RESUMO
This retrospective investigation (2019-2022) identified two plasmid-mediated mcr-10 from 6800 food samples in Shanghai, China and localized in a conjugative plasmid (pEC1918-mcr10) in Escherichia kobei from ready-to-eat food with high-level polymyxin B resistance, and a nonconjugative plasmid (pEC2001-mcr10) in E. coli from chicken. These genes were adjacent to ISEc36. This report highlights the emergence of mcr-10 from food samples in Shanghai, China. Active surveillance of vital resistance genes along food production chain should be performed.
RESUMO
mcr-10 is a newly identified plasmid-borne colistin resistance gene, but its mobilization mechanism remains unclear. In this study, mcr-10 was found on an IncFIB plasmid carrying virulence genes mrkABCDFJ, iucABCD/iutA, and eitCBAD in a Cronobacter sakazakii isolate. By comparison with closely related plasmids, two recombination sites were identified flanking the genetic element containing mcr-10 and an integrase-encoding gene, suggesting that site-specific recombination mediated by an integrase of an integrative mobile element is a potential mechanism for mobilizing mcr-10.
Assuntos
Cronobacter sakazakii , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Colistina , Cronobacter sakazakii/genética , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Plasmídeos/genética , Recombinação GenéticaRESUMO
This study describes the identification of the mcr-10.1 gene in a clinical isolate of an ST1 Enterobacter cloacae isolate cultured in 2015 in Kenya. The isolate was multidrug resistant, phenotypically non-susceptible to various antibiotics, including colistin. Whole genome sequence analyses indicated carriage of chromosomally encoded antimicrobial resistance genes and the colistin-resistant gene mcr-10.1 located on a 72-kb plasmid designated pECC011b with an IncFIA(HI1) replicon directly adjacent to tyrosine recombinase gene, xerC, and downstream of an ISKPn26 insertion sequence. Studies have shown that expression of mcr-10.1 may not be sufficient to confer colistin resistance, but a novel non-synonymous mutation (S244T) was identified in the phoQ gene known to influence colistin resistance within lipid modification pathways, which could have complemented the mcr-10.1 resistance mechanism. In silico analysis of the mutant phoQ protein shows the location of the mutation to be at the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) region, which plays a crucial role in the protein's activity. This study and our previous report of mcr-8 in Klebsiella pneumoniae indicate the presence of mobile mcr genes in the Enterobacterales order of bacteria in Kenya. The study points to the importance of regulation of colistin in the animal industry and enhancing surveillance in both human and animal health to curb the spread of mcr genes and accurately assess the risks posed by these mobile genetic elements in both sectors.IMPORTANCEThis paper reports the detection of new colistin resistance mechanisms in Kenya in a clinical isolate of Enterobacter cloacae in a patient with a healthcare-associated infection. The plasmid-mediated resistance gene, mcr-10.1, and a novel amino acid mutation S244T in the phoQ gene, located in a region of the protein involved in membrane cationic stability contributing to colistin resistance, were detected. Colistin is a critical last-line drug for multidrug-resistant (MDR) gram-negative human infections and is used for treatment and growth promotion in the animal industry. The emergence of the resistance mechanisms points to the potential overuse of colistin in the animal sector in Kenya, which enhances resistance, threatens the utility of colistin, and limits treatment options for MDR infections. This study highlights the need to enhance surveillance of colistin resistance across sectors and strengthen One Health policies that ensure antimicrobial stewardship and implementation of strategies to mitigate the spread of antibiotic resistance.
Assuntos
Colistina , Enterobacter cloacae , Animais , Humanos , Enterobacter cloacae/genética , Quênia , Antibacterianos/farmacologia , Plasmídeos , Mutação , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genéticaRESUMO
OBJECTIVE: Here we describe a novel IncFIA plasmid harbouring mcr-10 gene in a clinical Enterobacter ludwigii strain isolated at the University Hospital in Pilsen in the Czech Republic. METHODS: The strain was subjected to antibiotic susceptibility testing. Whole genome sequencing was performed using Illumina for short-read sequencing and Oxford Nanopore Technologies for long-read sequencing followed by hybrid assembly. The resulting genome was used to detect species using average nucleotide identity, resistance genes, plasmid replicon and MLST (using centre for genomic epidemiology databases; ResFinder, PlasmidFinder and MLST, respectively) and virulence genes using VFDB. RESULTS: Τhe strain showed susceptibility against tetracycline, cefuroxime and chloramphenicol, and it was susceptible to the second and third generation of cephalosporins, carbapenems and colistin. Genome analysis identified the strain as E. ludwigii sequence type ST20 and located the mcr-10 gene on an IncFIA (HI1)/IncFII (Yp) plasmid (pI9455333_MCR10; 129 863 bp). Upon blasting the nucleotide sequence of pI9455333_MCR10 against the NCBI database, no similar plasmid sequence was detected, implying a novel plasmid structure. Nevertheless, it showed a partial similarity with pRHBSTW-00123_3 and FDAARGOS 1432, which were detected in Enterobacter cloacae complex (ECC) strains in wastewater samples in 2017 in UK and in 2021 in the United States, respectively, and pEC81-mcr, which was detected in a clinical Escherichia coli strain in 2020 in China. Moreover, I9455333cz genome carried virulence genes coding for curli fibers, fimbrial adherence determinants, siderophore aerobactin, iron uptake proteins and regulators of sigma factor. CONCLUSION: In conclusion, we identified a novel IncF plasmid harbouring mcr-10 gene in a clinical Enterobacter ludwigii strain. To our knowledge, this is the first clinical report of mcr-10 in the Czech Republic.
Assuntos
Antibacterianos , Enterobacter , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , Plasmídeos , Centros de Atenção Terciária , República Tcheca , Plasmídeos/genética , Humanos , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Enterobacter/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Tipagem de Sequências Multilocus , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Bactérias/genéticaRESUMO
Avian pathogenic Escherichia coli (APEC) has been identified as a sub-group of extraintestinal pathogenic E. coli (ExPEC). Recent studies indicate APEC as a potential foodborne zoonotic pathogen and a source or reservoir of human extraintestinal infections. The slaughtering and processing of poultry in low-income countries such as Jordan occurs in two distinct ways: in informal facilities known as Natafat and in formal slaughterhouses. This study compared E. coli phenotypes and genotypes according to slaughtering conditions (formal slaughterhouses vs. informal slaughter facilities). Therefore, liver samples (n = 242) were collected from formal (n = 121) and informal slaughter facilities (n = 121). Results revealed a high prevalence (94.2%) of E. coli among all isolates, with 59 (17 formal and 42 informal) isolates considered avian pathogenic E. coli (APEC) based on the virulence-associated genes. The prevalence of resistance among isolates was relatively high, reaching up to 99% against penicillin and 97% against nalidixic acid. However, the prevalence of resistance was the lowest (1.3%) against both meropenem and imipenem. Based on the MIC test findings, colistin resistance was 46.9% (107/228). The mcr -1 gene prevalence was 51.4% (55/107), of which 17.1 % were from formal plants (6/36) and 68.1% from informal facilities (49/72). Interestingly, only one isolate (0.9%) expressed mcr-10. Escherichia coli O157:H7 and associated virulence genes were found more in informal (n = 15 genes) than in formal slaughterhouses (n = 8). Phylogroups B1, C, and A were the most frequent in 228 E. coli isolates, while G, B2, and clade were the least frequent. In conclusion, these findings highlight the importance of implementing biosecurity measures in slaughterhouses to reduce antibiotic-resistant E. coli spread. Furthermore, this study provides valuable insights into the effects of wet market (Natafat) slaughter conditions on increasing bacterial resistance and virulence.
RESUMO
Introduction: Plasmids, the most important and versatile bacterial extrachromosomal DNA Molecules, has have been a center central topic for bacterial genetics and biology. However, the inability of short-read high-throughput sequencing methods to reliably assemble plasmids makes it difficult to investigate the diversity of plasmid structures and functions. Methods: In this work, we used the long-read Nanopore sequencing method to address this issue, by producing high quality whole genome sequences of 33 bacterial strains from 11 perianal abscess-suffering patients. Results and discussion: Successful high quality assemblies were generated with this method, including 20 perfect assemblies out of 33 genomes. A total of 47 plasmids were identified from the bacterial strains, including 12 unique, newly identified, high quality circular plasmids. These plasmids were further subject to structural analysis, leading to the finding of significant diversification from previously known plasmids, suggesting the diversity of plasmid structure and function. Particularly, two mcr-10.1-harboring conjugative plasmids were found from Citrobacter portucalensis and Enterobacter kobei, which were not previously reported. This works shows the feasibility of using long-read sequencing to identify plasmids, and the high diversity of plasmid structure and function that awaits further surveillance.
RESUMO
OBJECTIVES: The emergence and spread of colistin resistance in carbapenem-resistant Enterobacteriaceae pose a serious threat to human and animal health. This work aimed to characterise the genetic features of antimicrobial resistance of the carbapenem- and colistin-resistant Enterobacter kobei strain SCLZS19, isolated from hospital sewage, by using whole genome sequencing. METHODS: Antimicrobial susceptibility tests were performed using the disk diffusion method. Whole genome sequencing of SCLZS19 was carried out on the HiSeq 2000 combined with PacBio RSII platforms. Sequence type, plasmid incompatibility types, resistance genes, and insertion elements were identified using multilocus sequence typing, PlasmidFinder, ResFinder, and ISfinder, respectively. Conjugation assays were performed using both broth- and filter-based methods with the azide-resistant Escherichia coli J53 as the recipient. The function of the mcr-9-like variant was determined by gene cloning. RESULTS: E. kobei SCLZS19 had a 4 862 177-bp circular chromosome and nine circular plasmids ranging in size from 4120 bp to 282 472 bp. It carried 11 antibiotic resistance genes, and 10 of them were located on plasmids. The colistin resistance gene mcr-10 was located on a 118 766-bp non-transferable IncF (Y3:A-:B-) plasmid. The carbapenemase gene blaKPC-2 was carried by a self-transmissible IncP6 plasmid, which is epidemic in China. In addition, SCLZS19 also carried an mcr-9-like variant on a IncHI2 (ST1) plasmid. The cloning assay showed that the mcr-9-like variant did not mediate colistin resistance in E. coli DH5α. CONCLUSION: The findings highlight that carbapenem- and colistin-resistant Enterobacterales from water environments may serve as a reservoir for clinically significant antibiotic resistance genes, and continuous surveillance is required.
Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Humanos , Colistina/farmacologia , Carbapenêmicos/farmacologia , Escherichia coli , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , GenômicaRESUMO
Colistin is considered as one of the last-resort antimicrobial agents for treating multidrug-resistant bacterial infections. Multidrug-resistant E. asburiae has been increasingly isolated from clinical patients, which posed a great challenge for antibacterial treatment. This study aimed to report a mcr-10 and blaNDM-1 co-carrying E. asburiae clinical isolate 5549 conferred a high-level resistance against colistin. Antibiotic susceptibility testing was performed using the microdilution broth method. Transferability of mcr-10 and blaNDM-1-carrying plasmids were investigated by conjugation experiments. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify modifications in lipid A. Whole genome sequencing and phylogenetic analysis between strain 5549 and a total of 301 E. asburiae genomes retrieved from NCBI database were performed. The genetic characteristics of mcr-10 and blaNDM-1-bearing plasmids were also analyzed. Our study indicated that strain 5549 showed extensively antibiotic-resistant trait, including colistin and carbapenem resistance. The mcr-10 and blaNDM-1 were carried by IncFIB/IncFII type p5549_mcr-10 (159417 bp) and IncN type p5549_NDM-1 (63489 bp), respectively. Conjugation assays identified that only the blaNDM-1-carrying plasmid could be successfully transferred to E. coli J53. Interestingly, mcr-10 did not mediate colistin resistance when it was cloned into E. coli DH5α. Mass spectrometry analysis showed the lipid A palmitoylation of the C-lacyl-oxo-acyl chain to the chemical structure of lipid A at m/z 2063 in strain 5549. In summary, this study is the first to report a mcr-10 and blaNDM-1 co-occurrence E. asburiae recovered from China. Our investigation revealed the distribution of different clonal lineage of E. asburiae with epidemiology perspective and the underlying mechanisms of colistin resistance. Active surveillance is necessary to control the further dissemination of multidrug-resistant E. asburiae.
RESUMO
Background. The spread of Enterobacteriaceae coproducing carbapenemases, 16S rRNA methylase and mobile colistin resistance proteins (MCRs) has become a serious public health problem worldwide. This study describes two clinical isolates of Klebsiella pneumoniae coharbouring bla IMP-1, armA and mcr-10.Methods. Two clinical isolates of K. pneumoniae resistant to carbapenems and aminoglycosides were obtained from two patients at a hospital in Myanmar. Their minimum inhibitory concentrations (MICs) were determined by broth microdilution methods. The whole-genome sequences were determined by MiSeq and MinION methods. Drug-resistant factors and their genomic environments were determined.Results. The two K. pneumoniae isolates showed MICs of ≥4 and ≥1024 µg ml-1 for carbapenems and aminoglycosides, respectively. Two K. pneumonaie harbouring mcr-10 were susceptible to colistin, with MICs of ≤0.015 µg ml-1 using cation-adjusted Mueller-Hinton broth, but those for colistin were significantly higher (0.5 and 4 µg ml-1) using brain heart infusion medium. Whole-genome analysis revealed that these isolates coharboured bla NDM-1, armA and mcr-10. These two isolates showed low MICs of 0.25 µg ml-1 for colistin. Genome analysis revealed that both bla NDM-1 and armA were located on IncFIIs plasmids of similar size (81 kb). The mcr-10 was located on IncM2 plasmids of sizes 220 or 313 kb in each isolate. These two isolates did not possess a qseBC gene encoding a two-component system, which is thought to regulate the expression of mcr genes.Conclusion. This is the first report of isolates of K. pneumoniae coharbouring bla NDM-1, armA and mcr-10 obtained in Myanmar.
Assuntos
Colistina , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Mianmar , Colistina/farmacologia , RNA Ribossômico 16S , Antibacterianos/farmacologia , Aminoglicosídeos , CarbapenêmicosRESUMO
Mobile colistin resistance (mcr) genes mediated by plasmids have widely disseminated throughout the world. Recently, 10 mcr genes (mcr-1 to mcr-10) and a large number of variants have been identified in more than 60 countries. However, only a few instances of Enterobacter cloacae complex (ECC) bearing mcr-10 from animal origin have been reported globally. The aim of this study was to fill a knowledge gap in mcr-10-positive ECC of animal origin and analyze the potential transmission trend and different characteristics between human and companion animal isolates. The mcr-10 gene was identified on a self-transmissible plasmid in the human isolate and non-transmissible plasmids in other three animal strains. mcr-10 was adjacent to a XerC-type tyrosine recombinase-gene, and various insertion sequences were located on the downstream of core conservative structure xerC-mcr-10, thus indicating this region might be a candidate for insertions of mobile genetic elements and mcr-10 might be mobilized by IS-mediated mechanisms. Moreover, phylogenetic analysis found that mcr-10-positive isolates were mainly distributed in the clade of Enterobacter roggenkampii, exhibiting significant species specificity. These findings indicated that mcr-10 has emerged among Enterobacter spp. within humans and companion animals, highlighting that the importance of taking effective control measures to monitor the dissemination and evolution of mcr genes. IMPORTANCE Colistin was considered as the last-resort drug against severe clinical infections caused by multidrug-resistant Gram-negative pathogens. Mobile colistin resistance (mcr) genes and its variants carried by plasmids have been reported in diverse niches in recent years, and yet few studies reported carriage of mcr-10 in ECC strains of companion animal origin. How plasmid-borne mcr-10 transmitted in opportunistic pathogens and different characteristics of mcr-10-bearing strains isolated from humans and companion animals are not well understood. In this study, we discovered mcr-10-harboring strains in multidrug-resistant ECC isolates of companion animal origin for the first time and conducted a comprehensive analysis of the genetic environment of mcr-10 from multiple countries around the world, providing the potential basis for formulating control measures to slow down the spread of colistin resistance.
Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Humanos , Colistina/farmacologia , Animais de Estimação , Farmacorresistência Bacteriana/genética , Filogenia , Elementos de DNA Transponíveis , Antibacterianos/farmacologia , Plasmídeos/genética , Recombinases/genética , Tirosina/genética , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genéticaRESUMO
The wide spread of plasmid-borne mobilized colistin resistance (mcr) genes from animals to humans broadly challenges the clinical use of polymyxins. Here, we evaluated the incidence of a recently reported mcr variant, mcr-10, in animals and humans in the same area. Our results revealed the presence of novel mcr-10-carrying plasmids in two Klebsiella pneumoniae isolates from chickens, one Escherichia coli isolate from slaughterhouse workers, and a chromosome-borne mcr-10 gene in Enterobacter kobei from a healthy resident in the same region. It is worth mentioning that the multidrug-resistant ST11 K. pneumoniae isolates coharboring mcr-10 and mcr-8 genes in two separate plasmids not only were resistant to polymyxins (MIC = 8 mg/L) but also showed reduced susceptibility to tigecycline (MIC ≥ 2 mg/L) due to the tet(A) mutation or the tmexCD1-toprJ1 gene cluster. The structure xerC-mcr10-insCinsD-like was found in genetic environments of both the plasmid and chromosome carrying mcr-10. We compared genomic epidemiological characteristics of mcr-10-harboring bacteria available in 941,449 genomes in the NCBI database (including strains of K. pneumoniae, E. coli, and E. kobei) with isolates in this study. The results indicated a sporadic distribution of mcr-10 all around the world and in a variety of sources, including humans, environments, and animals, which confirms that mcr-10 has spread among various hosts and warrants close monitoring and further future studies. IMPORTANCE We discovered mcr-10-harboring isolates in the "one health" approach and reported for the first time multidrug-resistant clinically threatening ST11 K. pneumoniae isolates coharboring mcr-10 and mcr-8 genes that are resistant to polymyxins and show reduced susceptibility to tigecycline. The exhaustive screening of 941,449 bacterial genomes in the GenBank database discovered a sporadic distribution of mcr-10-harboring isolates all around the world in a variety of sources, especially humans, which warrants close monitoring and a particular concern in clinical settings.
Assuntos
Colistina , Proteínas de Escherichia coli , Matadouros , Animais , Antibacterianos/farmacologia , Galinhas , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Integrases/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , TigeciclinaRESUMO
The widespread escalation of bacterial resistance threatens the safety of the food chain. To investigate the resistance characteristics of E. coli strains isolated from disinfected tableware against both disinfectants and antibiotics, 311 disinfected tableware samples, including 54 chopsticks, 32 dinner plates, 61 bowls, 11 cups, and three spoons were collected in Chengdu, Sichuan Province, China to screen for disinfectant- (benzalkonium chloride and cetylpyridinium chloride) and tigecycline-resistant isolates, which were then subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). The coliform-positive detection rate was 51.8% (161/311) and among 161 coliform-positive samples, eight E. coli strains were multidrug-resistant to benzalkonium chloride, cetylpyridinium chloride, ampicillin, and tigecycline. Notably, a recently described mobile colistin resistance gene mcr-10 present on the novel IncFIB-type plasmid of E. coli EC2641 screened was able to successfully transform the resistance. Global phylogenetic analysis revealed E. coli EC2641 clustered together with two clinically disinfectant- and colistin-multidrug-resistant E. coli strains from the US. This is the first report of mcr-10-bearing E. coli detected in disinfected tableware, suggesting that continuous monitoring of resistance genes in the catering industry is essential to understand and respond to the transmission of antibiotic resistance genes from the environment and food to humans and clinics.
RESUMO
OBJECTIVES: Enterobacter cloacae complex (ECC) is among the most common carbapenem-resistant Enterobacteriaceae (CRE) in China. The emergence of mcr has rendered CRE strains resistant to the last-line antibiotic colistin. This study investigated the prevalence of mcr-9 and mcr-10 in carbapenem-resistant ECC (CRECC) and carbapenem-susceptible ECC (CSECC) in China. METHODS: The CRECC and CSECC strains were collected from different regions of China. Antimicrobial susceptibility tests, conjugation experiments, whole genome sequencing, bioinformatic analysis, and quantitative RT-PCR were performed to understand the mechanisms of resistance and transmission of mcr in ECC. RESULTS: A total of 534 ECC were collected, among which 57 (10.7%) and 23 (4.3%) were positive for mcr-9 and mcr-10, respectively. The prevalence of mcr-9 in CRECC was significantly higher than that in CSECC (31.8% vs. 3.7%; P < 0.001), while the prevalence of mcr-10 in CRECC was significantly lower (0.8% vs. 5.5%; P < 0.05). Most mcr-9-positive strains (n = 45, 78.9%) exhibited multidrug-resistant phenotype, and four (17.4%) of the mcr-10-positive strains exhibited multi-drug resistance. Coexistence of mcr and carbapenemase genes was commonly observed, including 41 (71.9%) mcr-9-positive strains and one (4.3%) mcr-10-positive strain, and the possibility of co-transfer was confirmed by conjugation experiments. The mcr-positive ECC were highly diverse, while most mcr genes were plasmid-encoded, indicating the important role of plasmids in the transmission of mcr in ECC. Furthermore, the expression of mcr-9 was increased after induction by colistin. CONCLUSIONS: The widespread mcr genes and co-transfer with carbapenemase genes among ECC strains pose an urgent threat to public health.
Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Colistina , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Enterobacter cloacae/genética , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Plasmídeos/genética , PrevalênciaRESUMO
BACKGROUND: Enterobacter kobei is an emerging cause of outbreak of nosocomial infections in neonatal intensive care units (NICUs). Between July and September 2016, a NICU in a tertiary care hospital of Nepal observed an abrupt increase in the number of neonatal sepsis cases caused by Enterobacter spp. infecting 11 out of 23 admitted neonates, five of whom died of an exacerbated sepsis. AIM: To confirm the suspected outbreak, identify environmental source of infection, and characterize genetic determinants of antimicrobial resistance (AMR) and virulence of the pathogen. METHODS: Whole-genome sequencing of all Enterobacter spp. isolated from blood cultures of septic neonates admitted to NICU between May 2016 and December 2017 was performed. Also, an environmental sampling was intensified from fortnightly to weekly during the outbreak. FINDINGS: The genomic analysis revealed that 10 out of 11 non-duplicated E. kobei isolated from neonatal blood cultures between July and September 2016 were clonal, confirming the outbreak. The isolates carried AMR genes including blaAmpC and mcr-10 conferring reduced susceptibility to carbapenem and colistin respectively. The environmental sampling, however, failed to isolate any Enterobacter spp. Reinforcement of aseptic protocols in invasive procedures, hand hygiene, environmental decontamination, fumigation, and secluded care of culture-positive cases successfully terminated the outbreak. CONCLUSION: Our study underscored the need to implement stringent infection control measures to prevent infection outbreaks. For the first time, we report the emergence of carbapenem and colistin non-susceptible E. kobei carrying mcr-10 gene as a cause of nosocomial neonatal sepsis in a NICU.
Assuntos
Infecção Hospitalar , Infecções por Enterobacteriaceae , Sepse Neonatal , Carbapenêmicos , Colistina , Infecção Hospitalar/epidemiologia , Surtos de Doenças/prevenção & controle , Enterobacter , Infecções por Enterobacteriaceae/epidemiologia , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Testes de Sensibilidade Microbiana , Sepse Neonatal/epidemiologia , Nepal/epidemiologia , Centros de Atenção TerciáriaRESUMO
The global dissemination of the mobile colistin resistance (mcr) gene illustrates how the use of colistin in veterinary medicine can affect human health, exemplifying the concept of One Health. This study screened for the existence of mcr variants (from mcr-1 to mcr-10) in a 5-year collection of clinical Klebsiella short-read whole-genome sequencing (WGS) data from a tertiary hospital in China (2013 to 2018) and aimed to identify the mechanisms of mcr spread. MICs were measured for the mcr-positive isolates, and long-read sequencing was performed to complete the mcr-positive genome sequences. Six variants (mcr-1.1, mcr-8.1, mcr-8.2, mcr-9.1, mcr-9.2, and mcr-10.1) were identified in 20 genomes, with plasmids from the IncFIIK, IncHI2, IncI2, and IncX4 groups. Highly similar plasmids (coverage, >75%; nucleotide identity, >98.5%) isolated from silver gulls, chickens, pigs, wastewater treatment plants, and hospital sewage were identified in GenBank. The MICs of the mcr-1- and mcr-8-carrying isolates were ≥4 µg/mL; however, the MICs of the mcr-9- and mcr-10-carrying isolates ranged from 0.5 µg/mL to 1 µg/mL (colistin susceptible). The variants mcr-1 to mcr-9 were found only in Klebsiella pneumoniae, while mcr-10.1 was found in K. pneumoniae, Klebsiella quasipneumoniae subsp. quasipneumoniae, and Klebsiella variicola. A pair of inverted repeats (IRs) was identified for hsdSMR-ISEc36-mcr-10.1-xerC; IR-1 (5'-TCAAACGTA) was inside the attL site of xerC, indicating that mcr-10.1 was originally integrated by xerC and mobilized by ISEc36 afterwards. In conclusion, this is the first report of mcr-10.1 susceptible to colistin in three species of Klebsiella. This study shows the genetic events that happened to mcr-10.1 in a stepwise manner, with the first step being XerC integration and the second being ISEc36 mobilization. Finally, this study also highlights mcr transmission between humans and nature. IMPORTANCE Reports of mcr-1 and mcr-8 are common in China; however, few studies have reported mcr-9 and mcr-10. One reason is that the newly described variants can be phenotypically colistin susceptible and thus may not be identified. This study identified the mcr-positive clinical isolates by investigating WGS data for 2,855 Klebsiella isolates (including K. pneumoniae, K. quasipneumoniae subsp. quasipneumoniae, and K. variicola) and found three mcr-9 and three mcr-10 cases (MICs, 0.5 µg/mL to 1 µg/mL; colistin susceptible). This study also reveals a pair of perfect 9-bp IRs of ISEc36 and the precise mcr-10.1 integration and insertion events that happened to the IncFIIK plasmids. A One Health analysis of highly similar plasmid structures from human and nonhuman sources emphasizes the plasmid transmission and evolution process.
Assuntos
Proteínas de Escherichia coli , Saúde Única , Humanos , Animais , Suínos , Colistina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Galinhas , Klebsiella/genética , Plasmídeos/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genética , Integrases/genéticaRESUMO
Mobile colistin resistance (mcr) gene mcr-10.1 has been distributed widely since it was initially identified in 2020. The aim of this study was to report the first mcr-10.1 in Africa and the first mcr in Sierra Leone; furthermore, we presented diverse modular structures of mcr-10.1 loci. Here, the complete sequence of one mcr-10.1-carrying plasmid in one clinical Enterobacter cloacae isolate from Sierra Leone was determined. Detailed genetic dissection and comparison were applied to this plasmid, together with a homologous plasmid carrying mcr-10.1 from GenBank. Moreover, a genetic comparison of 19 mcr-10.1 loci was performed. In this study, mcr-10.1 was carried by an IncpA1763-KPC plasmid from one Enterobacter cloacae isolate. A total of 19 mcr-10.1 loci displayed diversification in modular structures through complex transposition and homologous recombination. A site-specific tyrosine recombinase XerC was located upstream of mcr-10.1, and at least one insertion sequence element was inserted adjacent to a conserved xerC-mcr-10.1-orf336-orf177 region. Integration of mcr-10.1 into a different gene context and carried by various Inc plasmids contributed to the wide distribution of mcr-10.1 and enhanced the ability of bacteria to survive under colistin selection pressure. IMPORTANCE Colistin is used as one of the last available choices of antibiotics for patients infected by carbapenem-resistant bacterial strains, but the unrestricted use of colistin aggravated the acquisition and dissemination of mobile colistin resistance (mcr) genes. So far, 10 mcr genes have been reported in four continents around the world. This study presented one mcr-10.1-carrying Enterobacter cloacae isolate from Sierra Leone. The mcr-10.1 gene was identified on an IncpA1763-KPC plasmid. According to the results of genetic comparison of 19 mcr-10.1 loci, the mcr-10.1 gene was found to be located in a conserved xerC-mcr-10.1-orf336-orf177 region, and at least one insertion sequence element was inserted adjacent to this region. To our knowledge, this is the first report of identifying the mcr-10.1 gene in Africa and the mcr gene in Sierra Leone.
Assuntos
Antibacterianos , Colistina , Farmacorresistência Bacteriana , Enterobacter cloacae , Genes Bacterianos , Antibacterianos/farmacologia , Colistina/farmacologia , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana/genética , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Serra LeoaRESUMO
Colistin is often used as a drug of last resort against infections caused by multi-drug-resistant Gram-negative bacteria, including carbapenem-resistant Enterobacterales (CRE). Recently, the acquisition of mobile colistin resistance (mcr) genes by CRE has become a cause for concern. This study investigated the prevalence of mcr genes in CRE isolates in Seoul, Republic of Korea. In total, 3675 CRE strains were collected from patients between 2018 and 2019, and initially screened for mcr genes using multiplex polymerase chain reaction assays. Upon the identification of mcr-harbouring strains, colistin susceptibility tests, identification of carbapenemase and ß-lactamase genes, and plasmid replicon typing were performed. Clonal analysis was conducted using pulsed-field gel electrophoresis. mcr genes were detected in 2.2% (80/3675) of CRE strains. There were three mcr-1 carriers, one mcr-4.3 carrier, one mcr-4.3/mcr-9 carrier, 58 mcr-9 carriers, one mcr-9/mcr-10 carrier and 16 mcr-10 carriers among various Enterobacterales species, of which 60 were Enterobacter cloacae complex (ECC) strains. The prevalence of mcr genes in ECC strains was 20.5%. Molecular detection confirmed that 21.3% and 13.8% of mcr-harbouring strains shared blaNDM-1 or blaKPC-2, respectively. In addition, an IncHI2 replicon was identified in 71.7% of mcr-9 strains. Comparative analysis revealed not only a notable diversity of mcr carriers, but also clonal spreading or nosocomial outbreaks of some ECC strains. These findings revealed a silent distribution of mcr genes in CRE strains with high genetic heterogeneity in Seoul, underscoring the urgent need for timely intervention to control and prevent mcr dissemination.
Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Enterobacter cloacae/genética , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase Multiplex , Plasmídeos/genética , República da CoreiaRESUMO
Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.
RESUMO
The recent emergence of plasmid-borne mobilized colistin resistance (mcr) genes largely challenges the clinical use of colistin. Monitoring the distribution of mcr genes in environment is important for aiding to develop effective control measures. In this study, we aimed to evaluate the occurrence of a recent reported mcr variant, mcr-10, in hospital sewage water. mcr-10 was identified in three Enterobacter roggenkampii strains with high-level colistin resistance (MIC ≥ 16 mg/L). The three strains were assigned to different sequence types suggesting a sporadic dissemination of mcr-10 in the sewage water. Pairwise comparisons of the predicted protein structures of ten mcr homologues revealed that MCR-10 shares a higher similarity with MCR-3, MCR-4, MCR-7, and MCR-9. Overexpression in Escherichia coli Top10 showed that the activity of mcr-10 against colistin is lower than that of mcr-9. mcr-10 expression can be specifically induced by colistin, and it was co-upregulated with phoPQ to mediate the high-level colistin resistance. The mcr-10 gene was detected on self-transmissible plasmids in two isolates and on the chromosome in the other one. Blasting in Genbank suggested that the two mcr-10-bearing plasmids (pECL981-1 and pECL983-1) were novel plasmids, and replicon typing showed that they belong to IncFIB-FII and IncFIB, respectively. Plasmid-curing assay evidence that pECL981-1 was lack of fitness cost for the host. Three novel types of the genetic context were found for the mcr-10 gene in the three isolates. The structure xerC-mcr10 was dominant in mcr-10-positive genomes (39/42) retrieved in Genbank, suggesting that xerC might be involved in the mobilization of mcr-10. To our knowledge, this is the first report of mcr-10-producing E. roggenkampii detected in hospital sewage water. Our study highlights that continuous monitoring of mcr genes in hospital sewage water is imperative for understanding and tackling the dissemination.