Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.657
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 93(1): 289-316, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38316136

RESUMO

RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).


Assuntos
Transdução de Sinais , Quinases raf , Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/genética , Proteínas ras/química , Quinases raf/metabolismo , Quinases raf/genética , Animais , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética
2.
Cell ; 187(10): 2557-2573.e18, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729111

RESUMO

Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.


Assuntos
Proteínas Fúngicas , Oryza , Doenças das Plantas , Fosforilação , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Ascomicetos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteômica , Transdução de Sinais
3.
Cell ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39481380

RESUMO

Ovarian cancer is resistant to immunotherapy, and this is influenced by the immunosuppressed tumor microenvironment (TME) dominated by macrophages. Resistance is also affected by intratumoral heterogeneity, whose development is poorly understood. To identify regulators of ovarian cancer immunity, we employed a spatial functional genomics screen (Perturb-map), focused on receptor/ligands hypothesized to be involved in tumor-macrophage communication. Perturb-map recapitulated tumor heterogeneity and revealed that interleukin-4 (IL-4) promotes resistance to anti-PD-1. We find ovarian cancer cells are the key source of IL-4, which directs the formation of an immunosuppressive TME via macrophage control. IL-4 loss was not compensated by nearby IL-4-expressing clones, revealing short-range regulation of TME composition dictating tumor evolution. Our studies show heterogeneous TMEs can emerge from localized altered expression of cancer-derived cytokines/chemokines that establish immune-rich and immune-excluded neighborhoods, which drive clone selection and immunotherapy resistance. They also demonstrate the potential of targeting IL-4 signaling to enhance ovarian cancer response to immunotherapy.

4.
Cell ; 185(25): 4756-4769.e13, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493754

RESUMO

Although adult pluripotent stem cells (aPSCs) are found in many animal lineages, mechanisms for their formation during embryogenesis are unknown. Here, we leveraged Hofstenia miamia, a regenerative worm that possesses collectively pluripotent aPSCs called neoblasts and produces manipulable embryos. Lineage tracing and functional experiments revealed that one pair of blastomeres gives rise to cells that resemble neoblasts in distribution, behavior, and gene expression. In Hofstenia, aPSCs include transcriptionally distinct subpopulations that express markers associated with differentiated tissues; our data suggest that despite their heterogeneity, aPSCs are derived from one lineage, not from multiple tissue-specific lineages during development. Next, we combined single-cell transcriptome profiling across development with neoblast cell-lineage tracing and identified a molecular trajectory for neoblast formation that includes transcription factors Hes, FoxO, and Tbx. This identification of a cellular mechanism and molecular trajectory for aPSC formation opens the door for in vivo studies of aPSC regulation and evolution.


Assuntos
Células-Tronco Adultas , Eucariotos , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes/fisiologia , Eucariotos/classificação , Eucariotos/citologia
5.
Cell ; 185(14): 2559-2575.e28, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688146

RESUMO

A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells. We use transcriptional phenotypes to predict the function of poorly characterized genes, uncovering new regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription (C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena-from RNA processing to differentiation. We leverage this ability to systematically identify genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map reveals a multidimensional portrait of gene and cellular function.


Assuntos
Genômica , Análise de Célula Única , Sistemas CRISPR-Cas/genética , Mapeamento Cromossômico , Genótipo , Fenótipo , Análise de Célula Única/métodos
6.
Cell ; 184(16): 4315-4328.e17, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34197734

RESUMO

An ability to build structured mental maps of the world underpins our capacity to imagine relationships between objects that extend beyond experience. In rodents, such representations are supported by sequential place cell reactivations during rest, known as replay. Schizophrenia is proposed to reflect a compromise in structured mental representations, with animal models reporting abnormalities in hippocampal replay and associated ripple activity during rest. Here, utilizing magnetoencephalography (MEG), we tasked patients with schizophrenia and control participants to infer unobserved relationships between objects by reorganizing visual experiences containing these objects. During a post-task rest session, controls exhibited fast spontaneous neural reactivation of presented objects that replayed inferred relationships. Replay was coincident with increased ripple power in hippocampus. Patients showed both reduced replay and augmented ripple power relative to controls, convergent with findings in animal models. These abnormalities are linked to impairments in behavioral acquisition and subsequent neural representation of task structure.


Assuntos
Aprendizagem , Neurônios/patologia , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Ritmo alfa/fisiologia , Comportamento , Mapeamento Encefálico , Feminino , Hipocampo/fisiopatologia , Humanos , Magnetoencefalografia , Masculino , Modelos Biológicos , Análise e Desempenho de Tarefas
7.
Cell ; 184(18): 4640-4650.e10, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34348112

RESUMO

The hippocampus is thought to encode a "cognitive map," a structural organization of knowledge about relationships in the world. Place cells, spatially selective hippocampal neurons that have been extensively studied in rodents, are one component of this map, describing the relative position of environmental features. However, whether this map extends to abstract, cognitive information remains unknown. Using the relative reward value of cues to define continuous "paths" through an abstract value space, we show that single neurons in primate hippocampus encode this space through value place fields, much like a rodent's place neurons encode paths through physical space. Value place fields remapped when cues changed but also became increasingly correlated across contexts, allowing maps to become generalized. Our findings help explain the critical contribution of the hippocampus to value-based decision-making, providing a mechanism by which knowledge of relationships in the world can be incorporated into reward predictions for guiding decisions.


Assuntos
Hipocampo/fisiologia , Neurônios/fisiologia , Animais , Macaca mulatta , Masculino , Modelos Neurológicos , Análise e Desempenho de Tarefas
8.
Cell ; 183(1): 228-243.e21, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946810

RESUMO

Every day we make decisions critical for adaptation and survival. We repeat actions with known consequences. But we also draw on loosely related events to infer and imagine the outcome of entirely novel choices. These inferential decisions are thought to engage a number of brain regions; however, the underlying neuronal computation remains unknown. Here, we use a multi-day cross-species approach in humans and mice to report the functional anatomy and neuronal computation underlying inferential decisions. We show that during successful inference, the mammalian brain uses a hippocampal prospective code to forecast temporally structured learned associations. Moreover, during resting behavior, coactivation of hippocampal cells in sharp-wave/ripples represent inferred relationships that include reward, thereby "joining-the-dots" between events that have not been observed together but lead to profitable outcomes. Computing mnemonic links in this manner may provide an important mechanism to build a cognitive map that stretches beyond direct experience, thus supporting flexible behavior.


Assuntos
Tomada de Decisões/fisiologia , Rede Nervosa/fisiologia , Pensamento/fisiologia , Animais , Encéfalo/fisiologia , Feminino , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Neurônios/metabolismo , Neurônios/fisiologia , Estudos Prospectivos , Adulto Jovem
9.
Cell ; 176(3): 549-563.e23, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30661752

RESUMO

Despite a wealth of molecular knowledge, quantitative laws for accurate prediction of biological phenomena remain rare. Alternative pre-mRNA splicing is an important regulated step in gene expression frequently perturbed in human disease. To understand the combined effects of mutations during evolution, we quantified the effects of all possible combinations of exonic mutations accumulated during the emergence of an alternatively spliced human exon. This revealed that mutation effects scale non-monotonically with the inclusion level of an exon, with each mutation having maximum effect at a predictable intermediate inclusion level. This scaling is observed genome-wide for cis and trans perturbations of splicing, including for natural and disease-associated variants. Mathematical modeling suggests that competition between alternative splice sites is sufficient to cause this non-linearity in the genotype-phenotype map. Combining the global scaling law with specific pairwise interactions between neighboring mutations allows accurate prediction of the effects of complex genotype changes involving >10 mutations.


Assuntos
Processamento Alternativo/genética , Splicing de RNA/genética , Receptor fas/genética , Animais , Éxons/genética , Técnicas Genéticas , Genética , Genótipo , Humanos , Íntrons/genética , Camundongos , Modelos Teóricos , Mutação/genética , Fenótipo , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , RNA Mensageiro/metabolismo
10.
Cell ; 174(3): 505-520, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30053424

RESUMO

Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.


Assuntos
Mapeamento Cromossômico/métodos , Transtornos do Neurodesenvolvimento/genética , Biologia de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Neurobiologia/métodos , Neuropsiquiatria
11.
Cell ; 172(5): 1091-1107.e17, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474909

RESUMO

Single-cell RNA sequencing (scRNA-seq) technologies are poised to reshape the current cell-type classification system. However, a transcriptome-based single-cell atlas has not been achieved for complex mammalian systems. Here, we developed Microwell-seq, a high-throughput and low-cost scRNA-seq platform using simple, inexpensive devices. Using Microwell-seq, we analyzed more than 400,000 single cells covering all of the major mouse organs and constructed a basic scheme for a mouse cell atlas (MCA). We reveal a single-cell hierarchy for many tissues that have not been well characterized previously. We built a web-based "single-cell MCA analysis" pipeline that accurately defines cell types based on single-cell digital expression. Our study demonstrates the wide applicability of the Microwell-seq technology and MCA resource.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Células 3T3 , Animais , Custos e Análise de Custo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/economia , Camundongos , Especificidade de Órgãos , Reprodutibilidade dos Testes , Análise de Sequência de RNA/economia , Análise de Célula Única/economia
12.
Annu Rev Cell Dev Biol ; 35: 501-521, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31590586

RESUMO

The dual leucine zipper-bearing kinase (DLK) and leucine zipper-bearing kinase (LZK) are evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in the multicellular response to injury and in disease. Of particular note is the potential link of these kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological contexts under which these kinases are activated, as well as the signal transduction mechanisms that mediate specific functional outcomes. In this review we first provide a historical overview of the biochemical and functional dissection of these kinases. We then discuss recent findings on regulating their activity to enhance cellular protection following injury and in disease, focusing on but not limited to the nervous system.


Assuntos
Zíper de Leucina/genética , MAP Quinase Quinase Quinases/metabolismo , Neurônios/metabolismo , Estresse Fisiológico/genética , Animais , Axônios/metabolismo , Humanos , MAP Quinase Quinase Quinases/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/virologia , Neuroglia/metabolismo , Neurônios/virologia , Regeneração/genética , Regeneração/fisiologia , Células-Tronco/metabolismo , Estresse Fisiológico/fisiologia , Ferimentos e Lesões/genética , Ferimentos e Lesões/metabolismo
13.
Annu Rev Neurosci ; 47(1): 345-368, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38684081

RESUMO

The activity patterns of grid cells form distinctively regular triangular lattices over the explored spatial environment and are largely invariant to visual stimuli, animal movement, and environment geometry. These neurons present numerous fascinating challenges to the curious (neuro)scientist: What are the circuit mechanisms responsible for creating spatially periodic activity patterns from the monotonic input-output responses of single neurons? How and why does the brain encode a local, nonperiodic variable-the allocentric position of the animal-with a periodic, nonlocal code? And, are grid cells truly specialized for spatial computations? Otherwise, what is their role in general cognition more broadly? We review efforts in uncovering the mechanisms and functional properties of grid cells, highlighting recent progress in the experimental validation of mechanistic grid cell models, and discuss the coding properties and functional advantages of the grid code as suggested by continuous attractor network models of grid cells.


Assuntos
Cognição , Células de Grade , Modelos Neurológicos , Animais , Cognição/fisiologia , Células de Grade/fisiologia , Humanos , Percepção Espacial/fisiologia , Rede Nervosa/fisiologia , Encéfalo/fisiologia , Neurônios/fisiologia
14.
Immunity ; 56(11): 2602-2620.e10, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967532

RESUMO

Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.


Assuntos
Citomegalovirus , Proteínas do Envelope Viral , Recém-Nascido , Humanos , Glicoproteínas de Membrana , Anticorpos Neutralizantes , Células B de Memória , Anticorpos Antivirais , Análise de Célula Única
15.
Cell ; 169(3): 457-469.e13, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431246

RESUMO

Fat metabolism has been linked to fertility and reproductive adaptation in animals and humans, and environmental sex determination potentially plays a role in the process. To investigate the impact of fatty acids (FA) on sex determination and reproductive development, we examined and observed an impact of FA synthesis and mobilization by lipolysis in somatic tissues on oocyte fate in Caenorhabditis elegans. The subsequent genetic analysis identified ACS-4, an acyl-CoA synthetase and its FA-CoA product, as key germline factors that mediate the role of FA in promoting oocyte fate through protein myristoylation. Further tests indicated that ACS-4-dependent protein myristoylation perceives and translates the FA level into regulatory cues that modulate the activities of MPK-1/MAPK and key factors in the germline sex-determination pathway. These findings, including a similar role of ACS-4 in a male/female species, uncover a likely conserved mechanism by which FA, an environmental factor, regulates sex determination and reproductive development.


Assuntos
Acetato-CoA Ligase/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Ácidos Graxos/metabolismo , Ácido Mirístico/metabolismo , Processamento de Proteína Pós-Traducional , Processos de Determinação Sexual , Acetato-CoA Ligase/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Mutação , Oócitos/metabolismo
16.
Cell ; 168(3): 427-441.e21, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28111074

RESUMO

Human apolipoprotein E (ApoE) apolipoprotein is primarily expressed in three isoforms (ApoE2, ApoE3, and ApoE4) that differ only by two residues. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), ApoE3 is neutral, and ApoE2 is protective. How ApoE isoforms influence AD pathogenesis, however, remains unclear. Using ES-cell-derived human neurons, we show that ApoE secreted by glia stimulates neuronal Aß production with an ApoE4 > ApoE3 > ApoE2 potency rank order. We demonstrate that ApoE binding to ApoE receptors activates dual leucine-zipper kinase (DLK), a MAP-kinase kinase kinase that then activates MKK7 and ERK1/2 MAP kinases. Activated ERK1/2 induces cFos phosphorylation, stimulating the transcription factor AP-1, which in turn enhances transcription of amyloid-ß precursor protein (APP) and thereby increases amyloid-ß levels. This molecular mechanism also regulates APP transcription in mice in vivo. Our data describe a novel signal transduction pathway in neurons whereby ApoE activates a non-canonical MAP kinase cascade that enhances APP transcription and amyloid-ß synthesis.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Apolipoproteínas E/metabolismo , Sistema de Sinalização das MAP Quinases , Doença de Alzheimer/metabolismo , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo
17.
Mol Cell ; 84(1): 142-155, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38118452

RESUMO

Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase Quinases , Animais , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Mamíferos/metabolismo
18.
Annu Rev Neurosci ; 46: 281-299, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428607

RESUMO

In mammals, the activity of neurons in the entorhinal-hippocampal network is modulated by the animal's position and its movement through space. At multiple stages of this distributed circuit, distinct populations of neurons can represent a rich repertoire of navigation-related variables like the animal's location, the speed and direction of its movements, or the presence of borders and objects. Working together, spatially tuned neurons give rise to an internal representation of space, a cognitive map that supports an animal's ability to navigate the world and to encode and consolidate memories from experience. The mechanisms by which, during development, the brain acquires the ability to create an internal representation of space are just beginning to be elucidated. In this review, we examine recent work that has begun to investigate the ontogeny of circuitry, firing patterns, and computations underpinning the representation of space in the mammalian brain.


Assuntos
Hipocampo , Percepção Espacial , Animais , Percepção Espacial/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Movimento , Cognição , Mamíferos
19.
Mol Cell ; 83(17): 3155-3170.e8, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37595580

RESUMO

The Hippo pathway is known for its crucial involvement in development, regeneration, organ size control, and cancer. While energy stress is known to activate the Hippo pathway and inhibit its effector YAP, the precise role of the Hippo pathway in energy stress response remains unclear. Here, we report a YAP-independent function of the Hippo pathway in facilitating autophagy and cell survival in response to energy stress, a process mediated by its upstream components MAP4K2 and STRIPAK. Mechanistically, energy stress disrupts the MAP4K2-STRIPAK association, leading to the activation of MAP4K2. Subsequently, MAP4K2 phosphorylates ATG8-family member LC3, thereby facilitating autophagic flux. MAP4K2 is highly expressed in head and neck cancer, and its mediated autophagy is required for head and neck tumor growth in mice. Altogether, our study unveils a noncanonical role of the Hippo pathway in energy stress response, shedding light on this key growth-related pathway in tissue homeostasis and cancer.


Assuntos
Autofagia , Via de Sinalização Hippo , Animais , Camundongos , Sobrevivência Celular , Tamanho do Órgão
20.
Mol Cell ; 83(8): 1311-1327.e7, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36958328

RESUMO

RNA-binding proteins (RBPs) bind at different positions of the pre-mRNA molecules to promote or reduce the usage of a particular exon. Seeking to understand the working principle of these positional effects, we develop a capture RIC-seq (CRIC-seq) method to enrich specific RBP-associated in situ proximal RNA-RNA fragments for deep sequencing. We determine hnRNPA1-, SRSF1-, and PTBP1-associated proximal RNA-RNA contacts and regulatory mechanisms in HeLa cells. Unexpectedly, the 3D RNA map analysis shows that PTBP1-associated loops in individual introns preferentially promote cassette exon splicing by accelerating asymmetric intron removal, whereas the loops spanning across cassette exon primarily repress splicing. These "positional rules" can faithfully predict PTBP1-regulated splicing outcomes. We further demonstrate that cancer-related splicing quantitative trait loci can disrupt RNA loops by reducing PTBP1 binding on pre-mRNAs to cause aberrant splicing in tumors. Our study presents a powerful method for exploring the functions of RBP-associated RNA-RNA proximal contacts in gene regulation and disease.


Assuntos
Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA , Humanos , RNA/metabolismo , Células HeLa , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Fatores de Processamento de Serina-Arginina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA