electrical and magnetic characteristics of hexaferrites Pb1-xLaxFe12-xZnxO19 are slightly dependent on x and have the following average values: A relative permittivity ε/ε0 ~ 45, a dielectric loss tangent tan δ ~ 0.6, an electrical resistivity R ~ 109 Ohm cm, coercivity Hc ~ 3 kOe, saturation magnetization Ms ~ 50 emu/g, and remanent magnetization Mr ~ 25 emu/g. The magnetoelectric (ME) ceramics 50 wt.% PZTNB-1 + 50 wt.% Pb1-xLaxFe12-xZnxO19 (PZTNB-1 is an industrial piezoelectric material based on lead titanate zirconate (PZT) do not contain impurity phases and have the following characteristics: Piezoelectric coefficients d33 = 10-60 and -d31 = 2-30 pC/N, piezoelectric voltage coefficients g33 = 2-13 and -g31 = 1-5 mV m/N, an electromechanical coupling coefficient Kp = 0.03-0.13, magnetic parameters Hc = 3-1 kOe, Ms = 50-30, and Mr = 25-12 emu/g. The maximum ME coupling coefficient ΔE/ΔH ~ 1.75 mV/(cm Oe) was achieved with x = 0.5.
RESUMO
Li- and Ta-modified K 0.5 Na 0.5 NbO 3 compounds are among the most promising lead-free ferroelectrics for high-sensitivity piezoelectric ceramic materials, and are potentially capable of replacing Pb(Zr,Ti)O 3 . They are also being investigated as piezoelectric components in environmentally friendly magnetoelectric composites. However, most suitable modifications for this application have not been identified. We report here a simulation study of how the magnetoelectric voltage responses of layered composite structures based on Li x (K 0.5 Na 0.5 ) 1 - x Nb 1 - y Ta y O 3 varies with the chemical composition of the piezoelectric. Instead of relying on material coefficients from the literature, which would have required using different sources, an ad hoc set of materials was prepared. This demanded tailoring preparation by conventional means to obtain dense ceramics while controlling alkali volatilization, perovskite phase and microstructure, as well as characterizing their dielectric, elastic and electromechanical properties. This provided the set of relevant material coefficients as a function of composition, which was used to obtain the magnetoelectric responses of model layered structures including a reference magnetostrictive spinel oxide by simulation. The piezoelectric material leading to the highest magnetoelectric coefficient was identified, and shown to be different to that showing the highest piezoelectric coefficient. This reflects the dependence of the magnetoelectric response on all material coefficients, along with the complex interplay between composition, processing and properties in K 0.5 Na 0.5 NbO 3 -based ceramics.
RESUMO
Magnetoelectric materials with a large magnetoelectric response, a low operating magnetic (or electric) field, and a room-temperature (or higher) operating temperature are of key importance for practical applications. However, such materials are extremely rare because a large magnetoelectric response often requires strong coupling between spins and electric dipoles. Herein, an example of a magnetoelectric composite is prepared by using a room-temperature multiaxial molecular-ionic ferroelectric, tetramethylammonium tetrachlorogallate(III) (1). Investigation of the magnetoelectric effect of the magnetoelectric laminate composite indicates that its room-temperature magnetoelectric voltage coefficient (αME ) is as high as 186 mV cm-1 Oe-1 at HDC = 275 Oe and at the HAC frequency of ≈39 kHz, providing a valid approach for the preparation of magnetoelectric materials and adding a new member to the magnetoelectric material family.
RESUMO
A critical challenge in realizing magnetoelectrics based on reconfigurable microwave devices, which is the ability to switch between distinct ferromagnetic resonances (FMR) in a stable, reversible and energy efficient manner, has been addressed. In particular, a voltage-impulse-induced two-step ferroelastic switching pathway can be used to in situ manipulate the magnetic anisotropy and enable non-volatile FMR tuning in FeCoB/PMN-PT (011) multiferroic heterostructures.