Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38676164

RESUMO

There are not many high-precision, portable digital compass solutions available right now that can enhance combined navigation systems' overall functionality. Additionally, there is a dearth of writing about these products. This is why a tunnel magnetoresistance (TMR) sensor-based high-precision portable digital compass system is designed. First, the least-squares method is used to compensate for compass inaccuracy once the ellipsoid fitting method has corrected manufacturing and installation errors in the digital compass system. Second, the digital compass's direction angle data is utilized to offset the combined navigation system's mistake. The final objective is to create a high-performing portable TMR digital compass system that will enhance the accuracy and stability of the combined navigation system (abbreviated as CNS). According to the experimental results, the digital compass's azimuth accuracy was 4.1824° before error compensation and 0.4580° after it was applied. The combined navigation system's path is now more accurate overall and is closer to the reference route than it was before the digital compass was added. Furthermore, compared to the combined navigation route without the digital compass, the combined navigation route with the digital compass included is more stable while traveling through the tunnel. It is evident that the digital compass system's design can raise the integrated navigation system's accuracy and stability. The integrated navigation system's overall performance may be somewhat enhanced by this approach.

2.
Adv Mater ; 36(14): e2310379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183310

RESUMO

Antiferromagnets constitute promising contender materials for next-generation spintronic devices with superior stability, scalability, and dynamics. Nevertheless, the perception of well-established ferromagnetic spintronics underpinned by spontaneous magnetization seemed to indicate the inadequacy of antiferromagnets for spintronics-their compensated magnetization has been perceived to result in uncontrollable antiferromagnetic order and subtle magnetoelectronic responses. However, remarkable advancements have been achieved in antiferromagnetic spintronics in recent years, with consecutive unanticipated discoveries substantiating the feasibility of antiferromagnet-centered spintronic devices. It is emphasized that, distinct from ferromagnets, the richness in complex antiferromagnetic crystal structures is the unique and essential virtue of antiferromagnets that can open up their endless possibilities of novel phenomena and functionality for spintronics. In this Perspective, the recent progress in antiferromagnetic spintronics is reviewed, with a particular focus on that based on several kinds of antiferromagnets with special antiferromagnetic crystal structures. The latest developments in efficiently manipulating antiferromagnetic order, exploring novel antiferromagnetic physical responses, and demonstrating prototype antiferromagnetic spintronic devices are discussed. An outlook on future research directions is also provided. It is hoped that this Perspective can serve as guidance for readers who are interested in this field and encourage unprecedented studies on antiferromagnetic spintronic materials, phenomena, and devices.

3.
Int J Comput Assist Radiol Surg ; 18(1): 17-27, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36149523

RESUMO

PURPOSE: Tracking the position and orientation of a 4F catheter ([Formula: see text] 1.4 mm) is required in superselective intra-arterial chemotherapy (SSIAC). Tunneling magnetoresistance (TMR) sensors, which measure magnetic fields, are promising candidates because the size of the TMR sensor can be less than a few tenths of a millimeter. The purpose of this paper is to prove the feasibility of an EMT system utilizing TMR sensors as magnetometers. METHODS: Three 1-axis TMR sensors (0.3 mm × 0.3 mm) were packaged on a flexible printed circuit board (PCB) together with an amplifier chip. The PCB was integrated into a 4F catheter. Six field generator coils driven by alternating current (AC) at different frequencies were used. Magnetic field measurement errors were evaluated to assess the effect of electromotive force (EMF) on TMR-based sensing by changing the coils' driving frequencies. The tracking error was also evaluated. As a result, the feasibility of catheter navigation utilizing the EMT system was demonstrated. RESULTS: There was a positive correlation between the frequency and the magnetic field measurement error using the TMR sensor (R2 = 0.999). With magnetic field frequencies less than 603 Hz, the average position and orientation estimation error were 10.1 mm and 2.3 degree, respectively. Under ideal conditions, the average estimation error values were 0.9 mm and 0.3 degree, respectively. CONCLUSION: The position and orientation errors varied with frequency owing to the induced electromotive force. We should consider the effect of electromotive force on TMR sensor assemblies caused by alternating magnetic fields. An EMT system using TMR sensors was validated, although room for further improvement was identified.


Assuntos
Catéteres , Fenômenos Eletromagnéticos , Humanos , Projetos Piloto
4.
Adv Mater ; 35(41): e2303741, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37403744

RESUMO

The slow oxygen evolution reaction (OER) limits water splitting, and external fields can help improve it. However, the effect of a single external field on the OER is limited and unsatisfactory. Furthermore, the mechanism by which external fields improve the OER is unclear, particularly in the presence of multiple fields. Herein, a strategy is proposed for enhancing the OER activity of a catalyst using the combined effect of an optical-magnetic field, and the mechanism of catalytic activity enhancement is studied. Under the optical-magnetic field, Co3 O4 reduces the resistance by increasing the catalyst temperature. Meanwhile, CoFe2 O4 further reduces the resistance via the negative magnetoresistance effect, thus decreasing the resistance from 16 to 7.0 Ω. Additionally, CoFe2 O4 acts as a spin polarizer, and electron polarization results in a parallel arrangement of oxygen atoms, which increases the kinetics of the OER under the magnetic field. Benefiting from the optical and magnetic response design, Co3 O4 /CoFe2 O4 @Ni foam requires an overpotential of 172.4 mV to reach a current density of 10 mA cm-2 under an optical-magnetic field, which is significantly higher than those of recently reported state-of-the-art transition-metal-based catalysts.

5.
Materials (Basel) ; 16(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241286

RESUMO

ZnCoO:H and ZnCoAlO:H films were synthesized by radio frequency magnetron sputtering in a (1 - x)Ar + xH2 mixed atmosphere with x = 0.2-0.5. The films contain different amounts of metallic Co particles (from 7.6% and higher) ~4-7 nm in size. The magnetic and magneto-optical (MO) behavior of the films was analyzed in combination with their structural data. The samples exhibit high values of magnetization (up to 377 emu/cm3) and MO response at room temperature. Two situations are considered: (1) the film magnetism is associated only with isolated metal particles and (2) magnetism is present both in the oxide matrix and in metal inclusions. It has been established that the formation mechanism of the magnetic structure of ZnO:Co2+ is due to the spin-polarized conduction electrons of metal particles and zinc vacancies. It was also found that in the presence of two magnetic components in the films, these components are exchange-coupled. In this case, the exchange coupling generates a high spin polarization of the films. The spin-dependent transport properties of the samples have been studied. A high value of the negative magnetoresistance of the films at room temperature (~4%) was found. This behavior was explained in terms of the giant magnetoresistance model. Thus, the ZnCoO:H and ZnCoAlO:H films with high spin polarization can be considered as sources of spin injection.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37718529

RESUMO

BACKGROUND: In recent years, many semiconductor materials with unique band structures have been used as Pt counter electrode (CE) substitutes for dye-sensitized solar cells (DSSCs), which makes the photoelectric properties of DSSCs possible to be modulated by electric field, magnetic field, and light field. In this work, La0.67(Ca Ba)0.33MnO3 (LCBMO) thin film is employed to act as CE in DSSCs. METHOD: The experimental results indicate that short-circuit current density and photoelectric conversion efficiency present better stability when applying an external magnetic field to the DSSCs. Furthermore, both the exchange current density (J0) and limit diffusion current density (Jlim) are largely enhanced by an external magnetic field. J0 increases from -0.51 mA•cm-2 to -0.65 mA•cm-2, and Jlim increases from 0.2 mA•cm-2 to 0.3 mA•cm-2 when applying a magnetic field of 0.25 T. RESULT: The fitting results of the impedance test verify that the magnetic field reduces the value of Rct. CONCLUSION: Both magnetic-field enhancing catalytic activity and CMR effect jointly promote the increase of photocurrent and finally improve the photovoltaic effect in DSSCs.

7.
Materials (Basel) ; 16(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38138720

RESUMO

The quantitative description of electrical and magnetotransport properties of solid-state materials has been a remarkable challenge in materials science over recent decades. Recently, the discovery of a novel class of materials-the topological semimetals-has led to a growing interest in the full understanding of their magnetotransport properties. In this review, the strong interplay among topology, band structure, and carrier mobility in recently discovered high carrier mobility topological semimetals is discussed and their effect on their magnetotransport properties is outlined. Their large magnetoresistance effect, especially in the Hall transverse configuration, and a new version of a three-dimensional quantum Hall effect observed in high-mobility Weyl and Dirac semimetals are reviewed. The possibility of designing novel quantum sensors and devices based on solid-state semimetals is also examined.

8.
J Environ Chem Eng ; 10(1): 106990, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34926145

RESUMO

Reducing the recombination efficiency of photo-induced carriers has been found as an effective means to improve the degradation of antiviral agents. Given that the Lorentz forces can cause the abnormal charge to move in the opposite direction, external magnetic field improved α-Fe2O3/Zn1-xFexO heterojunctions (FZHx) were developed to remove increasing antiviral agents that were attributed to the COVID-19 pandemic under visible light. The characterization of the mentioned FZHx in the external magnetic field indicated that FZHx had perfect photocatalytic activity for degrading antiviral agents. In the external magnetic field, the quantities of photo-generated carriers and free radicals (•OH and •O2 -) derived from FZHx increased significantly, which improved antiviral agent removal by 30.0%. Though the band structure (α-Fe2O3) is unlikely to change due to some orders of magnitude weaker of Zeeman energy in magnetic fields, which insignificantly impacts photocatalytic performance. However, this study proposed a strategy of negative magnetoresistance effects and heterojunctions to facilitate the separation and transfer of photo-induced carriers in magnetic fields. Based on the proposed strategy, spin oriented electrons were selected and accumulated on the conduction band, which contributed to the degradation of antiviral agents. Overall, this study presented novel insights into the improved degradation performance of antiviral agents by applying Fe-based heterojunctions in an external magnetic field.

9.
Small Methods ; 6(6): e2200084, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460208

RESUMO

Here, a strategy to regulate the electron density distribution by integrating NiFe layered double hydroxides (NiFe-LDH) nanosheets with Co3 O4 nanowires to construct the NiFe-LDH/Co3 O4 p-n heterojunction supported on nickel foam (NiFe-LDH/Co3 O4 /NF) for electrocatalytic oxygen evolution reaction (OER) is proposed. The p-n heterojunction can induce the charge redistribution in the heterogeneous interface to reach Fermi level alignment, thus modifying the adsorption free energy of *OOH and improving the intrinsic activity of the catalyst. As a result, NiFe-LDH/Co3 O4 /NF exhibits outstanding OER performance with a low overpotential of 274 mV at a current density of 50 mA cm-2 and long-time stability over 90 h. Moreover, NF can serve as a magnetic core that induces the exchange bias effect between the magnetic substrate and the active species under the action of the magnetic field, resulting in decreased magnetoresistance and weakened scattering of spin electrons, which further lowers the OER overpotential by 25 mV @ 50 mA cm-2 under a 10 000 G magnetic field. This work provides a new perspective on the design of p-n heterojunction catalysts and a deeper understanding of the magnetic field-enhanced electrocatalytic reactions.

10.
Materials (Basel) ; 11(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751514

RESUMO

Organic spin devices utilizing the properties of both spin and charge inherent in electrons have attracted extensive research interest in the field of future electronic device development. In the last decade, magnetoresistance effects, including giant magetoresistance and tunneling magnetoresistance, have been observed in organic spintronics. Significant progress has been made in understanding spin-dependent transport phenomena, such as spin injection or tunneling, manipulation, and detection in organic spintronics. However, to date, materials that are effective for preparing organic spin devices for commercial applications are still lacking. In this report, we introduce basic knowledge of the fabrication and evaluation of organic spin devices, and review some remarkable applications for organic spin valves using molecular spacers. The current bottlenecks that hinder further enhancement for the performance of organic spin devices is also discussed. This report presents some research ideas for designing organic spin devices operated at room temperature.

11.
Materials (Basel) ; 11(1)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29283394

RESUMO

The magnetoresistance effect in sandwiched structure describes the appreciable magnetoresistance effect of a device with a stacking of two ferromagnetic layers separated by a non-magnetic layer (i.e., a sandwiched structure). The development of this effect has led to the revolution of memory applications during the past decades. In this review, we revisited the magnetoresistance effect and the interlayer exchange coupling (IEC) effect in magnetic sandwiched structures with a spacer layer of non-magnetic metal, semiconductor or organic thin film. We then discussed the optical modulation of this effect via different methods. Finally, we discuss various applications of these effects and present a perspective to realize ultralow-power, high-speed data writing and inter-chip connection based on this tunable magnetoresistance effect.

12.
ACS Appl Mater Interfaces ; 7(8): 4685-92, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25668508

RESUMO

We fabricate spin-valve devices with an Fe3O4/AlO/rubrene/Co stacking structure. Their magnetoresistance (MR) effects at room temperature and low temperatures are systemically investigated based on the measurement of MR curves, current-voltage response, etc. A large MR ratio of approximately 6% is achieved at room temperature, which is one of the highest MR ratios reported to date in organic spin valves. With decreasing measurement temperatures, we observe that the MR ratios increase because of decrease in spin scattering, and the width of the MR curves becomes larger owing to increase in the coercivity of the electrodes at low temperature. A nonlinear current-voltage dependence is clearly observed in these organic spin valves. From the measurement of MR curve for the spin valves with different rubrene layer thickness, we observe that the MR ratios monotonously decrease with increasing rubrene-layer thickness. We discuss the spin-dependent transport mechanisms in these devices based on our experimental results and the present theoretical analysis. Moreover, we note that the devices exhibit smaller MR ratios after annealing compared to their counterparts without annealing. On the basis of atomic force microscopy analysis of the organic films and device resistances, we deduce that the increase of interface spin scattering induced by large surface roughness after annealing most probably leads to reduction in the MR ratios.

13.
ACS Nano ; 8(10): 10043-7, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25271940

RESUMO

The meminductor was proposed to be a fundamental circuit memdevice parallel with the memristor, linking magnetic flux and current. However, a clear material model or experimental realization of a meminductor has been challenging. Here we demonstrate pinched hysteretic magnetic flux-current signals at room temperature based on the spin Hall magnetoresistance effect in several-nanometer-thick thin films, exhibiting the nonvolatile memorizing property and magnetic energy storage ability of the meminductor. Similar to the parameters of the capacitor, resistor, and inductor, meminductance, LM, is introduced to characterize the capability of the prepared meminductor. Our findings present an indispensable element of memdevices and open an avenue for nanoscale meminductor design and manufacture, which might contribute to low-power electronic circuits, information storage, and artificial intelligence.

14.
Materials (Basel) ; 6(2): 500-516, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28809321

RESUMO

The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device's performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA