Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
BMC Microbiol ; 24(1): 230, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943054

RESUMO

BACKGROUND: Carbapenemase-producing Klebsiella pneumoniae (CRKP) presents a significant challenge to antimicrobial therapy, especially when compounded by resistance to colistin. The objective of this study was to explore molecular epidemiological insights into strains of clinical K. pneumoniae that produce carbapenemases and exhibit resistance to colistin. Eighty clinical isolates of CRKP were obtained from Milad Hospital in Tehran, Iran. Antimicrobial susceptibility and colistin broth disk elution were determined. PCR assays were conducted to examine the prevalence of resistance-associated genes, including blaKPC, blaIMP, blaVIM, blaOXA-48, blaNDM and mcr-1 to -10. Molecular typing (PFGE) was used to assess their spread. RESULTS: Colistin resistance was observed in 27 isolates (33.7%) using the Broth Disk Elution method. Among positive isolates for carbapenemase genes, the most frequent gene was blaOXA-48, identified in 36 strains (45%). The mcr-1 gene was detected in 3.7% of the obtained isolates, with none of the other of the other mcr genes detected in the studied isolates. CONCLUSION: To stop the spread of resistant K. pneumoniae and prevent the evolution of mcr genes, it is imperative to enhance surveillance, adhere rigorously to infection prevention protocols, and implement antibiotic stewardship practices.


Assuntos
Antibacterianos , Proteínas de Bactérias , Colistina , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , beta-Lactamases , Colistina/farmacologia , Irã (Geográfico)/epidemiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Centros de Atenção Terciária/estatística & dados numéricos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Epidemiologia Molecular
2.
BMC Microbiol ; 24(1): 65, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402189

RESUMO

BACKGROUND: Camels harbouring multidrug-resistant Gram-negative bacteria are capable of transmitting various microorganisms to humans. This study aimed to determine the distribution of anti-microbial resistance among Escherichia coli (E. coli) isolated from the feces of apparently healthy camels in Egyptian abattoirs. Additionally, we sought to characterize Shiga toxin-producing E. coli (STEC) strains, assess their virulence potential, and investigate the possibility of camels spreading carbapenem- and colistin-resistant E. coli. METHODS: 121 fecal swaps were collected from camels in different abattoirs in Egypt. Isolation and identification of E. coli were performed using conventional culture techniques and biochemical identification. All isolates obtained from the examined samples underwent genotyping through polymerase chain reaction (PCR) of the Shiga toxin-encoding genes (Stx1 and Stx2), the carbapenemase-encoding genes (blaKPC, blaOXA-48, blaNDM, and blaVIM), and the mcr genes for mcr-1 to mcr-5. RESULT: Bacteriological examination revealed 75 E. coli isolates. PCR results revealed that one strain (1.3%) tested positive for Stx1, and five (6.6%) were positive for Stx2. Among the total 75 strains of E. coli, the overall prevalence of carbapenemase-producing E. coli was 27, with 7 carrying blaOXA48, 14 carrying blaNDM, and 6 carrying blaVIM. Notably, no strains were positive for blaKPC but a high prevalence rate of mcr genes were detected. mcr-1, mcr-2, mcr-3, and mcr-4 genes were detected among 3, 2, 21, and 3 strains, respectively. CONCLUSION: The results indicate that camels in Egypt may be a primary source of anti-microbial resistance (AMR) E. coli, which could potentially be transmitted directly to humans or through the food chain.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Animais , Colistina/farmacologia , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Camelus , beta-Lactamases/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli Shiga Toxigênica/genética , Toxinas Shiga/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos
3.
Euro Surveill ; 29(18)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699902

RESUMO

BackgroundThe pet industry is expanding worldwide, particularly raw meat-based diets (RMBDs). There are concerns regarding the safety of RMBDs, especially their potential to spread clinically relevant antibiotic-resistant bacteria or zoonotic pathogens.AimWe aimed to investigate whether dog food, including RMBD, commercially available in Portugal can be a source of Salmonella and/or other Enterobacteriaceae strains resistant to last-line antibiotics such as colistin.MethodsFifty-five samples from 25 brands (21 international ones) of various dog food types from 12 suppliers were screened by standard cultural methods between September 2019 and January 2020. Isolates were characterised by phenotypic and genotypic methods, including whole genome sequencing and comparative genomics.ResultsOnly RMBD batches were contaminated, with 10 of 14 containing polyclonal multidrug-resistant (MDR) Escherichia coli and one MDR Salmonella. One turkey-based sample contained MDR Salmonella serotype 1,4,[5],12:i:- ST34/cgST142761 with similarity to human clinical isolates occurring worldwide. This Salmonella exhibited typical antibiotic resistance (bla TEM + strA-strB + sul2 + tet(B)) and metal tolerance profiles (pco + sil + ars) associated with the European epidemic clone. Two samples (turkey/veal) carried globally dispersed MDR E. coli (ST3997-complexST10/cgST95899 and ST297/cgST138377) with colistin resistance (minimum inhibitory concentration: 4 mg/L) and mcr-1 gene on IncX4 plasmids, which were identical to other IncX4 circulating worldwide.ConclusionSome RMBDs from European brands available in Portugal can be a vehicle for clinically relevant MDR Salmonella and pathogenic E. coli clones carrying genes encoding resistance to the last-line antibiotic colistin. Proactive actions within the One Health context, spanning regulatory, pet-food industry and consumer levels, are needed to mitigate these public health risks.


Assuntos
Antibacterianos , Escherichia coli , Carne , Salmonella , Animais , Salmonella/isolamento & purificação , Salmonella/genética , Salmonella/efeitos dos fármacos , Humanos , Portugal , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Cães , Antibacterianos/farmacologia , Carne/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Animais de Estimação/microbiologia , Sequenciamento Completo do Genoma , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genética , Colistina/farmacologia , Ração Animal/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia
4.
Foodborne Pathog Dis ; 21(7): 416-423, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629721

RESUMO

Plasmid-mediated quinolone resistance (PMQR) genes and mobile colistin resistance (MCR) genes in Escherichia coli (E. coli) have been widely identified, which is considered a global threat to public health. In the present study, we conducted an analysis of MCR genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) and PMQR genes [qnrA, qnrB, qnrC, qnrD, qnrE1, qnrVC, qnrS, aac(6')-Ib-cr, qepA, and oqxAB] in E. coli from China, 1993-2019. From the 3,663 E. coli isolates examined, 1,613 (44.0%) tested positive for PMQR genes, either individually or in combination. Meanwhile, 262 isolates (7.0%) carried the MCR genes. Minimum inhibitory concentration (MIC) analyses of 17 antibiotics for the MCR gene-carrying strains revealed universal multidrug resistance. Resistance to polymyxin varied between 4 µg/mL and 64 µg/mL, with MIC50 and MIC90 at 8 µg/mL and 16 µg/mL, respectively. In addition, fluctuations in the detection rates of these resistant genes correlated with the introduction of antibiotic policies, host origin, temporal trends, and geographical distribution. Continuous surveillance of PMQR and MCR variants in bacteria is required to implement control and prevention strategies.


Assuntos
Antibacterianos , Colistina , Farmacorresistência Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Plasmídeos , Quinolonas , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Colistina/farmacologia , Plasmídeos/genética , China , Quinolonas/farmacologia , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Humanos , Farmacorresistência Bacteriana Múltipla/genética , Animais
5.
Lett Appl Microbiol ; 76(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673673

RESUMO

The peptide antibiotic colistin has been reserved as a last resort antibiotic treatment option for cases where other antibiotics including carbapenems have failed. Recent emergence of colistin resistance and discovery of mobile colistin resistance (mcr) genes, which encode the cell wall modifying phosphoethanolamine transferase enzyme, complicates the issue. The mcr genes have been associated with conjugative plasmids and can be horizontally transferred between different bacterial species. The global spread of mcr genes has been extensively documented and this warrants surveillance of the resistance genes in the community. However, susceptibility testing of colistin is fraught with practical challenges owing to the chemical nature of the drug and multiple mechanisms of resistance. Although broth microdilution is the current gold standard for colistin susceptibility testing, the method poses technical challenges. Hence, alternative detection methods for screening colistin resistance are the need of the hour. Several methods have been studied in the recent times to address this issue. In this review, we discuss some of the recent developments in the detection of colistin resistance.


Assuntos
Antibacterianos , Colistina , Colistina/farmacologia , Antibacterianos/farmacologia , Carbapenêmicos , Parede Celular
6.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36754367

RESUMO

Multidrug-resistant (MDR) Escherichia coli strains have rapidly increased worldwide, and effective antibiotic therapeutic options are becoming more restricted. As a polymyxin antibiotic, colistin has a long history of usage, and it is used as a final line of treatment for severe infections by Gram-negative bacteria (GNB) with high-level resistance. However, its application has been challenged by the emergence of E. coli colistin resistance. Hence, determining the mechanism that confers colistin resistance is crucial for monitoring and controlling the dissemination of colistin-resistant E. coli strains. This comprehensive review summarizes colistin resistance mechanisms in E. coli strains and concentrates on the history, mode of action, and therapeutic implications of colistin. We have mainly focused on the fundamental mechanisms of colistin resistance that are mediated by chromosomal or plasmid elements and discussed major mutations in the two-component systems (TCSs) genes and plasmids that transmit the mobilized colistin resistance resistant genes in E. coli strains.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Colistina/farmacologia , Escherichia coli , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Plasmídeos , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana
7.
Vet Res ; 53(1): 96, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414994

RESUMO

Colistin is frequently used as a growth factor or treatment against infectious bacterial diseases in animals. The Veterinary Division of the European Medicines Agency (EMA) restricted colistin use as a second-line treatment to reduce colistin resistance. In 2020, 282 faecal samples were collected from chickens, cattle, sheep, goats, and pigs in the south of France. In order to track the emergence of mobilized colistin resistant (mcr) genes in pigs, 111 samples were re-collected in 2021 and included pig faeces, food, and water from the same location. All samples were cultured in a selective Lucie Bardet Jean-Marc Rolain (LBJMR) medium and colonies were identified using MALDI-TOF mass spectrometry and then antibiotic susceptibility tests were performed. PCR and Sanger sequencing were performed to screen for the presence of mcr genes. The selective culture revealed the presence of 397 bacteria corresponding to 35 different bacterial species including Gram-negative and Gram-positive. Pigs had the highest prevalence of colistin-resistant bacteria with an abundance of intrinsically colistin-resistant bacteria and from these samples one strain harbouring both mcr-1 and mcr-3 has been isolated. The second collection allowed us to identify 304 bacteria and revealed the spread of mcr-1 and mcr-3 in pigs. In the other samples, naturally, colistin-resistant bacteria were more frequent, nevertheless the mcr-1 variant was the most abundant gene found in chicken, sheep, and goat samples and one cattle sample was positive for the mcr-3 gene. Animals are potential reservoir of colistin-resistant bacteria which varies from one animal to another. Interventions and alternative options are required to reduce the emergence of colistin resistance and to avoid zoonotic transmissions.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Suínos , Bovinos , Ovinos , Colistina/farmacologia , Gado , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Antibacterianos/farmacologia , Galinhas/microbiologia , Bactérias , Proteínas de Escherichia coli/genética
8.
Mol Biol Rep ; 48(3): 2897-2907, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33839987

RESUMO

At the present time, the polymyxin antibiotic colistin is considered a last-line treatment option for severe human infections caused by multi-drug and carbapenem-resistant Gram-negative bacteria. Lately, the vast spread of colistin resistance among bacteria has got great attention worldwide due to its significant role as the last refuge in treating diseases caused by the resistant infectious agents. Therefore, the discovery of plasmid-mediated mobile colistin resistance (mcr) genes raised global public health concerns as they can spread by horizontal transfer and have chances of global dissemination. To date, ten slightly different variants of the mcr-1 gene (mcr-1 to mcr-10) have been identified in different bacteria isolated from animals, foods, farms, humans, and the environment. Therefore, the issue of mcr spread is growing and worsening day after day. In this backdrop, the current article presents an overview of mcr variants, their spread, and the resistance mechanisms they confer. Hence, this paper will advance our knowledge about colistin resistance while supporting the efforts toward better stewardship and proper usage of antimicrobials.


Assuntos
Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Modelos Moleculares
9.
Artigo em Inglês | MEDLINE | ID: mdl-31209010

RESUMO

We characterized the stability of a plasmid pCP53-mcr1_3 encoding mcr-1 and mcr-3.19 with and without colistin exposure during cultural passages via S1-pulsed-field gel electrophoresis (PFGE) and nanopore MinION sequencing. Both mcr-1 and mcr-3.19 were missing in certain subclones, mediated by genetic excision (ISApl1-mcr-1-pap2), and deletions of large multidrug resistance (MDR) regions confirmed by ISApl1 and plasmid elimination. Without colistin exposure, the eradication of mcr genes is feasible, while the factors influencing the elimination processes warrant further study.


Assuntos
Proteínas de Escherichia coli/metabolismo , Plasmídeos/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla , Eletroforese em Gel de Campo Pulsado , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Nanoporos
10.
Plasmid ; 99: 99-111, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30243983

RESUMO

Multidrug resistant (MDR) Gram-negative bacteria have been increasingly reported in humans, companion animals and farm animals. The growing trend of plasmid-mediated resistance to antimicrobial classes of critical importance is attributed to the emergence of epidemic plasmids, rapidly disseminating resistance genes among the members of Enterobacteriaceae family. The use of antibiotics to treat humans and animals has had a significant impact on the environment and on wild animals living and feeding in human-influenced habitats. Wildlife can acquire MDR bacteria selected in hospitals, community or livestock from diverse sources, including wastewater, sewage systems, landfills, farm facilities or agriculture fields. Therefore, wild animals are considered indicators of environmental pollution by antibiotic resistant bacteria, but they can also act as reservoirs and vectors spreading antibiotic resistance across the globe. The level of resistance and reported plasmid-mediated resistance mechanisms observed in bacteria of wildlife origin seem to correlate well with the situation described in humans and domestic animals. Additionaly, the identification of epidemic plasmids in samples from different human, animal and wildlife sources underlines the role of horizontal gene transfer in the dissemination of resistance genes. The present review focuses on reports of plasmid-mediated resistance to critically important antimicrobial classes such as broad-spectrum beta-lactams and colistin in Enterobacteriaceae isolates from samples of wildlife origin. The role of plasmids in the dissemination of ESBL-, AmpC- and carbapenemase-encoding genes as well as plasmid-mediated colistin resistance determinants in wildlife are discussed, and their similarities to plasmids previously identified in samples of human clinical or livestock origin are highlighted. Furthermore, we present features of completely sequenced plasmids reported from wildlife Enterobacteriaceae isolates, with special focus on genes that could be associated with the plasticity and stable maintenance of these molecules in antibiotic-free environments.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Transferência Genética Horizontal/genética , Bactérias Gram-Negativas/genética , Plasmídeos/genética , Animais , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Humanos , beta-Lactamases/genética , beta-Lactamas/uso terapêutico
11.
BMC Microbiol ; 17(1): 220, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29169321

RESUMO

BACKGROUND: Multi-drug resistant bacteria are a phenomenon which is on the increase around the world, particularly with the emergence of colistin-resistant Enterobacteriaceae and vancomycin-resistant enterococci strains. The recent discovery of a plasmid-mediated colistin resistance with the description of the transferable mcr-1 gene raised concerns about the need for an efficient detection method for these pathogens, to isolate infected patients as early as possible. The LBJMR medium was developed to screen for all polymyxin-resistant Gram-negative bacteria, including mcr-1 positive isolates, and vancomycin-resistant Gram-positive bacteria. RESULTS: The LBJMR medium was developed by adding colistin sulfate salt at a low concentration (4 µg/mL) and vancomycin (50 µg/mL), with glucose (7.5 g/L) as a fermentative substrate, to a Purple Agar Base (31 g/L). A total of 143 bacterial strains were used to evaluate this universal culture medium, and the sensitivity and specificity of detection were 100% for the growth of resistant strains. 68 stool samples were cultured on LBJMR, and both colistin-resistant Gram-negative and vancomycin-resistant Gram-positive strains were specifically detected. CONCLUSIONS: The LBJMR medium is a multipurpose selective medium which makes it possible to identify bacteria of interest from clinical samples and to isolate contaminated patients in hospital settings. This is a simple medium that could be easily used for screening in clinical microbiology laboratories.


Assuntos
Antibacterianos/farmacologia , Meios de Cultura/química , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana/métodos , Resistência a Vancomicina , Animais , Colistina/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Sensibilidade e Especificidade , Vancomicina/farmacologia
12.
Microbiol Res ; 283: 127679, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508087

RESUMO

With the rising incidences of antimicrobial resistance (AMR) and the diminishing options of novel antimicrobial agents, it is paramount to decipher the molecular mechanisms of action and the emergence of resistance to the existing drugs. Polymyxin, a cationic antimicrobial lipopeptide, is used to treat infections by Gram-negative bacterial pathogens as a last option. Though polymyxins were identified almost seventy years back, their use has been restricted owing to toxicity issues in humans. However, their clinical use has been increasing in recent times resulting in the rise of polymyxin resistance. Moreover, the detection of "mobile colistin resistance (mcr)" genes in the environment and their spread across the globe have complicated the scenario. The mechanism of polymyxin action and the development of resistance is not thoroughly understood. Specifically, the polymyxin-bacterial lipopolysaccharide (LPS) interaction is a challenging area of investigation. The use of advanced biophysical techniques and improvement in molecular dynamics simulation approaches have furthered our understanding of this interaction, which will help develop polymyxin analogs with better bactericidal effects and lesser toxicity in the future. In this review, we have delved deeper into the mechanisms of polymyxin-LPS interactions, highlighting several models proposed, and the mechanisms of polymyxin resistance development in some of the most critical Gram-negative pathogens.


Assuntos
Lipopolissacarídeos , Polimixinas , Humanos , Polimixinas/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Colistina/farmacologia
13.
Microbiol Resour Announc ; 13(3): e0077923, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38385708

RESUMO

We created a database of all currently known mobile colistin resistance genes and variants (n = 115). It contains accession numbers of the gene and protein sequences, mutations between the protein variants and the main proteins, and additional metadata. It is accompanied by all genetic and protein sequences as two aggregated FASTA files.

14.
Chemosphere ; 362: 142717, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944352

RESUMO

Colistin is a polymyxin antimicrobic mainly used to treat infection caused by multi-drug resistant Gram-negative bacteria. Mechanisms of colistin resistance are linked to the mobile colistin resistance (mcr) genes, which are transferable within mobile plasmids. Currently, there is limited research on the environmental dissemination of these genes. The behavioural and morphological characteristics of Apis mellifera L. make honey bees effective environmental bioindicators for assessing the prevalence of antimicrobial-resistant bacteria. This study aims to evaluate the colistin phenotypic and genotypic resistance in environmental Gram-negative bacteria isolated from foraging honey bees, across a network of 33 colonies distributed across the Emilia-Romagna region in Italy. Phenotypic resistances were determined through a microdilution assay using the minimum inhibitory concentration (MIC) with dilutions ranging from 0.5 µg/ml to 256 µg/ml. Strains with MIC values gather than 2 µg/ml were classified as resistant. Also, the identification of the nine mcr genes was carried out using two separate multiplex PCR assays. The study found that 68.5% of isolates were resistant and the genus with the higher resistance rates observed in Enterobacter spp. (84.5%). At least one mcr gene was found in 137 strains (53.3%). The most detected gene was mcr5 (35.3%), which was the most frequently detected gene in the seven provinces, while the least observed was mcr4 (4.8%), detected only in two provinces. These results suggested the feasibility of detecting specific colistin resistance genes in environmentally spread bacteria and understanding their distribution at the environmental level, despite their restricted clinical use. In a One-Health approach, this capability enables valuable environmental monitoring, considering the significant role of colistin in the context of public health.


Assuntos
Antibacterianos , Colistina , Genótipo , Testes de Sensibilidade Microbiana , Fenótipo , Colistina/farmacologia , Animais , Abelhas/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Itália , Farmacorresistência Bacteriana Múltipla/genética
15.
Microorganisms ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674716

RESUMO

Antibiotic resistance has emerged as a significant global public health issue, driven by the rapid adaptation of microorganisms to commonly prescribed antibiotics. Colistin, previously regarded as a last-resort antibiotic for treating infections caused by Gram-negative bacteria, is increasingly becoming resistant due to chromosomal mutations and the acquisition of resistance genes carried by plasmids, particularly the mcr genes. The mobile colistin resistance gene (mcr-1) was first discovered in E. coli from China in 2016. Since that time, studies have reported different variants of mcr genes ranging from mcr-1 to mcr-10, mainly in Enterobacteriaceae from various parts of the world, which is a major concern for public health. The co-presence of colistin-resistant genes with other antibiotic resistance determinants further complicates treatment strategies and underscores the urgent need for enhanced surveillance and antimicrobial stewardship efforts. Therefore, understanding the mechanisms driving colistin resistance and monitoring its global prevalence are essential steps in addressing the growing threat of antimicrobial resistance and preserving the efficacy of existing antibiotics. This review underscores the critical role of colistin as a last-choice antibiotic, elucidates the mechanisms of colistin resistance and the dissemination of resistant genes, explores the global prevalence of mcr genes, and evaluates the current detection methods for colistin-resistant bacteria. The objective is to shed light on these key aspects with strategies for combating the growing threat of resistance to antibiotics.

16.
Front Microbiol ; 15: 1279186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544862

RESUMO

Objective: Recently, 10 plasmid-mediated mobile colistin resistance genes, mcr-1 to mcr-10, and their variants have been identified, posing a new threat to the treatment of clinical infections caused by Gram-negative bacteria. Our objective was to develop a rapid, sensitive, and accurate molecular assay for detecting mcr genes in clinical isolates. Methods: The primers and corresponding TaqMan-MGB probes were designed based on the sequence characteristics of all reported MCR family genes, multiplex Taqman-MGB probe-based qPCR assays were developed and optimized, and the sensitivity, specificity and reproducibility of the method were evaluated. The assay contained 8 sets of primers and probes in 4 reaction tubes, each containing 2 sets of primers and probes. Results: The standard curves for both the single and multiplex systems showed good linearity (R2 > 0.99) between the starting template amount and the Ct value, with a lower limit of detection of 102 copies/µL. The specificity test showed positive amplification results only for strains containing the mcr genes, whereas the other strains were negative. The results of intra-and inter-group repeatability experiments demonstrated the stability and reliability of the newly developed method. It was used to detect mcr genes in 467 clinically-obtained Gram-negative isolates, which were multidrug-resistant. Twelve strains containing the mcr genes were detected (seven isolates carrying mcr-1, four isolates carrying mcr-10, and one isolate carrying mcr-9). The products amplified by the full-length PCR primer were identified by sequencing, and the results were consistent with those of the multiplex qPCR method. Conclusion: The assay developed in this study has the advantages of high specificity, sensitivity, and reproducibility. It can be used to specifically detect drug-resistant clinical isolates carrying the mcr genes (mcr-1 to mcr-10), thus providing a better basis for clinical drug treatment and drug resistance research.

18.
mSystems ; 8(5): e0045023, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695127

RESUMO

IMPORTANCE: Cronobacter is an emerging foodborne opportunistic pathogen, which can cause neonatal meningitis, bacteremia, and NEC by contaminating food. However, the entire picture of foodborne Cronobacter carriage of the mcr genes is not known. Here, we investigated the mcr genes of Cronobacter isolates by whole-genome sequencing and found 133 previously undescribed Cronobacter isolates carrying mcr genes. Further genomic analysis revealed that these mcr genes mainly belonged to the mcr-9 and mcr-10. Genomic analysis of the flanking structures of mcr genes revealed that two core flanking structures were prevalent in foodborne Cronobacter isolates, and the flanking structure carrying IS1R was found for the first time in this study.


Assuntos
Cronobacter , Recém-Nascido , Humanos , Cronobacter/genética , Genoma , Genômica , Sequenciamento Completo do Genoma , Filogenia
19.
Animals (Basel) ; 13(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37106971

RESUMO

Colistin is a polymyxin antibiotic that has been used in veterinary medicine for decades, as a treatment for enterobacterial digestive infections as well as a prophylactic treatment and growth promoter in livestock animals, leading to the emergence and spread of colistin-resistant Gram-negative bacteria and to a great public health concern, considering that colistin is one of the last-resort antibiotics against multidrug-resistant deadly infections in clinical practice. Previous studies performed on livestock animals in Tunisia using culture-dependent methods highlighted the presence of colistin-resistant Gram-negative bacteria. In the present survey, DNA extracted from cloacal swabs from 195 broiler chickens from six farms in Tunisia was tested via molecular methods for the ten mobilized colistin resistance (mcr) genes known so far. Of the 195 animals tested, 81 (41.5%) were mcr-1 positive. All the farms tested were positive, with a prevalence ranging from 13% to 93%. These results confirm the spread of colistin resistance in livestock animals in Tunisia and suggest that the investigation of antibiotic resistance genes by culture-independent methods could be a useful means of conducting epidemiological studies on the spread of antimicrobial resistance.

20.
Microbiol Spectr ; 11(3): e0089423, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199645

RESUMO

Antimicrobial resistance is an increasing threat to human and animal health. Due to the rise of multi-, extensive, and pandrug resistance, last resort antibiotics, such as colistin, are extremely important in human medicine. While the distribution of colistin resistance genes can be tracked through sequencing methods, phenotypic characterization of putative antimicrobial resistance (AMR) genes is still important to confirm the phenotype conferred by different genes. While heterologous expression of AMR genes (e.g., in Escherichia coli) is a common approach, so far, no standard methods for heterologous expression and characterization of mcr genes exist. E. coli B-strains, designed for optimum protein expression, are frequently utilized. Here, we report that four E. coli B-strains are intrinsically resistant to colistin (MIC 8-16 µg/mL). The three tested B-strains that encode T7 RNA polymerase show growth defects when transformed with empty or mcr-expressing pET17b plasmids and grown in the presence of IPTG; K-12 or B-strains without T7 RNA polymerase do not show these growth defects. E. coli SHuffle T7 express carrying empty pET17b also skips wells in colistin MIC assays in the presence of IPTG. These phenotypes could explain why B-strains were erroneously reported as colistin susceptible. Analysis of existing genome data identified one nonsynonymous change in each pmrA and pmrB in all four E. coli B-strains; the E121K change in PmrB has previously been linked to intrinsic colistin resistance. We conclude that E. coli B-strains are not appropriate heterologous expression hosts for identification and characterization of mcr genes. IMPORTANCE Given the rise in multidrug, extensive drug, and pandrug resistance in bacteria and the increasing use of colistin to treat human infections, occurrence of mcr genes threatens human health, and characterization of these resistance genes becomes more important. We show that three commonly used heterologous expression strains are intrinsically resistant to colistin. This is important because these strains have previously been used to characterize and identify new mobile colistin resistance (mcr) genes. We also show that expression plasmids (i.e., pET17b) without inserts cause cell viability defects when carried by B-strains with T7 RNA polymerase and grown in the presence of IPTG. Our findings are important as they will facilitate improved selection of heterologous strains and plasmid combinations for characterizing AMR genes, which will be particularly important with a shift to Culture-independent diagnostic tests where bacterial isolates become increasingly less available for characterization.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Humanos , Escherichia coli , Colistina/farmacologia , Proteínas de Escherichia coli/genética , Isopropiltiogalactosídeo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/microbiologia , Plasmídeos/genética , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA