Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(49): e2211458119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442101

RESUMO

Natural structural materials typically feature complex hierarchical anisotropic architectures, resulting in excellent damage tolerance. Such highly anisotropic structures, however, also provide an easy path for crack propagation, often leading to catastrophic fracture as evidenced, for example, by wood splitting. Here, we describe the weakly anisotropic structure of Ginkgo biloba (ginkgo) seed shell, which has excellent crack resistance in different directions. Ginkgo seed shell is composed of tightly packed polygonal sclereids with cell walls in which the cellulose microfibrils are oriented in a helicoidal pattern. We found that the sclereids contain distinct pits, special fine tubes like a "screw fastener," that interlock the helicoidal cell walls together. As a result, ginkgo seed shell demonstrates crack resistance in all directions, exhibiting specific fracture toughness that can rival other highly anisotropic natural materials, such as wood, bone, insect cuticle, and nacre. In situ characterization reveals ginkgo's unique toughening mechanism: pit-guided crack propagation. This mechanism forces the crack to depart from the weak compound middle lamella and enter into the sclereid, where the helicoidal cell wall significantly inhibits crack growth by the cleavage and breakage of the fibril-based cell walls. Ginkgo's toughening mechanism could provide guidelines for a new bioinspired strategy for the design of high-performance bulk materials.


Assuntos
Fraturas Ósseas , Ginkgo biloba , Sementes , Parede Celular , Madeira
2.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123894

RESUMO

Synchronous monitoring electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) have received significant attention in brain science research for their provision of more information on neuro-loop interactions. There is a need for an integrated hybrid EEG-fNIRS patch to synchronously monitor surface EEG and deep brain fNIRS signals. Here, we developed a hybrid EEG-fNIRS patch capable of acquiring high-quality, co-located EEG and fNIRS signals. This patch is wearable and provides easy cognition and emotion detection, while reducing the spatial interference and signal crosstalk by integration, which leads to high spatial-temporal correspondence and signal quality. The modular design of the EEG-fNIRS acquisition unit and optimized mechanical design enables the patch to obtain EEG and fNIRS signals at the same location and eliminates spatial interference. The EEG pre-amplifier on the electrode side effectively improves the acquisition of weak EEG signals and significantly reduces input noise to 0.9 µVrms, amplitude distortion to less than 2%, and frequency distortion to less than 1%. Detrending, motion correction algorithms, and band-pass filtering were used to remove physiological noise, baseline drift, and motion artifacts from the fNIRS signal. A high fNIRS source switching frequency configuration above 100 Hz improves crosstalk suppression between fNIRS and EEG signals. The Stroop task was carried out to verify its performance; the patch can acquire event-related potentials and hemodynamic information associated with cognition in the prefrontal area.


Assuntos
Encéfalo , Eletroencefalografia , Espectroscopia de Luz Próxima ao Infravermelho , Dispositivos Eletrônicos Vestíveis , Humanos , Eletroencefalografia/métodos , Eletroencefalografia/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Masculino , Adulto , Feminino , Processamento de Sinais Assistido por Computador , Algoritmos , Adulto Jovem
3.
Artigo em Inglês | MEDLINE | ID: mdl-38602475

RESUMO

INTRODUCTION: This paper presents a camera sheath that can be assembled to various minimally invasive surgical instruments and provide the localized view of the instrument tip. MATERIAL AND METHODS: The advanced transformable head structure (ATHS) that overcomes the trade-off between the camera resolution and the instrument size is designed for the sheath. Design solutions to maintain the alignment between the camera's line of sight and the instrument tip direction during the transformation of the ATHS are derived and applied to the prototype of the sheath. RESULTS: The design solution ensured proper alignment between the line of sight and the tip direction. The prototype was used with the curved micro-debrider blades in simulated functional endoscopic sinus surgery (FESS). Deep regions of the sinus that were not observable with the conventional endoscopes was accessed and observed using the prototype. CONCLUSIONS: The presented camera sheath allows the delivery of the instrument and camera to the surgical site with minimal increase in port size. It may be applied to various surgeries to reduce invasiveness and provide additional visual information to the surgeons.

4.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904987

RESUMO

Multi-sensor imaging systems have a very important role and wide applications in surveillance and security systems. In many applications, it is necessary to use an optical protective window as an optical interface connecting the imaging sensor and object of interest's space; meanwhile an imaging sensor is mounted in a protective enclosure, providing separation from environmental conditions. Optical windows are often used in various optical and electro-optical systems, fulfilling different sometimes very unusual tasks. There are lots of examples in the literature that define optical window design for targeted applications. Through analysis of the various effects that follow optical window application in connection with imaging systems, we have suggested a simplified methodology and practical recommendation for how to define optical protective window specifications in multi-sensor imaging systems, using a system engineering approach. In addition, we have provided initial set of data and simplified calculation tools that can be used in initial analysis to provide proper window material selection and definition of the specifications of optical protective windows in multi-sensor systems. It is shown that although the optical window design seems as a simple task, it requires serious multidisciplinary approach.

5.
Eur Spine J ; 31(6): 1553-1565, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35380271

RESUMO

PURPOSE: This review provides an overview of the patent literature on posteriorly placed intrapedicular bone anchors. Conventional pedicle screws are the gold standard to create a fixation in the vertebra for spinal fusion surgery but may lack fixation strength, especially in osteoporotic bone. The ageing population demands new bone anchors that have an increased fixation strength, that can be placed safely, and, if necessary, can be removed without damaging the surrounding tissue. METHODS: The patent search was conducted using a classification search in the Espacenet patent database. Only patents with a Cooperative Patent Classification of A61B17/70 or A61B17/7001 concerning spinal positioners and stabilizers were eligible for inclusion. The search query resulted in the identification of 731 patents. Based on preset inclusion criteria, a total of 56 unique patents on different anchoring methods were included, reviewed and categorized in this study. RESULTS: Five unique fixation methods were identified; (1) anchors that use threading, (2) anchors that utilize a curved path through the vertebra, (3) anchors that (partly) expand, (4) anchors that use cement and (5) anchors that are designed to initiate bone ingrowth. Of the anchor designs included in this study, eight had a corresponding commercial product, six of which were evaluated in clinical trials. CONCLUSION: This review provides insights into worldwide patented intrapedicular bone anchors that aim to increase the fixation strength compared to the conventional pedicle screw. The identified anchoring methods and their working principles can be used for clinical decision-making and as a source of inspiration when designing novel bone anchors.


Assuntos
Osteoporose , Parafusos Pediculares , Fusão Vertebral , Fenômenos Biomecânicos , Cimentos Ósseos/uso terapêutico , Humanos , Vértebras Lombares/cirurgia , Osteoporose/tratamento farmacológico , Osteoporose/cirurgia , Fusão Vertebral/métodos
6.
Sensors (Basel) ; 20(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979137

RESUMO

MicroMED (Micro Martian Environmental Dust Systematic Analyzer (MEDUSA)) instrument was selected for the ExoMars 2020 mission to study the airborne dust on the red planet through in situ measurements of the size distribution and concentration. This characterization has never been done before and would have a strong impact on the understanding of Martian climate and Aeolian processes on Mars. The MicroMED is an optical particle counter that exploits the measured intensity of light scattered by dust particles when crossing a collimated laser beam. The measurement technique is well established for laboratory and ground applications but in order to be mounted on the Dust Suite payload within the framework of ExoMars 2020 mission, the instrument must be compatible with harsh mechanical and thermal environments and the tight mass budget of the mission payload. This work summarizes the thermo-mechanical design of the instrument, the manufacturing of the flight model and its successful qualification in expected thermal and mechanical environments.

7.
J Neuroeng Rehabil ; 16(1): 55, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072370

RESUMO

Exoskeleton technology has made significant advances during the last decade, resulting in a considerable variety of solutions for gait assistance and rehabilitation. The mechanical design of these devices is a crucial aspect that affects the efficiency and effectiveness of their interaction with the user. Recent developments have pointed towards compliant mechanisms and structures, due to their promising potential in terms of adaptability, safety, efficiency, and comfort. However, there still remain challenges to be solved before compliant lower limb exoskeletons can be deployed in real scenarios. In this review, we analysed 52 lower limb wearable exoskeletons, focusing on three main aspects of compliance: actuation, structure, and interface attachment components. We highlighted the drawbacks and advantages of the different solutions, and suggested a number of promising research lines. We also created and made available a set of data sheets that contain the technical characteristics of the reviewed devices, with the aim of providing researchers and end-users with an updated overview on the existing solutions.


Assuntos
Desenho de Equipamento , Exoesqueleto Energizado , Extremidade Inferior , Humanos
8.
Sensors (Basel) ; 19(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731754

RESUMO

Carbon fiber reinforced plastic (CFRP) is an excellent choice in the areas where weight reduction is important and multi-functionalization of CFRP, especially by adding sensor capabilities, is a promising approach to realize lightweight battery-free devices in structural health monitoring (SHM). In this study, we fabricated hybrid CFRP with Fe-Co fibers and evaluated the inverse magnetostrictive response characteristics. It was shown that the measured magnetic flux density of the CFRP fluctuates in response to cyclic bending load. It was also revealed that our Fe-Co fiber inserted CFRP has damage self-sensing ability. In addition, it seems that the optimization of design and more experimental and numerical investigation improves the capability of the hybrid CFRP with Fe-Co fiber as sensor composite materials.

9.
Sensors (Basel) ; 17(5)2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-28468288

RESUMO

This paper presents the design and application of a lever coupling mechanism to improve the shock resistance of a dual-mass silicon micro-gyroscope with drive mode coupled along the driving direction without sacrificing the mechanical sensitivity. Firstly, the mechanical sensitivity and the shock response of the micro-gyroscope are theoretically analyzed. In the mechanical design, a novel lever coupling mechanism is proposed to change the modal order and to improve the frequency separation. The micro-gyroscope with the lever coupling mechanism optimizes the drive mode order, increasing the in-phase mode frequency to be much larger than the anti-phase one. Shock analysis results show that the micro-gyroscope structure with the designed lever coupling mechanism can notably reduce the magnitudes of the shock response and cut down the stress produced in the shock process compared with the traditional elastic coupled one. Simulations reveal that the shock resistance along the drive direction is greatly increased. Consequently, the lever coupling mechanism can change the gyroscope's modal order and improve the frequency separation by structurally offering a higher stiffness difference ratio. The shock resistance along the driving direction is tremendously enhanced without loss of the mechanical sensitivity.

10.
J Med Syst ; 40(3): 71, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748791

RESUMO

A motor-imagery-based brain-computer interface (BCI) is a translator that converts the motor intention of the brain into a control command to control external machines without muscles. Numerous motor-imagery-based BCIs have been successfully proposed in previous studies. However, several electroencephalogram (EEG) channels are typically required for providing sufficient information to maintain a specific accuracy and bit rate, and the bulk volume of these EEG machines is also inconvenient. A wearable motor imagery-based BCI system was proposed and implemented in this study. A wearable mechanical design with novel active comb-shaped dry electrodes was developed to measure EEG signals without conductive gels at hair sites, which is easy and convenient for users wearing the EEG machine. In addition, a wireless EEG acquisition module was also designed to measure EEG signals, which provides a user with more freedom of motion. The proposed wearable motor-imagery-based BCI system was validated using an electrical specifications test and a hand motor imagery experiment. Experimental results showed that the proposed wearable motor-imagery-based BCI system provides favorable signal quality for measuring EEG signals and detecting motor imagery.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/instrumentação , Mãos/fisiologia , Movimento/fisiologia , Algoritmos , Humanos , Monitorização Ambulatorial/instrumentação , Tecnologia sem Fio
11.
J Exp Bot ; 66(9): 2487-99, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25675956

RESUMO

Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young's moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses.


Assuntos
Magnoliopsida/anatomia & histologia , Biodiversidade , Fenômenos Biomecânicos , Luz , Magnoliopsida/fisiologia , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Pressão
12.
Front Bioeng Biotechnol ; 12: 1439616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39280338

RESUMO

Introduction: The incidence of knee osteoarthritis (KOA) is moderately correlated with age and body weight and increases with life span and weight gain, associated with tearing and wearing the knee joints. KOA can adjust the force through the human lower limbs, redistribute the load of the knee joint, reduce the pain, and restore mobility when the arthritis changes are mild. However, most of the existing knee orthosis cannot be adjusted adaptively according to the needs of patients. Methodology: This study establishes a biomechanical model of the knee joint to analyze the medial and lateral forces acting on the joint. The new adjustable knee orthosis is designed. It applies the principle of four-point bending to apply pressure to both sides of the knee joint, thereby adjusting the varus angle and modifying the medial and lateral forces on the knee joint. Through structural optimization, the prototype of the knee orthosis weighs only 324 g. Utilizing three-dimensional scanning technology, discrete point cloud data of the leg surface is obtained, reconstructed, and processed to create a 3D model of the human leg surface. The design ensures a close fit to the human leg surface, offering comfortable wear. A pressure sensing film system is employed to build a pressure sensing test system, where the knee orthosis is worn on a prosthesis for pressure testing to evaluate its ability to adjust knee joint forces. Results: The pressure test results demonstrate that the knee orthosis can stably provide an adjustment angle of 0-7° and sustain a maximum force of 10N on both sides of the knee joint over extended periods. A self-developed 8-channel plantar pressure sensing insole is calibrated against commercial plantar pressure sensors. Human wear tests on 15 subjects show that during the operation of the knee orthosis, it significantly adjusts plantar pressures, reducing lateral foot pressures by 22% overall, with more pronounced corrective effects observed in lighter participants. Discussion: In this study, a wedge-shaped adaptive knee orthosis was provided for KOA patients. The four-point force principle was used to balance the force between femurs and tibia and adjust the meniscus contact gap. The orthotic appliance has the advantages of simple mechanical structure, adjustable correction Angle and good wearing comfort.

13.
Soft Robot ; 11(1): 43-56, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37418155

RESUMO

Meso- or micro-scale(or insect-scale) robots that are capable of realizing flexible locomotion and/or carrying on complex tasks in a remotely controllable manner hold great promise in diverse fields, such as biomedical applications, unknown environment exploration, in situ operation in confined spaces, and so on. However, the existing design and implementation approaches for such multifunctional, on-demand configurable insect-scale robots are often focusing on their actuation or locomotion, while matched design and implementation with synergistic actuation and function modules under large deformation targeting varying task/target demands are rarely investigated. In this study, through systematical investigations on synergistical mechanical design and function integration, we developed a matched design and implementation method for constructing multifunctional, on-demand configurable insect-scale soft magnetic robots. Based on such a method, we report a simple approach to construct soft magnetic robots by assembling various modules from the standard part library together. Moreover, diverse soft magnetic robots with desirable motion and function can be (re)configured. Finally, we demonstrated (re)configurable soft magnetic robots shifting into different modes to adapt and respond to varying scenarios. The customizable physical realization of complex soft robots with desirable actuation and diverse functions can pave a new way for constructing more sophisticated insect-scale soft machines that can be applied to practical applications soon.

14.
Biomimetics (Basel) ; 9(9)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39329577

RESUMO

Birds have remarkable flight capabilities due to their adaptive wing morphology. However, studying live birds is time-consuming and laborious, and obtaining information about the complete wingbeat cycle is difficult. To address this issue and provide a complete dataset, we recorded comprehensive motion capture wing trajectory data from five free-flying pigeons (Columba livia). Five key motion parameters are used to quantitatively characterize wing kinematics: flapping, sweeping, twisting, folding and bending. In addition, the forelimb skeleton is mapped using an open-chain three-bar mechanism model. By systematically evaluating the relationship of joint degrees of freedom (DOFs), we configured the model as a 3-DOF shoulder, 1-DOF elbow and 2-DOF wrist. Based on the correlation analysis between wingbeat kinematics and joint movement, we found that the strongly correlated shoulder and wrist roll within the stroke plane cause wing flap and bending. There is also a strong correlation between shoulder, elbow and wrist yaw out of the stroke plane, which causes wing sweep and fold. By simplifying the wing morphing, we developed three flapping wing robots, each with different DOFs inside and outside the stroke plane. This study provides insight into the design of flapping wing robots capable of mimicking the 3D wing motion of pigeons.

15.
Sci Prog ; 107(1): 368504241233082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556767

RESUMO

Aiming at the flexible manipulator grasping complex target parts of different shapes, a double-finger flexible manipulator model is proposed. The manipulator is composed of a flexible mechanical finger, a driving component and a position compensation mechanism. It imitates the motion characteristics of human finger joints and follows the principle of double-fingered grasping. According to the structural characteristics of the target contour, the grasping features of the target contour are extracted. Through the motion principle of the flexible manipulator, the kinematic model of the envelope clamping process of the manipulator target is carried out. Finally, the flexible manipulator experimental platform is built to verify the grasping characteristics of the flexible manipulator target. The results show that the manipulator can realize the adaptive grasping of cylinder and cuboid parts, which have high grasping reliability and stability.

16.
Materials (Basel) ; 17(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39124515

RESUMO

In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current-voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array.

17.
Biomimetics (Basel) ; 9(8)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39194450

RESUMO

Innovative designs such as morphing wings and terrain adaptive landing systems are examples of biomimicry and innovations inspired by nature, which are actively being investigated by aerospace designers. Morphing wing designs based on Variable Geometry Truss Manipulators (VGTMs) and articulated helicopter robotic landing gear (RLG) have drawn a great deal of attention from industry. Compliant mechanisms have become increasingly popular due to their advantages over conventional rigid-body systems, and the research team led by the second author at Toronto Metropolitan University (TMU) has set their long-term goal to be exploiting these systems in the above aerospace applications. To gain a deeper insight into the design and optimization of compliant mechanisms and their potential application as alternatives to VGTM and RLG systems, this study conducted a thorough analysis of the design of flexible hinges, and single-, four-, and multi-bar configurations as a part of more complex, flexible mechanisms. The investigation highlighted the flexibility and compliance of mechanisms incorporating circular flexure hinges (CFHs), showcasing their capacity to withstand forces and moments. Despite a discrepancy between the results obtained from previously published Pseudo-Rigid-Body Model (PRBM) equations and FEM-based analyses, the mechanisms exhibited predictable linear behavior and acceptable fatigue testing results, affirming their suitability for diverse applications. While including additional linkages perpendicular to the applied force direction in a compliant mechanism with N vertical linkages led to improved factors of safety, the associated increase in system weight necessitates careful consideration. It is shown herein that, in this case, adding one vertical bar increased the safety factor by 100N percent. The present study also addressed solutions for the precise modeling of CFHs through the derivation of an empirical polynomial torsional stiffness/compliance equation related to geometric dimensions and material properties. The effectiveness of the presented empirical polynomial compliance equation was validated against FEA results, revealing a generally accurate prediction with an average error of 1.74%. It is expected that the present investigation will open new avenues to higher precision in the design of CFHs, ensuring reliability and efficiency in various practical applications, and enhancing the optimization design of compliant mechanisms comprised of such hinges. A specific focus was put on ABS plastic and aluminum alloy 7075, as they are the materials of choice for non-load-bearing and load-bearing structural components, respectively.

18.
Small Methods ; 7(11): e2300671, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37661591

RESUMO

Stretchable electronics possess significant advantages over their conventional rigid counterparts and boost game-changing applications such as bioelectronics, flexible displays, wearable health monitors, etc. It is, nevertheless, a formidable task to impart stretchability to brittle electronic materials such as silicon. This review provides a concise but critical discussion of the prevailing structural engineering strategies for achieving strain-tolerant electronic devices. Not only the more commonly discussed lateral designs of structures such as island-bridge, wavy structures, fractals, and kirigami, but also the less discussed vertical architectures such as strain isolation and elastoplastic principle are reviewed. Future opportunities are envisaged at the end of the paper.

19.
Expert Rev Med Devices ; 20(11): 919-928, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675566

RESUMO

INTRODUCTION: Bone biopsies have great value for the diagnosis of, amongst others, hematologic diseases. Although the bone biopsy procedure is mostly performed minimally invasive with the use of a slender cannula, the patient may still experience discomfort, especially when the procedure has to be repeated due to an unsuccessful biopsy. AREAS COVERED: This review presents a comprehensive overview of bone biopsy devices presented in the patent literature. The patents were obtained using a classification search combined with keywords in the Espacenet patent database and were subsequently verified using pre-set eligibility criteria. This resulted in 62 unique patents included in this review. EXPERT OPINION: The included patents were categorized based on the used strategies for the three steps that can be identified during a bone biopsy (1) biopsy sampling, (2) biopsy severing and (3) biopsy harvesting. Most patents described strategies for multiple steps. Insight into the used strategies and the comprehensive overview may serve as a source of inspiration for the design of novel bone biopsy devices.

20.
Bioengineering (Basel) ; 10(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36829762

RESUMO

This article evaluates a hip joint socket design by finite element method (FEM). The study was based on the needs and characteristics of a patient with an oncological amputation; however, the solution and the presented method may be generalized for patients with similar conditions. The research aimed to solve a generalized problem, taking a typical case from the study area as a reference. Data were collected on the use of the current improving prosthesis-specifically in interaction with its socket-to obtain information on the new approach design: this step constituted the work's starting point, where the problems to be solved in conventional designs were revealed. Currently, the development of this type of support does not consider the functionality and comfort of the patient. Research has reported that 58% of patients with sockets have rejected their use, because they do not fit comfortably and functionally; therefore, patients' low acceptance or rejection of the use of the prosthesis socket has been documented. In this study, different designs were evaluated, based on the FEM as scientific support for the results obtained, for the development of a new ergonomic fit with a 60% increase in patient compliance, that had correct gait performance when correcting postures, improved fit-user interaction, and that presented an esthetic fit that met the usability factor. The validation of the results was carried out through the physical construction of the prototype. The research showed how the finite element method improved the design, analyzing the structural behavioral, and that it could reduce cost and time instead of generating several prototypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA