RESUMO
Mucosal tissues are constitutively colonized by a wide assortment of host-adapted microbes. This includes the polymorphic fungus Candida albicans which is a primary target of human adaptive responses. Immunogenicity is replicated after intestinal colonization in preclinical models with a surprising array of protective benefits for most hosts, but harmful consequences for a few. The interaction between fungus and host is complex, and traditionally, the masking of antigenic fungal ligands has been viewed as a tactic for fungal immune evasion during invasive infection. However, we propose that dynamic expression of cell wall moieties, host cell lysins, and other antigenic C. albicans determinants is necessary during the more ubiquitous context of intestinal colonization to prime immunogenicity and optimize mammalian host symbiosis.
Assuntos
Candida albicans , Simbiose , Animais , Parede Celular , Humanos , Evasão da Resposta Imune , MamíferosRESUMO
Plant mannans are a component of lignocellulose that can have diverse compositions in terms of its backbone and side-chain substitutions. Consequently, the degradation of mannan substrates requires a cadre of enzymes for complete reduction to substituent monosaccharides that can include mannose, galactose, and/or glucose. One bacterium that possesses this suite of enzymes is the Gram-negative saprophyte Cellvibrio japonicus, which has 10 predicted mannanases from the Glycoside Hydrolase (GH) families 5, 26, and 27. Here we describe a systems biology approach to identify and characterize the essential mannan-degrading components in this bacterium. The transcriptomic analysis uncovered significant changes in gene expression for most mannanases, as well as many genes that encode carbohydrate active enzymes (CAZymes) when mannan was actively being degraded. A comprehensive mutational analysis characterized 54 CAZyme-encoding genes in the context of mannan utilization. Growth analysis of the mutant strains found that the man26C, aga27A, and man5D genes, which encode a mannobiohydrolase, α-galactosidase, and mannosidase, respectively, were important for the deconstruction of galactomannan, with Aga27A being essential. Our updated model of mannan degradation in C. japonicus proposes that the removal of galactose sidechains from substituted mannans constitutes a crucial step for the complete degradation of this hemicellulose.
Assuntos
Cellvibrio , Mananas , Mananas/metabolismo , Galactose/metabolismo , alfa-Galactosidase/metabolismo , beta-Manosidase/química , beta-Manosidase/metabolismoRESUMO
Members of the domain of unknown function 231/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases catalyzing the acetylation of plant cell wall polysaccharides, including pectins, mannan, xyloglucan and xylan. However, little is known about the origin and evolution of plant cell wall polysaccharide acetyltransferases. Here, we investigated the biochemical functions of TBL homologs from Klebsormidium nitens, a representative of an early divergent class of charophyte green algae that are considered to be the closest living relatives of land plants, and Marchantia polymorpha, a liverwort that is an extant representative of an ancient lineage of land plants. The genomes of K. nitens and Marchantia polymorpha harbor two and six TBL homologs, respectively. Biochemical characterization of their recombinant proteins expressed in human embryonic kidney 293 cells demonstrated that the two K. nitens TBLs exhibited acetyltransferase activities acetylating the pectin homogalacturonan (HG) and hence were named KnPOAT1 and KnPOAT2. Among the six M. polymorpha TBLs, five (MpPOAT1 to 5) possessed acetyltransferase activities toward pectins and the remaining one (MpMOAT1) catalyzed 2-O- and 3-O-acetylation of mannan. While MpPOAT1,2 specifically acetylated HG, MpPOAT3,4,5 could acetylate both HG and rhamnogalacturonan-I. Consistent with the acetyltransferase activities of these TBLs, pectins isolated from K. nitens and both pectins and mannan from M. polymorpha were shown to be acetylated. These findings indicate that the TBL genes were recruited as cell wall polysaccharide O-acetyltransferases as early as in charophyte green algae with activities toward pectins and they underwent expansion and functional diversification to acetylate various cell wall polysaccharides during evolution of land plants.
Assuntos
Acetiltransferases , Parede Celular , Pectinas , Polissacarídeos , Parede Celular/metabolismo , Acetilação , Acetiltransferases/metabolismo , Acetiltransferases/genética , Polissacarídeos/metabolismo , Pectinas/metabolismo , Filogenia , Células HEK293 , Humanos , Marchantia/genética , Marchantia/enzimologia , Marchantia/metabolismo , Mananas/metabolismo , Carofíceas/genética , Carofíceas/enzimologia , Carofíceas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genéticaRESUMO
ß-Galactoglucomannan (ß-GGM) is a primary cell wall polysaccharide in rosids and asterids. The ß-GGM polymer has a backbone of repeating ß-(1,4)-glucosyl and mannosyl residues, usually with mono- α-(1,6)-galactosyl substitution or ß-(1,2)-galactosyl α-galactosyl disaccharide sidechains on the mannosyl residues. Mannan ß-GalactosylTransferases (MBGTs) are therefore required for ß-GGM synthesis. The single MBGT identified so far, AtMBGT1, lies in glycosyltransferase family 47A subclade VII, and was identified in Arabidopsis. However, despite the presence of ß-GGM, an orthologous gene is absent in tomato (Solanum lycopersicum), a model asterid. In this study, we screened candidate MBGT genes from the tomato genome, functionally tested the activities of encoded proteins, and identified the tomato MBGT (SlMBGT1) in GT47A-III. Interestingly therefore, AtMBGT1 and SlMBGT1 are located in different GT47A subclades. Further, phylogenetic and glucomannan structural analysis from different species raised the possibility that various asterids possess conserved MBGTs in an asterid-specific subclade of GT47A-III, indicating that MBGT activity has been acquired convergently among asterids and rosids. The present study highlights the promiscuous emergence of donor and acceptor preference in GT47A enzymes. The independent acquisition of the activity also suggests an adaptive advantage for eudicots to acquire ß-GGM ß-galactosylation, and hence also suggests the disaccharide side chains are important for ß-GGM function.
RESUMO
The lectin pathway (LP) of complement mediates inflammatory processes linked to tissue damage and loss of function following traumatic brain injury (TBI). LP activation triggers a cascade of proteolytic events initiated by LP specific enzymes called MASPs (for Mannan-binding lectin Associated Serine Proteases). Elevated serum and brain levels of MASP-2, the effector enzyme of the LP, were previously reported to be associated with the severity of tissue injury and poor outcomes in patients with TBI. To evaluate the therapeutic potential of LP inhibition in TBI, we first conducted a pilot study testing the effect of an inhibitory MASP-2 antibody (α-MASP-2), administered systemically at 4 and 24 h post-TBI in a mouse model of controlled cortical impact (CCI). Treatment with α-MASP-2 reduced sensorimotor and cognitive deficits for up to 5 weeks post-TBI. As previous studies by others postulated a critical role of MASP-1 in LP activation, we conducted an additional study that also assessed treatment with an inhibitory MASP-1 antibody (α-MASP-1). A total of 78 mice were treated intraperitoneally with either α-MASP-2, or α-MASP-1, or an isotype control antibody 4 h and 24 h after TBI or sham injury. An amelioration of the cognitive deficits assessed by Barnes Maze, prespecified as the primary study endpoint, was exclusively observed in the α-MASP-2-treated group. The behavioral data were paralleled by a reduction of the lesion size when evaluated histologically and by reduced systemic LP activity. Our data suggest that inhibition of the LP effector enzyme MASP-2 is a promising treatment strategy to limit neurological deficits and tissue loss following TBI. Our work has translational value because a MASP-2 antibody has already completed multiple late-stage clinical trials in other indications and we used a clinically relevant treatment protocol testing the therapeutic mechanism of MASP-2 inhibition in TBI.
Assuntos
Lesões Encefálicas Traumáticas , Transtornos Cognitivos , Serina Proteases Associadas a Proteína de Ligação a Manose , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/tratamento farmacológico , Modelos Animais de Doenças , Serina Proteases Associadas a Proteína de Ligação a Manose/antagonistas & inibidores , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BLRESUMO
MAIN CONCLUSION: Fiber-like cells with thickened cell walls of specific structure and polymer composition that includes (1 â 4)-ß-galactans develop in the outer stem cortex of several moss species gametophytes. The early land plants evolved several specialized cell types and tissues that did not exist in their aquatic ancestors. Of these, water-conducting elements and reproductive organs have received most of the research attention. The evolution of tissues specialized to fulfill a mechanical function is by far less studied despite their wide distribution in land plants. For vascular plants following a homoiohydric trajectory, the evolutionary emergence of mechanical tissues is mainly discussed starting with the fern-like plants with their hypodermal sterome or sclerified fibers that have xylan and lignin-based cell walls. However, mechanical challenges were also faced by bryophytes, which lack lignified cell-walls. To characterize mechanical tissues in the bryophyte lineage, following a poikilohydric trajectory, we used six wild moss species (Polytrichum juniperinum, Dicranum sp., Rhodobryum roseum, Eurhynchiadelphus sp., Climacium dendroides, and Hylocomium splendens) and analyzed the structure and composition of their cell walls. In all of them, the outer stem cortex of the leafy gametophytic generation had fiber-like cells with a thickened but non-lignified cell wall. Such cells have a spindle-like shape with pointed tips. The additional thick cell wall layer in those fiber-like cells is composed of sublayers with structural evidence for different cellulose microfibril orientation, and with specific polymer composition that includes (1 â 4)-ß-galactans. Thus, the basic cellular characters of the cells that provide mechanical support in vascular plant taxa (elongated cell shape, location at the periphery of a primary organ, the thickened cell wall and its peculiar composition and structure) also exist in mosses.
Assuntos
Briófitas , Bryopsida , Células Germinativas Vegetais/metabolismo , Plantas/metabolismo , Bryopsida/metabolismo , Lignina/metabolismo , Galactanos/metabolismo , Parede Celular/metabolismoRESUMO
Activation of the lectin pathway of the complement system, as demonstrated by elevated levels of mannan-binding lectin proteins (MBL), contributes to vascular pathology in type 1 diabetes (T1D). Vascular complications are greatest in T1D individuals with concomitant insulin resistance (IR), however, whether IR amplifies activiation of the lectin pathway in T1D is unknown. We pooled pretreatment data from two RCTs and performed a cross-sectional analysis on 46 T1D individuals. We employed estimated glucose disposal rate (eGDR), a validated IR surrogate with cut-points of: <5.1, 5.1-8.7, andâ >â 8.7 mg/kg/min to determine IR status, with lower eGDR values conferring higher degrees of IR. Plasma levels of MBL-associated proteases (MASP-1, MASP-2, and MASP-3) and their regulatory protein MAp44 were compared among eGDR classifications. In a subset of 14 individuals, we assessed change in MASPs and MAp44 following improvement in IR. We found that MASP-1, MASP-2, MASP-3, and MAp44 levels increased in a stepwise fashion across eGDR thresholds with elevated MASPs and MAp44 levels conferring greater degrees of IR. In a subset of 14 patients, improvement in IR was associated with significant reductions in MASPs, but not MAp44, levels. In conclusion, IR in T1D amplifies levels of MASP-1/2/3 and their regulator MAp44, and improvement of IR normalizes MASP-1/2/3 levels. Given that elevated levels of these proteins contribute to vascular pathology, amplification of the lectin pathway of the complement system may offer mechanistic insight into the relationship between IR and vascular complications in T1D.
Assuntos
Diabetes Mellitus Tipo 1 , Resistência à Insulina , Lectina de Ligação a Manose , Humanos , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Estudos Transversais , Lectinas/metabolismo , Proteínas do Sistema ComplementoRESUMO
BACKGROUND: There is still great need to develop new strategies to improve the efficacy of allergen immunotherapies with optimal safety standards for patients. A new promising approach is to couple allergoids to mannan. The objective of this phase IIa/IIb study was to identify the optimal dose of mannan-conjugated birch pollen allergoids for the short-course treatment of birch pollen-induced allergic rhinoconjunctivitis. METHODS: For this prospective, randomized, double-blind, placebo-controlled, dose-finding study, 246 birch pollen-allergic adults received 0.5 mL placebo or 1000, 3000 or 10,000 mTU/mL of mannan-conjugated birch pollen allergoids at five pre-seasonal visits. Efficacy was assessed by comparing allergic rhinoconjunctivitis symptoms and use of anti-allergic medication during the peak of the birch pollen season 2020. Immunologic, tolerability and safety effects were also analysed. RESULTS: The highest dose of mannan-conjugated birch pollen allergoids reduced the combined symptom and medication score during the peak birch pollen season by a median of 24.7% compared to placebo. The production of Bet v 1 specific IgG4 significantly increased in a dose-dependent manner (3.6- and 4.5-fold) in the 3000 and 10,000 mTU/mL groups. The Bet v 1 specific IgE/IgG4 ratio was also strongly reduced (up to -70%). No fatalities nor serious adverse events were reported, and no adrenaline was used. In total, four systemic reactions occurred (two grade I and two grade II). CONCLUSION: All doses of mannan-conjugated birch pollen allergoids can be considered as safe. Since the application of 10,000 mTU/mL resulted in the highest efficacy, this dose qualifies for further investigation.
Assuntos
Conjuntivite Alérgica , Conjuntivite , Rinite Alérgica Sazonal , Adulto , Humanos , Alergoides , Rinite Alérgica Sazonal/diagnóstico , Rinite Alérgica Sazonal/terapia , Alérgenos , Pólen , Betula , Mananas , Estudos Prospectivos , Dessensibilização Imunológica/métodos , Conjuntivite/etiologia , Resultado do Tratamento , Método Duplo-Cego , Imunoglobulina GRESUMO
Mannan antigen (MA) in neonates as a marker of invasive candidemia is not well studied, although 4% of all neonatal intensive care unit admissions are attributed to Candida spp. infections. The aim of this case-control study was to evaluate the performance of MA (Platelia™ Candida AgPluskit, Bio-Rad) in neonates who had rectal Candida colonization or in non-colonized controls. We cultured 340 rectal swabs of neonates and MA was negative in 24/25 C. albicans colonized (96% specificity) and in 30/30 non-colonized neonates (100% specificity). The results indicate a high specificity of the assay, which could be useful in neonates with possible candidemia.
The present study aimed to evaluate the use of mannan antigen (MA) assay in a neonatal unit and compared between C. albicans colonized and non-colonized infants. According to our results, MA found to have high specificity in both groups.
Assuntos
Candidemia , Candidíase , Animais , Candida albicans , Candidemia/diagnóstico , Candidemia/veterinária , Mananas , Estudos de Casos e Controles , Candidíase/veterinária , AntígenosRESUMO
Because of the low host specificity, Ichthyophthirius multifiliis (Ich) can widely cause white spot disease in aquatic animals, which is extremely difficult to treat. Prior research has demonstrated a considerable impact of concentrated mannan-oligosaccharide (cMOS) on the prevention of white spot disease in goldfish, but the specific mechanism is still unknown. In this study, transcriptome sequencing, histological analysis, immunofluorescence analysis, phagocytosis activity assay and qRT-PCR assay were used to systematically reveal the potential mechanism of cMOS in supporting the resistance of goldfish (Carrasius auratus) to Ich invasion. According to the transcriptome analysis, the gill tissue of goldfish receiving the cMOS diet showed greater expression of mannose-receptor (MRC) related genes, higher phagocytosis activity, up-regulated expression of phagocytosis-related genes and inflammatory-related genes compared with the control, indicating that cMOS can have an effect on phagocytosis and non-specific immunity of goldfish. After the Ich challenge, transcriptome analysis revealed that cMOS fed goldfish displayed a higher level of phagocytic response, whereas non-cMOS fed goldfish displayed a greater inflammatory reaction. Besides, after Ich infection, cMOS-fed goldfish displayed greater phagocytosis activity, a stronger MRC positive signal, higher expression of genes associated with phagocytosis (ABCB2, C3, MRC), and lower expression of genes associated with inflammation (IL-1ß, IL-17, IL-8, TNF-α, NFKB). In conclusion, our experimental results suggest that cMOS may support phagocytosis by binding to MRC on the macrophage cell membrane and change the non-specific immunity of goldfish by stimulating cytokine expression. The results of this study provide new insights for the mechanism of cMOS on parasitic infection, and also suggest phagocytosis-related pathways may be potential targets for prevention of Ich infection.
Assuntos
Doenças dos Peixes , Carpa Dourada , Animais , Mananas/farmacologia , Citocinas/genética , Macrófagos/metabolismo , FagocitoseRESUMO
A 30-day feeding trial was conducted to investigate the effects of the supplementation of mannan oligosaccharide (MOS) in the diet on the skin wound healing process of juvenile turbot (Scophthalmus maximus). Two groups of diets were formulated, the control diet (CON) and the control diet supplemented with 0.16 % MOS (MOS), which were fed to the turbot separately. Each group had 3 replicates, with 20 fish per replicate. At the end of the feeding trial, all the fish were weighed and counted. Then four fish per tank were randomly selected for sampling, and the skin of the rest fish was wounded by a biopsy punch. The wounded fish continued to be fed as usual with the same diets respectively, and then sampled again at the 1, 3, and 7 day(s) post wounding (dpw). The results by image analysis showed that the wound closure rate of wounded fish was significantly improved by the supplementation of dietary MOS. As for the results of gene expression, dietary MOS promoted the expression of pro-inflammatory factors (il-1ß & tnf-α) and decreased the expression of anti-inflammatory factors (tgf-ß1 & il-10). It also enhanced the expression of genes related to re-epithelialization (mmp-9, fgf2, tgf-ß1, rock1), as well as new tissue formation and remodeling (fn1, lamb2, col1-α, vegf). Furthermore, dietary MOS promoted re-epithelialization, cell proliferation, collagen deposition, and angiogenesis according to the histomorphological observation. In addition, the supplementation of MOS modified the communities of skin microbiota, decreasing the abundance of Rolstonia, Pseudomonas, and Aeromonas, while increasing the abundance of Pseudoalteromonas luteoviolacea and Shewanella colwellianav. In conclusion, the supplementation of dietary MOS (0.16 %) can promote the re-epithelialization and the recruitment of inflammatory cells, stimulate ECM biosynthesis and angiogenesis, modify the communities of skin microbiota, and ultimately promote the skin wound healing process.
RESUMO
Methamphetamine (METH) substance use disorder is a long-standing and ever-growing public health concern. Efforts to develop successful immunotherapies are ongoing with vaccines that generate strong antibody responses are an area of significant research interest. Herein, we describe the development of a METH Hapten conjugate vaccine comprised of either two short-length peptides as linkers and mannan as an immunogenic delivery carrier. Initially, Hapten 1 (with a monoamine linker) and Hapten 2 (with a diamine linker) were synthesised. Each step of the Hapten synthesis were characterized by LC-MS and purified by Flash Chromatography and the identity of the purified Haptens were confirmed by 1H NMR. Haptens were conjugated with mannan (a polymannose), and conjugation efficiency was confirmed by LC-MS, TLC, 1H NMR, and 2,4 DNPH tests. The immunogenic potential of the two conjugated vaccines were assessed in mice with a 3-dose regimen. Concentrations of anti-METH antibodies were measured by enzyme-linked immunosorbent assay. All the analytical techniques confirmed the identity of Hapten 1 and 2 during the synthetic phase. Similarly, all the analytical approaches confirmed the conjugation between the Haptens and mannan. Mouse immunogenicity studies confirmed that both vaccine candidates were immunogenic and the vaccine with the monoamine linker plus adjuvants induced the highest antibody response after the second booster.
Assuntos
Haptenos , Metanfetamina , Metanfetamina/imunologia , Metanfetamina/química , Animais , Camundongos , Haptenos/química , Haptenos/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Peptídeos/química , Peptídeos/imunologia , Peptídeos/síntese química , Mananas/química , Mananas/imunologia , Feminino , Camundongos Endogâmicos BALB C , Estrutura MolecularRESUMO
Vulvovaginal candidiasis (VVC) affects approximately 30-50% of women at least once during their lifetime, causing uncomfortable symptoms and limitations in their daily quality of life. Antifungal therapy is not very effective, does not prevent recurrencies and usually causes side effects. Therefore, alternative therapies are urgently needed. The goal of this work was to investigate the potential benefits of using mannan oligosaccharides (MOS) extracts together with a Lactobacillus sp. pool, composed by the most significant species present in the vaginal environment, to prevent infections by Candida albicans. Microbial growth of isolated strains of the main vaginal lactobacilli and Candida strains was assessed in the presence of MOS, to screen their impact upon growth. A pool of the lactobacilli was then tested against C. albicans in competition and prophylaxis studies; bacterial and yeast cell numbers were quantified in specific time points, and the above-mentioned studies were assessed in simulated vaginal fluid (SVF). Finally, adhesion to vaginal epithelial cells (HeLa) was also evaluated, once again resorting to simultaneous exposure (competition) or prophylaxis assays, aiming to measure the effect of MOS presence in pathogen adherence. Results demonstrated that MOS extracts have potential to prevent vaginal candidiasis in synergy with vaginal lactobacilli, with improved results than those obtained when using lactobacilli alone. KEY POINTS: Potential benefits of MOS extracts with vaginal lactobacilli to prevent C. albicans infections. MOS impacts on growth of vaginal lactobacilli pool and C. albicans in SVF. MOS extracts in synergy with L. crispatus inhibit C. albicans adhesion in HeLa cells.
Assuntos
Candida albicans , Candidíase Vulvovaginal , Feminino , Humanos , Mananas , Células HeLa , Qualidade de Vida , Candidíase Vulvovaginal/prevenção & controle , LactobacillusRESUMO
Nanotechnology enables investigations of single biomacromolecules, but technical challenges have limited the application in liquid biopsies, for example, blood plasma. Nonetheless, tools to characterize single molecular species in such samples represent a significant unmet need with the increasing appreciation of the physiological importance of protein structural changes at nanometer scale. Mannose-binding lectin (MBL) is an oligomeric plasma protein and part of the innate immune system through its ability to activate complement. MBL also serves a role as a scavenger for cellular debris, especially DNA. This may link functions of MBL with several inflammatory diseases in which cell-free DNA now appears to play a role, but mechanistic insight has been lacking. By making nanoparticle tracking analysis possible in human plasma, we now show that superoligomeric structures of MBL form nanoparticles with DNA. These oligomers correlate with disease activity in systemic lupus erythematosus patients. With the direct quantification of the hydrodynamic radius, calculations following the principles of Taylor dispersion in the blood stream connect the size of these complexes to endothelial inflammation, which is among the most important morbidities in lupus. Mechanistic insight from an animal model of lupus supported that DNA-stabilized superoligomers stimulate the formation of germinal center B cells and drive loss of immunological tolerance. The formation involves an inverse relationship between the concentration of MBL superoligomers and antibodies to double-stranded DNA. Our approach implicates the structure of DNA-protein nanoparticulates in the pathobiology of autoimmune diseases.
Assuntos
DNA/química , Lúpus Eritematoso Sistêmico/diagnóstico , Nanopartículas/química , Proteínas/química , Adolescente , Adulto , Animais , Linfócitos B , Biomarcadores , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lectina de Ligação a Manose , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Adulto JovemRESUMO
We have previously performed preclinical studies with the oxidized mannan-conjugated peptide MOG35-55 (OM-MOG35-55) in vivo (EAE mouse model) and in vitro (human peripheral blood) and demonstrated that OM-MOG35-55 suppresses antigen-specific T cell responses associated with autoimmune demyelination. Based on these results, we developed different types of dendritic cells (DCs) from the peripheral blood monocytes of patients with multiple sclerosis (MS) or healthy controls presenting OM-MOG35-55 or MOG-35-55 to autologous T cells to investigate the tolerogenic potential of OM-MOG35-55 for its possible use in MS therapy. To this end, monocytes were differentiated into different DC types in the presence of IL-4+GM-CSF ± dexamethasone (DEXA) ± vitamin D3 (VITD3). At the end of their differentiation, the DCs were loaded with peptides and co-cultured with T cells +IL-2 for 4 antigen presentation cycles. The phenotypes of the DC and T cell populations were analyzed using flow cytometry and the secreted cytokines using flow cytometry or ELISA. On day 8, the monocytes had converted into DCs expressing the typical markers of mature or immature phenotypes. Co-culture of T cells with all DC types for 4 antigen presentation cycles resulted in an increase in memory CD4+ T cells compared to memory CD8+ T cells and a suppressive shift in secreted cytokines, mainly due to increased TGF-ß1 levels. The best tolerogenic effect was obtained when patient CD4+ T cells were co-cultured with VITD3-DCs presenting OM-MOG35-55, resulting in the highest levels of CD4+PD-1+ T cells and CD4+CD25+Foxp3+ Τ cells. In conclusion, the tolerance induction protocols presented in this work demonstrate that OM-MOG35-55 could form the basis for the development of personalized therapeutic vaccines or immunomodulatory treatments for MS.
Assuntos
Células Dendríticas , Tolerância Imunológica , Esclerose Múltipla , Glicoproteína Mielina-Oligodendrócito , Humanos , Glicoproteína Mielina-Oligodendrócito/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Esclerose Múltipla/tratamento farmacológico , Tolerância Imunológica/efeitos dos fármacos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/farmacologia , Adulto , Feminino , Mananas/farmacologia , Masculino , Diferenciação Celular/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Cultivadas , Pessoa de Meia-Idade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismoRESUMO
Yeast cell wall (YCW) polysaccharides, including ß-glucans, mannans, chitins, and glycogens, can be extracted from the waste of beer industry. They are environmentally friendly, abundant, inexpensive raw materials, and have shown broad biological activities and application potentials. The exploitation of yeast polysaccharides is of great importance for environmental protection and resource utilization. This paper reviews the structural features and preparation of YCW polysaccharides. The solubility and emulsification of yeast polysaccharides and the properties of binding metal ions are presented. In addition, biological activities such as blood glucose and lipid lowering, immune regulation, antioxidant, promotion of intestinal health, and promotion of wound healing are proposed, highlighting the beneficial effects of yeast polysaccharides on human health. Through modification, the physical and chemical properties of yeast polysaccharides are changed, which emphasizes the promotion of their biological activities and properties. In addition, the food applications of yeast polysaccharides, including the food packaging film, emulsifier, thickening agent, and fat alternatives, are focused and discussed.
Assuntos
Polissacarídeos , Polissacarídeos/química , Polissacarídeos/farmacologia , Saccharomyces cerevisiae/química , Leveduras/química , Humanos , Embalagem de Alimentos/métodos , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Emulsificantes/química , Parede Celular/químicaRESUMO
ß-mannanases are pivotal enzymes that cleave the mannan backbone to release short chain mannooligosaccharides, which have tremendous biotechnological applications including food/feed, prebiotics and biofuel production. Due to the high temperature conditions in many industrial applications, thermophilic mannanases seem to have great potential to overcome the thermal impediments. Thus, structural analysis of thermostable ß-mannanases is extremely important, as it could open up new avenues for genetic engineering, and protein engineering of these enzymes with enhanced properties and catalytic efficiencies. Under this scope, the present review provides a state-of-the-art discussion on the thermophilic ß-mannanases from bacterial origin, their production, engineering and structural characterization. It covers broad insights into various molecular biology techniques such as gene mutagenesis, heterologous gene expression, and protein engineering, that are employed to improve the catalytic efficiency and thermostability of bacterial mannanases for potential industrial applications. Further, the bottlenecks associated with mannanase production and process optimization are also discussed. Finally, future research related to bioengineering of mannanases with novel protein expression systems for commercial applications are also elaborated.
Assuntos
Bactérias , beta-Manosidase , beta-Manosidase/química , Bactérias/metabolismo , Engenharia Genética , Biotecnologia/métodos , Mananas/química , BioengenhariaRESUMO
We evaluated the effects of supplementing yeast mannan-reach-fraction on growth performance, jejunal morphology and lymphoid tissue characteristics in weaned piglets challenged with E. Coli F4. A total of 20 crossbred piglets were used. At weaning, piglets were assigned at random to one of four groups: piglets challenged and fed the basal diet supplemented with yeast mannan-rich fraction (C-MRF, n = 5); piglets challenged and fed the basal diet (C-BD, n = 5); piglets not challenged and fed the basal diet supplemented with yeast mannan-rich fraction (NC-MRF, n = 5), and piglets not challenged and fed the basal diet (NC-BD). Each dietary treatment had five replicates. On days 4, 5 and 10, piglets were orally challenged with 108 CFU/mL of E. Coli F4. C-MRF piglets had higher BW (p = 0.002; interactive effect) than C-BD piglets. C-MRF piglets had higher (p = 0.02; interactive effect) ADG in comparison with C-BD piglets. C-MRF piglets had higher (p = 0.04; interactive effect) ADFI than C-BD piglets. The diameter of lymphoid follicles was larger (p = 0.010; interactive effect) in the tonsils of C-MRF piglets than C-BD piglets. Lymphoid cells proliferation was greater in the mesenteric lymphnodes and ileum (p = 0.04 and p = 0.03, respectively) of C-MRF piglets. A reduction (p > 0.05) in E. Coli adherence in the ileum of piglets fed MRF was observed. In conclusion, the results of the present study demonstrate that dietary yeast mannan-rich fraction supplementation was effective in protecting weaned piglets against E. Coli F4 challenge.
Assuntos
Suplementos Nutricionais , Escherichia coli Enterotoxigênica , Mananas , Leveduras , Animais , Suínos/crescimento & desenvolvimento , Suínos/microbiologia , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/microbiologia , Jejuno/crescimento & desenvolvimento , Desmame , Criação de Animais Domésticos , Tecido Linfoide/fisiologiaRESUMO
BACKGROUND: Except for cryptococcosis, fungal infection of the central nervous system (FI-CNS) is a rare but severe complication. Clinical and radiological signs are non-specific, and the value of conventional mycological diagnosis is very low. This study aimed to assess the value of ß1,3-D-glucan (BDG) detection in the cerebrospinal fluid (CSF) of non-neonatal non-cryptococcosis patients. METHODS: Cases associated with BDG assay in the CSF performed in 3 French University Hospitals over 5 years were included. Clinical, radiological, and mycological results were used to classify the episodes as proven/highly probable, probable, excluded, and unclassified FI-CNS. Sensitivity and specificity were compared to that calculated from an exhaustive review of the literature. RESULTS: In total, 228 episodes consisting of 4, 7, 177, and 40 proven/highly probable, probable, excluded, and unclassified FI-CNS, respectively, were analysed. The sensitivity of BDG assay in CSF to diagnose proven/highly probable/probable FI-CNS ranged from 72.7% [95% confidence interval {CI}: 43.4%â90.2%] to 100% [95% CI: 51%â100%] in our study and was 82% in the literature. For the first time, specificity could be calculated over a large panel of pertinent controls and was found at 81.8% [95% CI: 75.3%â86.8%]. Bacterial neurologic infections were associated with several false positive results. CONCLUSIONS: Despite its sub-optimal performance, BDG assay in the CSF should be added to the diagnostic armamentarium for FI-CNS.
Assuntos
Criptococose , beta-Glucanas , Humanos , Glucanos , Estudos Retrospectivos , Sensibilidade e Especificidade , Criptococose/diagnóstico , Sistema Nervoso Central , Estudos Multicêntricos como AssuntoRESUMO
Fungal antigens such as ß-(1â3)-D-glucan (BDG) or mannan (Mn) are useful for detection of candidemia. However, detailed data on serum levels before diagnosis and during treatment are scarce. We conducted a prospective study at two German tertiary care centers for 36 months. Sera from adult patients with candidemia were tested for BDG (Fungitell assay) and Mn (Platelia Candida Ag-Plus assay). For each patient, the clinical course and biomarker kinetics were closely followed and compared. 1,243 sera from 131 candidemia episodes and 15 relapses were tested. In 35% of episodes, empirical therapy included an antifungal drug. Before blood culture sampling, BDG and Mn levels were elevated in 62.4% and 30.8% of patients, respectively. Sensitivity at blood culture sampling was 78.6% (BDG) and 35.1% (Mn). BDG levels of non-survivors were significantly higher than those of survivors. During follow-up, a therapeutic response was associated with decreasing BDG and Mn levels in 84.3% or 70.5% of episodes, respectively. A median increase of 513 pg BDG/mL and 390 pg Mn/mL indicated a relapse of candidemia with a sensitivity of 80% or 46.7%, respectively. In 72.9% and 46.8% of patients, increasing BDG or Mn levels were associated with a fatal outcome. Prior to discharge, BDG and Mn levels had dropped or normalized in 65.7% or 82.1% of patients, respectively. Summarising, in patients with candidemia, biomarker positivity usually precedes culture positivity. Relapses are mostly accompanied by secondary biomarker increases. Rising concentrations of BDG and Mn predict lethality, whereas decreasing levels suggest a favorable outcome in the majority of patients.