Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(4): e2306953121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227651

RESUMO

We introduce and theoretically analyze a scheme to prepare and detect non-Gaussian quantum states of an optically levitated particle via the interaction with light pulses that generate cubic and inverted potentials. We show that this approach allows to operate on sufficiently short time- and length scales to beat decoherence in a regime accessible in state-of-the-art experiments. Specifically, we predict the observation of single-particle interference of a nanoparticle with a mass above 108 atomic mass units delocalized by several nanometers, on timescales of milliseconds. The proposed experiment uses only optical and electrostatic control, and can be performed at about 10-10 mbar and at room temperature. We discuss the prospect of this method for coherently splitting the wavepacket of massive dielectric objects without using either projective measurements or an internal level structure.

2.
Environ Res ; 205: 112473, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863986

RESUMO

BACKGROUND: No study has explored the effects of sustained maternal exposure to high-level ambient fine particulate matter (PM2.5) within a short period, i.e., PM2.5 wave, on adverse birth outcomes, though increasing epidemiological studies demonstrated that exposure to single days of high ambient PM2.5 could increase risks of adverse birth outcomes. In this study, we aim to evaluate associations of maternal PM2.5 wave exposure around pregnancy with preterm birth (PTB), small for gestational age (SGA), and large for gestational age (LGA). METHODS: Totally 10,916 singleton pregnant women from all 16 districts in Tianjin, China, and their followed-up birth outcomes were included in this study. We defined PM2.5 wave as at least 2 consecutive days with daily average PM2.5 concentration exceeding 75 µg/m3, and 90th, 92.5th, 95th, 97.5th, 99th percentiles of PM2.5 distribution during the study period in Tianjin, respectively. Cox proportional hazard model was applied to evaluate the durational effects of PM2.5 wave during each exposure window on PTB, SGA, and LGA after adjusting for potential confounders. RESULTS: Exposure to PM2.5 wave over the preconception and pregnancy periods was associated with increased risks of adverse birth outcomes. For PTB, the strongest association was found during the first trimester when PM2.5 wave was defined as at least 4 consecutive days with daily average PM2.5 concentration >90th (HR, 10.46; 95% CI, 6.23-17.54); and for SGA (HR, 6.23; 95% CI, 3.34-11.64) and LGA (HR, 4.70; 95% CI, 3.35-6.59), the strongest associations both were found when PM2.5 wave was defined as at least 2 consecutive days with daily average PM2.5 concentration >99th. Additionally, the risks of adverse birth outcomes generally increased at higher PM2.5 thresholds or longer durations of PM2.5 wave. CONCLUSION: Prolonged exposure to high-level PM2.5 over preconception and pregnancy periods was associated with increasing risks of PTB, SGA and LGA.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Nascimento Prematuro , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , China/epidemiologia , Feminino , Humanos , Recém-Nascido , Exposição Materna , Material Particulado/análise , Material Particulado/toxicidade , Parto , Gravidez , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/epidemiologia
3.
Entropy (Basel) ; 24(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359625

RESUMO

Within the framework of quantum mechanics, the wave function squared describes the probability density of particles. In this article, another description of the wave function is given which embeds quantum mechanics into the traditional fields of physics, thus making new interpretations dispensable. The new concept is based on the idea that each microscopic particle with non-vanishing rest mass is accompanied by a matter wave, which is formed by adjusting the phases of the vacuum fluctuations in the vicinity of the vibrating particle. The vibrations of the particle and wave are phase-coupled. Particles move on continuous approximately classical trajectories. By the phase coupling mechanism, the particle transfers the information on its kinematics and thus also on the external potential to the wave. The space dependence of the escorting wave turns out to be equal to the wave function. The new concept fundamentally differs from the pilot wave concept of Bohmian mechanics.

4.
Proc Natl Acad Sci U S A ; 114(48): 12691-12695, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29133425

RESUMO

We report the results of the direct comparison of a freely expanding turbulent Bose-Einstein condensate and a propagating optical speckle pattern. We found remarkably similar statistical properties underlying the spatial propagation of both phenomena. The calculated second-order correlation together with the typical correlation length of each system is used to compare and substantiate our observations. We believe that the close analogy existing between an expanding turbulent quantum gas and a traveling optical speckle might burgeon into an exciting research field investigating disordered quantum matter.

5.
Entropy (Basel) ; 20(6)2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33265541

RESUMO

Bohmian mechanics, widely known within the field of the quantum foundations, has been a quite useful resource for computational and interpretive purposes in a wide variety of practical problems. Here, it is used to establish a comparative analysis at different levels of approximation in the problem of the diffraction of helium atoms from a substrate consisting of a defect with axial symmetry on top of a flat surface. The motivation behind this work is to determine which aspects of one level survive in the next level of refinement and, therefore, to get a better idea of what we usually denote as quantum-classical correspondence. To this end, first a quantum treatment of the problem is performed with both an approximated hard-wall model and then with a realistic interaction potential model. The interpretation and explanation of the features displayed by the corresponding diffraction intensity patterns is then revisited with a series of trajectory-based approaches: Fermatian trajectories (optical rays), Newtonian trajectories and Bohmian trajectories. As it is seen, while Fermatian and Newtonian trajectories show some similarities, Bohmian trajectories behave quite differently due to their implicit non-classicality.

6.
Chemphyschem ; 17(22): 3670-3676, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27748011

RESUMO

Molecular beams of He and D2 are scattered from a ruled diffraction grating in conical-mount geometry under grazing-incidence conditions. Fully resolved diffraction patterns as a function of detection angle are recorded for different grating azimuth angles and for two different kinetic energies of the particle beams. Variations in diffraction peak widths are traced back to different velocity spreads of He and D2 determined by time-of-flight measurements. A comprehensive analysis of diffraction intensities confirms universal diffraction, that is, for identical de Broglie wavelengths, the relative diffraction intensities for He and D2 are the same. Universal diffraction results from peculiarities of quantum reflection of the atoms and molecules from the diffraction grating. In quantum reflection particles scatter many nanometers in front of the surface from the long-range attractive branch of the particle-surface interaction potential without probing the potential well and the short-range repulsive branch of the potential.

7.
Heliyon ; 10(1): e23449, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192828

RESUMO

The area of trapping the atoms or molecules using light has advanced tremendously in the last few decades. In contrast, the idea of controlling (not only trapping) the movement of atomic-sized particles using matter waves is a completely new emerging area of particle manipulation. Though a single previous report has suggested the pulling of atoms based on matter-wave tractor beams, an attempt is yet to be made to produce a lateral force using this technique. This article demonstrates an asymmetric setup that engenders reversible lateral force on an atom due to the interaction energy of the matter wave in the presence of a metal surface. Several full-wave simulations and analytical calculations were performed on a particular set-up of Xenon scatterers placed near a Copper surface, with two counter-propagating plane matter waves of Helium impinging in the direction parallel to the surface. By solving the time-independent Schrödinger equation and using the solution, quantum mechanical stress tensor formalism is applied to compute the force acting on the particle. The simulation results are in excellent agreement with the analytical calculations. The results for the adsorbed scatterer case find this technique to be an efficient cleaning procedure similar to electron-stimulated desorption for futuristic applications.

8.
EPJ Quantum Technol ; 9(1): 20, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939269

RESUMO

We examine the prospects of utilizing matter-wave Fabry-Pérot interferometers for enhanced inertial sensing applications. Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations: (a) a transmission setup, where the initial wave packet is transmitted through the cavity and (b) an out-tunneling scheme with intra-cavity generated initial states lacking a classical counterpart. We perform numerical simulations of the complete dynamics of the quantum wave packet, investigate the tunneling through a matter-wave cavity formed by realistic optical potentials and determine the impact of interactions between atoms. As a consequence we estimate the prospective sensitivities to inertial forces for both proposed configurations and show their feasibility for serving as inertial sensors.

9.
Philos Trans A Math Phys Eng Sci ; 375(2087)2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28069765

RESUMO

The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices.This article is part of the themed issue 'Optical orbital angular momentum'.

10.
J Mod Opt ; 63(18): 1840-1885, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27499585

RESUMO

Here we review the field of atom chips in the context of Bose-Einstein Condensates (BEC) as well as cold matter in general. Twenty years after the first realization of the BEC and 15 years after the realization of the atom chip, the latter has been found to enable extraordinary feats: from producing BECs at a rate of several per second, through the realization of matter-wave interferometry, and all the way to novel probing of surfaces and new forces. In addition, technological applications are also being intensively pursued. This review will describe these developments and more, including new ideas which have not yet been realized.

11.
Sci Adv ; 2(3): e1500901, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27034979

RESUMO

Since de Broglie's work on the wave nature of particles, various optical phenomena have been observed with matter waves of atoms and molecules. However, the analogy between classical and atom/molecule optics is not exact because of different dispersion relations. In addition, according to de Broglie's formula, different combinations of particle mass and velocity can give the same de Broglie wavelength. As a result, even for identical wavelengths, different molecular properties such as electric polarizabilities, Casimir-Polder forces, and dissociation energies modify (and potentially suppress) the resulting matter-wave optical phenomena such as diffraction intensities or interference effects. We report on the universal behavior observed in matter-wave diffraction of He atoms and He2 and D2 molecules from a ruled grating. Clear evidence for emerging beam resonances is observed in the diffraction patterns, which are quantitatively the same for all three particles and only depend on the de Broglie wavelength. A model, combining secondary scattering and quantum reflection, permits us to trace the observed universal behavior back to the peculiar principles of quantum reflection.


Assuntos
Modelos Teóricos , Fenômenos Ópticos , Pontos Quânticos , Teoria Quântica
12.
Ultramicroscopy ; 158: 65-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26188995

RESUMO

We propose an experiment for the first proof of the type I electric Aharonov-Bohm effect in an ion interferometer for hydrogen. The performances of three different beam separation schemes are simulated and compared. The coherent ion beam is generated by a single atom tip (SAT) source and separated by either two biprisms with a quadrupole lens, two biprisms with an einzel-lens or three biprisms. The beam path separation is necessary to introduce two metal tubes that can be pulsed with different electric potentials. The high time resolution of a delay line detector allows to work with a continuous ion beam and circumvents the pulsed beam operation as originally suggested by Aharonov and Bohm. We demonstrate that the higher mass and therefore lower velocity of ions compared to electrons combined with the high expected SAT ion emission puts the direct proof of this quantum effect for the first time into reach of current technical possibilities. Thereby a high detection rate of coherent ions is crucial to avoid long integration times that allow the influence of dephasing noise from the environment. We can determine the period of the expected matter wave interference pattern and the signal on the detector by determining the superposition angle of the coherent partial beams. Our simulations were tested with an electron interferometer setup and agree with the experimental results. We determine the separation scheme with three biprisms to be most efficient and predict a total signal acquisition time of only 80s to measure a phase shift from 0 to 2π due to the electric Aharonov-Bohm effect.

13.
Ultramicroscopy ; 141: 9-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24704604

RESUMO

Experiments with electron or ion matter waves require a coherent, monochromatic and long-term stable source with high brightness. These requirements are best fulfilled by single atom tip (SAT) field emitters. The performance of an iridium covered W(111) SAT is demonstrated and analyzed for electrons in a biprism interferometer. Furthermore we characterize the emission of the SAT in a separate field electron and field ion microscope and compare it with other emitter types. A new method is presented to fabricate the electrostatic charged biprism wire that separates and combines the matter wave. In contrast to other biprism interferometers the source and the biprism size are well defined within a few nanometers. The setup has direct applications in ion interferometry and Aharonov-Bohm physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA