Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(24): e2103615119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671424

RESUMO

Skeletal muscle atrophy is commonly associated with aging, immobilization, muscle unloading, and congenital myopathies. Generation of mature muscle cells from skeletal muscle satellite cells (SCs) is pivotal in repairing muscle tissue. Exercise therapy promotes muscle hypertrophy and strength. Primary cilium is implicated as the mechanical sensor in some mammalian cells, but its role in skeletal muscle cells remains vague. To determine mechanical sensors for exercise-induced muscle hypertrophy, we established three SC-specific cilium dysfunctional mouse models-Myogenic factor 5 (Myf5)-Arf-like Protein 3 (Arl3)-/-, Paired box protein Pax-7 (Pax7)-Intraflagellar transport protein 88 homolog (Ift88)-/-, and Pax7-Arl3-/--by specifically deleting a ciliary protein ARL3 in MYF5-expressing SCs, or IFT88 in PAX7-expressing SCs, or ARL3 in PAX7-expressing SCs, respectively. We show that the Myf5-Arl3-/- mice develop grossly the same as WT mice. Intriguingly, mechanical stimulation-induced muscle hypertrophy or myoblast differentiation is abrogated in Myf5-Arl3-/- and Pax7-Arl3-/- mice or primary isolated Myf5-Arl3-/- and Pax7-Ift88-/- myoblasts, likely due to defective cilia-mediated Hedgehog (Hh) signaling. Collectively, we demonstrate SC cilia serve as mechanical sensors and promote exercise-induced muscle hypertrophy via Hh signaling pathway.


Assuntos
Cílios , Força Muscular , Condicionamento Físico Animal , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular , Cílios/fisiologia , Terapia por Exercício , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia
2.
Plant J ; 116(1): 282-302, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37159480

RESUMO

Wind, rain, herbivores, obstacles, neighbouring plants, etc. provide important mechanical cues to steer plant growth and survival. Mechanostimulation to stimulate yield and stress resistance of crops is of significant research interest, yet a molecular understanding of transcriptional responses to touch is largely absent in cereals. To address this, we performed whole-genome transcriptomics following mechanostimulation of wheat, barley, and the recent genome-sequenced oat. The largest transcriptome changes occurred ±25 min after touching, with most of the genes being upregulated. While most genes returned to basal expression level by 1-2 h in oat, many genes retained high expression even 4 h post-treatment in barley and wheat. Functional categories such as transcription factors, kinases, phytohormones, and Ca2+ regulation were affected. In addition, cell wall-related genes involved in (hemi)cellulose, lignin, suberin, and callose biosynthesis were touch-responsive, providing molecular insight into mechanically induced changes in cell wall composition. Furthermore, several cereal-specific transcriptomic footprints were identified that were not observed in Arabidopsis. In oat and barley, we found evidence for systemic spreading of touch-induced signalling. Finally, we provide evidence that both the jasmonic acid-dependent and the jasmonic acid-independent pathways underlie touch-signalling in cereals, providing a detailed framework and marker genes for further study of (a)biotic stress responses in cereals.


Assuntos
Arabidopsis , Hordeum , Tato , Grão Comestível/genética , Arabidopsis/genética , Hordeum/genética , Triticum/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas/genética
3.
Small ; 20(28): e2400644, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38326079

RESUMO

Tissue development is mediated by a combination of mechanical and biological signals. Currently, there are many reports on biological signals regulating repair. However, insufficient attention is paid to the process of mechanical regulation, especially the active mechanical regulation in vivo, which has not been realized. Herein, a novel dynamically regulated repair system for both in vitro and in vivo applications is developed, which utilizes magnetic nanoparticles as non-contact actuators to activate hydrogels. The magnetic hydrogel can be periodically activated and deformed to different amplitudes by a dynamic magnetic system. An in vitro skin model is used to explore the impact of different dynamic stimuli on cellular mechano-transduction signal activation and cell differentiation. Specifically, the effect of mechanical stimulation on the phenotypic transition of fibroblasts to myofibroblasts is investigated. Furthermore, in vivo results verify that dynamic massage can simulate and enhance the traction effect in skin defects, thereby accelerating the wound healing process by promoting re-epithelialization and mediating dermal contraction.


Assuntos
Bandagens , Massagem , Cicatrização , Animais , Massagem/métodos , Fibroblastos , Humanos , Hidrogéis/química , Diferenciação Celular , Pele , Camundongos , Miofibroblastos/citologia
4.
Int J Med Sci ; 21(1): 137-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164350

RESUMO

Background: Focal adhesion kinase (FAK) is activated by mechanical stimulation and plays a vital role in distraction osteogenesis (DO), a well-established but lengthy procedure for repairing large bone defects. Both angiogenesis and osteogenesis contribute to bone regeneration during DO. However, the effects of ZINC40099027 (ZN27), a potent FAK activator, on angiogenesis, osteogenesis, and bone regeneration in DO remain unknown. Methods: The angiogenic potential of human umbilical vein endothelial cells (HUVECs) was evaluated using transwell migration and tube formation assays. The osteogenic activity of bone marrow mesenchymal stem cells (BMSCs) was assessed using alkaline phosphatase (ALP) and alizarin red s (ARS) staining. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and immunofluorescence staining were used to assay angiogenic markers, osteogenic markers, and FAK-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. In vivo, a rat tibia DO model was established to verify the effects of ZN27 on neovascularization and bone regeneration using radiological and histological analyses. Results: ZN27 promoted the migration and angiogenesis of HUVECs. Additionally, ZN27 facilitated the osteogenic differentiation of BMSCs, as revealed by increased ALP activity, calcium deposition, and expression of osteogenesis-specific markers. The ERK1/2-specific inhibitor PD98059 significantly hindered the effects of ZN27, suggesting the participation of FAK-ERK1/2 signaling in ZN27-enhanced angiogenesis and osteogenesis. As indicated by improved radiological and histological features, ZN27 induced active angiogenesis within the distraction area and accelerated bone regeneration in a rat DO model. Conclusion: Our results show that ZN27 targets FAK-ERK1/2 signaling to stimulate both angiogenesis and osteogenesis, and ZN27 accelerates bone regeneration in DO, suggesting the therapeutic potential of ZN27 for repairing large bone defects in the mechanobiological environment during DO.


Assuntos
Osteogênese por Distração , Osteogênese , Ratos , Humanos , Animais , Proteína Quinase 3 Ativada por Mitógeno , Sistema de Sinalização das MAP Quinases , Regeneração Óssea , Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana , Células Cultivadas
5.
Artif Organs ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887912

RESUMO

BACKGROUND: Tissue stimulations greatly affect cell growth, phenotype, and function, and they play an important role in modeling tissue physiology. With the goal of understanding the cellular mechanisms underlying the response of tissues to external stimulations, in vitro models of tissue stimulation have been developed in hopes of recapitulating in vivo tissue function. METHODS: Herein we review the efforts to create and validate tissue stimulators responsive to electrical or mechanical stimulation including tensile, compression, torsion, and shear. RESULTS: Engineered tissue platforms have been designed to allow tissues to be subjected to selected types of mechanical stimulation from simple uniaxial to humanoid robotic stain through equal-biaxial strain. Similarly, electrical stimulators have been developed to apply selected electrical signal shapes, amplitudes, and load cycles to tissues, lending to usage in stem cell-derived tissue development, tissue maturation, and tissue functional regeneration. Some stimulators also allow for the observation of tissue morphology in real-time while cells undergo stimulation. Discussion on the challenges and limitations of tissue simulator development is provided. CONCLUSIONS: Despite advances in the development of useful tissue stimulators, opportunities for improvement remain to better reproduce physiological functions by accounting for complex loading cycles, electrical and mechanical induction coupled with biological stimuli, and changes in strain affected by applied inputs.

6.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30518533

RESUMO

Vascular endothelial growth factor receptor-3 (VEGFR3) signalling promotes lymphangiogenesis. While there are many reported mechanisms of VEGFR3 activation, there is little understanding of how VEGFR3 signalling is attenuated to prevent lymphatic vascular overgrowth and ensure proper lymph vessel development. Here, we show that endothelial cell-specific depletion of integrin-linked kinase (ILK) in mouse embryos hyper-activates VEGFR3 signalling and leads to overgrowth of the jugular lymph sacs/primordial thoracic ducts, oedema and embryonic lethality. Lymphatic endothelial cell (LEC)-specific deletion of Ilk in adult mice initiates lymphatic vascular expansion in different organs, including cornea, skin and myocardium. Knockdown of ILK in human LECs triggers VEGFR3 tyrosine phosphorylation and proliferation. ILK is further found to impede interactions between VEGFR3 and ß1 integrin in vitro and in vivo, and endothelial cell-specific deletion of an Itgb1 allele rescues the excessive lymphatic vascular growth observed upon ILK depletion. Finally, mechanical stimulation disrupts the assembly of ILK and ß1 integrin, releasing the integrin to enable its interaction with VEGFR3. Our data suggest that ILK facilitates mechanically regulated VEGFR3 signalling via controlling its interaction with ß1 integrin and thus ensures proper development of lymphatic vessels.


Assuntos
Integrina beta1/metabolismo , Linfangiogênese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Camundongos , Fosforilação , Transdução de Sinais
7.
Exp Dermatol ; 32(11): 2012-2022, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37724850

RESUMO

The formation of hypertrophic scars and keloids is strongly associated with mechanical stimulation, and myofibroblasts are known to play a major role in abnormal scar formation. Wounds in patients with neurofibromatosis type 1 (NF1) become inconspicuous and lack the tendency to form abnormal scars. We hypothesized that there would be a unique response to mechanical stimulation and subsequent scar formation in NF1. To test this hypothesis, we investigated the molecular mechanisms of differentiation into myofibroblasts in NF1-derived fibroblasts and neurofibromin-depleted fibroblasts and examined actin dynamics, which is involved in fibroblast differentiation, with a focus on the pathway linking LIMK2/cofilin to actin dynamics. In normal fibroblasts, expression of α-smooth muscle actin (α-SMA), a marker of myofibroblasts, significantly increased after mechanical stimulation, whereas in NF1-derived and neurofibromin-depleted fibroblasts, α-SMA expression did not change. Phosphorylation of cofilin and subsequent actin polymerization did not increase in NF1-derived and neurofibromin-depleted fibroblasts after mechanical stimulation. Finally, in normal fibroblasts treated with Jasplakinolide, an actin stabilizer, α-SMA expression did not change after mechanical stimulation. Therefore, when neurofibromin was dysfunctional or depleted, subsequent actin polymerization did not occur in response to mechanical stimulation, which may have led to the unchanged expression of α-SMA. We believe this molecular pathway can be a potential therapeutic target for the treatment of abnormal scars.


Assuntos
Cicatriz Hipertrófica , Neurofibromatose 1 , Humanos , Miofibroblastos/metabolismo , Actinas/metabolismo , Neurofibromina 1/metabolismo , Fibroblastos/metabolismo , Cicatriz Hipertrófica/metabolismo , Neurofibromatose 1/patologia , Fatores de Despolimerização de Actina/metabolismo , Diferenciação Celular , Células Cultivadas , Fator de Crescimento Transformador beta1/metabolismo
8.
FASEB J ; 36(4): e22225, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224777

RESUMO

Neocartilage tissue engineering aims to address the shortcomings of current clinical treatments for articular cartilage indications. However, advancement is required toward neocartilage functionality (mechanical and biochemical properties) and translatability (construct size, gross morphology, passage number, cell source, and cell type). Using fluid-induced shear (FIS) stress, a potent mechanical stimulus, over four phases, this work investigates FIS stress' efficacy toward creating large neocartilage derived from highly passaged minipig costal chondrocytes, a species relevant to the preclinical regulatory process. In Phase I, FIS stress application timing was investigated in bovine articular chondrocytes and found to improve the aggregate modulus of neocartilage by 151% over unstimulated controls when stimulated during the maturation stage. In Phase II, FIS stress stimulation was translated from bovine articular chondrocytes to expanded minipig costal chondrocytes, yielding a 46% improvement in aggregate modulus over nonstimulated controls. In Phase III, bioactive factors were combined with FIS stress to improve the shear modulus by 115% over bioactive factor-only controls. The translatability of neocartilage was improved in Phase IV by utilizing highly passaged cells to form constructs more than 9-times larger in the area (11 × 17 mm), yielding an improved aggregate modulus by 134% and a flat morphology compared to free-floating, bioactive factor-only controls. Overall, this study represents a significant step toward generating mechanically robust, large constructs necessary for animal studies, and eventually, human clinical studies.


Assuntos
Cartilagem Articular/fisiologia , Condrócitos/fisiologia , Hidrodinâmica , Mecanotransdução Celular , Estresse Mecânico , Engenharia Tecidual/métodos , Animais , Cartilagem Articular/citologia , Bovinos , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Suínos , Porco Miniatura
9.
Cell Biochem Funct ; 41(7): 845-856, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37515551

RESUMO

The mechanical stimulation induced by poking cells with a glass needle activates Piezo1 receptors and the adenosine triphosphate (ATP) autocrine pathway, thus increasing intracellular Ca2+ concentration. The differences between the increase in intracellular Ca2+ concentration induced by cell poking and by ATP-only stimulation have not been investigated. In this study, we investigated the Ca2+ signaling mechanism induced by autocrine ATP release during Madin-Darby Canine Kidney cell membrane deformation by cell poking. The results suggest that the pathways for supplying Ca2+ into the cytoplasm were not identical between cell poking and conventional ATP stimulation. The functions of the G protein-coupled receptor (GPCR) subunits (G α $\alpha $ q, G ß Î³ $\beta \gamma $ ), ATP-activated receptor and the upstream Ca2+ release signal from the intracellular endoplasmic reticulum Ca2+ store, were investigated. The results show that G α $\alpha $ q plays a major role in the Ca2+ response evoked by ATP-only stimulation, while cell poking induces a Ca2+ response requiring the involvement of both G α $\alpha $ q and G ß Î³ $\beta \gamma $ units simultaneously. These results suggest that GPCR are not only activated by ATP-only stimulation or autocrine ATP release during Ca2+ signaling, but also activated by the mechanical effects of cell poking.

10.
Biol Res ; 56(1): 25, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37194106

RESUMO

BACKGROUND: Mechanoreceptor activation modulates GABA neuron firing and dopamine (DA) release in the mesolimbic DA system, an area implicated in reward and substance abuse. The lateral habenula (LHb), the lateral hypothalamus (LH), and the mesolimbic DA system are not only reciprocally connected, but also involved in drug reward. We explored the effects of mechanical stimulation (MS) on cocaine addiction-like behaviors and the role of the LH-LHb circuit in the MS effects. MS was performed over ulnar nerve and the effects were evaluated by using drug seeking behaviors, optogenetics, chemogenetics, electrophysiology and immunohistochemistry. RESULTS: Mechanical stimulation attenuated locomotor activity in a nerve-dependent manner and 50-kHz ultrasonic vocalizations (USVs) and DA release in nucleus accumbens (NAc) following cocaine injection. The MS effects were ablated by electrolytic lesion or optogenetic inhibition of LHb. Optogenetic activation of LHb suppressed cocaine-enhanced 50 kHz USVs and locomotion. MS reversed cocaine suppression of neuronal activity of LHb. MS also inhibited cocaine-primed reinstatement of drug-seeking behavior, which was blocked by chemogenetic inhibition of an LH-LHb circuit. CONCLUSION: These findings suggest that peripheral mechanical stimulation activates LH-LHb pathways to attenuate cocaine-induced psychomotor responses and seeking behaviors.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Habenula , Humanos , Transtornos Relacionados ao Uso de Cocaína/terapia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Habenula/metabolismo , Cocaína/farmacologia , Cocaína/metabolismo , Neurônios , Dopamina/metabolismo , Dopamina/farmacologia , Hipotálamo/metabolismo
11.
J Assist Reprod Genet ; 40(7): 1773-1781, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37273164

RESUMO

OBJECTIVE: This study aimed to investigate the changes in oocytes at the transcriptome level after applying continuous microvibrational mechanical stimulation to human immature oocytes during in vitro maturation. METHODS: The discarded germinal-vesicle stage (GV) oocytes with no fertilization value after oocytes retrieval in assisted reproduction cycles were collected. Part of them was stimulated with vibration (n = 6) at 10 Hz for 24 h after obtaining informed consent; the other was cultured in static condition (n = 6). Single-cell transcriptome sequencing was used to detect the differences in oocyte transcriptome compared with the static culture group. RESULTS: The applied 10-Hz continuous microvibrational stimulation altered the expression of 352 genes compared with the static culture. Gene Ontology (GO) analysis suggested that the altered genes were mainly enriched with 31 biological processes. The mechanical stimulation upregulated 155 of these genes and downregulated 197 genes. Among them, the genes related to mechanical signaling, such as protein localization to intercellular adhesion (DSP and DLG-5) and cytoskeleton (DSP, FGD6, DNAJC7, KRT16, KLHL1, HSPB1, MAP2K6), were detected. DLG-5, which was related to protein localization to intercellular adhesion, was selected for immunofluorescence experiments based on the transcriptome sequencing results. The protein expression of DLG-5 in the microvibration-stimulated oocytes was higher than that in the static culture oocytes. CONCLUSIONS: Mechanical stimulation affects the transcriptome during oocyte maturation, causing the express changes in intercellular adhesion and cytoskeleton-related genes. We speculate that the mechanical signal may be transmitted to the cell through DLG-5 protein and cytoskeleton-related protein to regulate cellular activities.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Transcriptoma , Humanos , Técnicas de Maturação in Vitro de Oócitos/métodos , Transcriptoma/genética , Oócitos/metabolismo , Oogênese/genética , Núcleo Celular , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo
12.
Bioprocess Biosyst Eng ; 46(10): 1437-1446, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37470868

RESUMO

Tissue-engineered arterial vessels have been used as substitutes for unnecessary animal experiments to evaluate the pharmacokinetics of drugs targeting various arteriopathies caused by structural or physiological arterial defects. An arterial tissue culture system was established to simulate the mechanical characteristics of a heart-beating pump and to do online feedback control of lactate and glucose concentrations. The mechanically controlled flow pump mimicked the heart pumping inside a tissue-engineered artery composed of muscle and endothelial cells within a nanofibrous scaffold. After monitoring the pH of the culture medium online, lactate and glucose were estimated using the Kalman filter algorithm, and the set-point online control was operated to maintain glucose for artery tissue engineering. The composition of the artificial artery was confirmed by immunofluorescence staining, and its mechanical characteristics were examined. The online automated system successfully demonstrated its applicability as a standardized process for arterial tissue culture to replace animal arterial experiments.


Assuntos
Células Endoteliais , Engenharia Tecidual , Animais , Artérias , Glucose
13.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068940

RESUMO

The principal difference between hydroponics and other substrate cultivation methods is the flowing liquid hydroponic cultivation substrate. Our previous studies have revealed that a suitable flowing environment of nutrient solution promoted root development and plant growth, while an excess flow environment was unfavorable for plants. To explain the thigmomorphogenetic response of excess flow-induced metabolic changes, six groups of lettuce (Lactuca sativa L.), including two flow conditions and three time periods, were grown. Compared with the plants without flow, the plants with flow showed decreased root fresh weight, total root length, root surface area, and root volume but increased average root diameter and root density. The roots with flow had more upregulated metabolites than those without flow, suggesting that the flow may trigger metabolic synthesis and activity. Seventy-nine common differential metabolites among six groups were screened, and enrichment analysis showed the most significant enrichment in the arginine biosynthesis pathway. Arginine was present in all the groups and exhibited greater concentrations in roots with flow than without flow. It can be speculated from the results that a high-flowing environment of nutrient solution promotes arginine synthesis, resulting in changes in root morphology. The findings provide insights on root thigmomorphogenesis affected by its growing conditions and help understand how plants respond to environmental mechanical forces.


Assuntos
Plantas , Hidroponia/métodos , Nutrientes , Arginina
14.
Am J Physiol Cell Physiol ; 323(6): C1652-C1663, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280390

RESUMO

The meniscus is a fibrocartilaginous structure of the knee joint that serves a crucial role in joint health and biomechanics. Degeneration or removal of the meniscus is known to lead to a chronic and debilitating disease known as knee osteoarthritis, whose prevalence is expected to increase in the next few decades. Meniscus bioengineering has been developed as a potential alternative to current treatment methods, wherein meniscus-like tissues are engineered using cells, materials, and biomechanical stimuli. The application of mechanical stimulation in meniscus bioengineering has presented varied results but, for the most part, it has been shown to enhance meniscus-like tissue formation. In this review, we summarized literature over the last 10 years of various mechanical stimuli applied in bioengineering meniscus tissues. The role of individual loading types is examined, and the effects on engineered meniscus are evaluated on both molecular and tissue levels. In addition, simulated microgravity is highlighted as a new area of interest in meniscus engineering, and its potential use as a disease-driving platform is discussed. Taken together, with the increased understanding of the effects of mechanical stimulation on bioengineered meniscus tissues, the most suitable loading regime could be developed for meniscus tissue engineering and osteoarthritis modeling.


Assuntos
Menisco , Menisco/fisiologia , Engenharia Tecidual/métodos , Articulação do Joelho , Fenômenos Biomecânicos
15.
Am J Physiol Cell Physiol ; 323(6): C1704-C1719, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374171

RESUMO

The peripheral sensory nerve must be maintained to perceive environmental changes. Daily physiological mechanical stimulations, like gravity, floor reaction force, and occlusal force, influence the nerve homeostasis directly or indirectly. Although the direct axonal membrane stretch enhances axon outgrowth via mechanosensitive channel activation, the indirect mechanisms remain to be elucidated. In this study, we identified the indirect pathways where Wnt5a was a molecular cue released by mechanically stimulated rat periodontal ligament (rPDL) cells. qRT-PCR and ELISA showed that mechanically stimulated rPDL cells enhanced Wnt5a expression level and Wnt5a protein in a Ca2+-dependent manner. The inhibitors of PI3K (LY294002) and MEK1/2 (U0126) suppressed the Akt/PKB and ERK1/2 phosphorylation, respectively, in Western blotting analysis and consequently abolished the increase in Wnt5a expression. Similarly, PF573228, a focal adhesion kinase inhibitor, attenuated Akt- and ERK1/2-phosphorylation and Wnt5a expression. Importantly, the culture medium of stretched PDL cells enhanced neurite elongation, sprouting, and branching in trigeminal ganglion neurons that project to PDL. Moreover, treatment with an anti-Wnt5a antibody (to neutralize Wnt5a activity), AP7677a (anti-Ryk antibody, to block Ryk receptor activity), or strictinin (Ror1 inhibitor) suppressed the morphological changes. These findings reveal the indirect mechanisms that Wnt5a, released from the connective tissues in response to mechanical stimulation, enhances the outgrowth of the peripheral nerves. Our study suggests that the peripheral connective tissues regulate peripheral nerve homeostasis and that Wnt5a signaling could be targeted for the treatment of peripheral nerve disorders.


Assuntos
Ligamento Periodontal , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Gânglio Trigeminal , Células Cultivadas , Crescimento Neuronal , Neurônios/metabolismo
16.
Arch Biochem Biophys ; 718: 109150, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35157854

RESUMO

Support afferentation in recent years was shown to be a key physiological stimulus controlling postural muscle function, structure and phenotype. Lack of support afferentation under various types of muscle disuse leads to a decline of size and percentage of slow-type fatigue-resistant muscle fibers, which can negatively affect muscle performance and life quality. In this study we simulated support afferentation during rat hindlimb unloading and investigated its effect on postural soleus muscle functional properties and signaling. Plantar mechanical stimulation prevented the unloading-induced muscle fatigue increase, maintained the level of mitochondrial DNA copy number and the percent of slow-type muscle fibers and partially prevented the increase of CpG methylation in pgc 1α promoter region and decline in myonuclear content of several transcriptional activators of slow myosin and PGC1 α expression. So, support afferentation under hindlimb suspension leads to maintaining of a slow-twitch oxidative and fatigue-resistant soleus muscle fibers phenotype.


Assuntos
Elevação dos Membros Posteriores , Músculo Esquelético , Animais , Elevação dos Membros Posteriores/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição/metabolismo
17.
FASEB J ; 35(10): e21905, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569672

RESUMO

The study was aimed at investigating the mechanisms and structures which determine mechanical properties of skeletal muscles under gravitational unloading and plantar mechanical stimulation (PMS). We hypothesized that PMS would increase NO production and prevent an unloading-induced reduction in skeletal muscle passive stiffness. Wistar rats were hindlimb suspended and subjected to a daily PMS and one group of stimulated animals was also treated with nitric oxide synthase (NOS) inhibitor (L-NAME). Animals received mechanical stimulation of the feet for 4 h a day throughout 7-day hindlimb suspension (HS) according to a scheme that mimics the normal walking of the animal. Seven-day HS led to a significant reduction in soleus muscle weight by 25%. However, PMS did not prevent the atrophic effect induced by HS. Gravitational unloading led to a significant decrease in maximum isometric force and passive stiffness by 38% and 31%, respectively. The use of PMS prevented a decrease in the maximum isometric strength of the soleus muscle. At the same time, the passive stiffness of the soleus in the PMS group significantly exceeded the control values by 40%. L-NAME (NOS inhibitor) administration attenuated the effect of PMS on passive stiffness and maximum force of the soleus muscle. The content of the studied cytoskeletal proteins (α-actinin-2, α-actinin-3, desmin, titin, nebulin) decreased after 7-day HS, but this decrease was successfully prevented by PMS in a NOS-dependent manner. We also observed significant decreases in mRNA expression levels of α-actinin-2, desmin, and titin after HS, which was prevented by PMS. The study also revealed a significant NOS-dependent effect of PMS on the content of collagen-1a, but not collagen-3a. Thus, PMS during mechanical unloading is able to maintain soleus muscle passive tension and force as well as mRNA transcription and protein contents of cytoskeletal proteins in a NOS-dependent manner.


Assuntos
Proteínas do Citoesqueleto/biossíntese , Elevação dos Membros Posteriores , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Óxido Nítrico Sintase/metabolismo , Animais , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Wistar
18.
Cerebellum ; 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36502502

RESUMO

The cerebellum is traditionally considered a movement control structure because of its established afferent and efferent anatomical and functional connections with the motor cortex. In the last decade, studies also proposed its involvement in perception, particularly somatosensory acquisition and prediction of the sensory consequences of movement. However, compared to its role in motor control, the cerebellum's specific role or modulatory influence on other brain areas involved in sensory perception, specifically the primary sensorimotor cortex, is less clear. In the present study, we explored whether peripherally applied vibrotactile stimuli at flutter frequency affect functional cerebello-cortical connections. In 17 healthy volunteers, changes in cerebellar brain inhibition (CBI) and vibration perception threshold (VPT) were measured before and after a 20-min right hand mechanical stimulation at 25 Hz. 5 Hz mechanical stimulation of the right foot served as an active control condition. Performance in a Grooved Pegboard test (GPT) was also measured to assess stimulation's impact on motor performance. Hand stimulation caused a reduction in CBI (13.16%) and increased VPT but had no specific effect on GPT performance, while foot stimulation had no significant effect on all measures. The result added evidence to the functional connections between the cerebellum and primary motor cortex, as shown by CBI reduction. Meanwhile, the parallel increase in VPT indirectly suggests that the cerebellum influences the processing of vibrotactile stimulus through motor-sensory interactions.

19.
Int J Legal Med ; 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962850

RESUMO

BACKGROUND: Estimation of the post-mortem interval (PMI) is a crucial aspect in crime scene investigation. PMI is defined as the time between the moment of death and the moment of finding the dead body. A combination of methods for estimating the PMI in forensic casework is internationally mostly used. Supravital muscle reaction (SMR) is one of those methods. SMR is an idiomuscular contraction and can be provoked by mechanical stimulation. OBJECTIVES: A field study was carried out with the aim to investigate whether a reflex hammer can be used as tool for triggering an idiomuscular contraction and, furthermore, to determine if a learning period has to be taken into account by a forensic physician for appropriate application of a reflex hammer to trigger SMR. METHODS: From January 2017 to January 2022, four forensic physicians used this SMR by mechanically stimulating the musculus brachioradialis and musculus biceps brachii. In total, 332 cases were included with a PMI less than 24 h. The cases were divided in chronological clusters of 20 cases. The ratio of the number of positive SMR versus the total number stimulations per forensic physician was used as a measure of accuracy of a reflex hammer for triggering SMR. The distribution of the data was analyzed by comparing the clusters in chronological order to assess whether a learning curve applies. RESULTS: In 55.7%, a muscle reaction could be provoked by mechanical stimulation. Comparable outcome of SMR between the participating physicians was observed after 40 stimulations. CONCLUSION: A reflex hammer is usable for provoking SMR. A learning period has to be taken in to account during the first forty cases per forensic physician.

20.
J Nanobiotechnology ; 20(1): 363, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933375

RESUMO

BACKGROUND: With the success of recent non-viral gene delivery-based COVID-19 vaccines, nanovectors have gained some public acceptance and come to the forefront of advanced therapies. Unfortunately, the relatively low ability of the vectors to overcome cellular barriers adversely affects their effectiveness. Scientists have thus been striving to develop ever more effective gene delivery vectors, but the results are still far from satisfactory. Therefore, developing novel strategies is probably the only way forward to bring about genuine change. Herein, we devise a brand-new gene delivery strategy to boost dramatically the transfection efficiency of two gold standard nucleic acid (NA)/polymer nanoparticles (polyplexes) in vitro. RESULTS: We conceived a device to generate milli-to-nanoscale vibrational cues as a function of the frequency set, and deliver vertical uniaxial displacements to adherent cells in culture. A short-lived high-frequency vibrational load (t = 5 min, f = 1,000 Hz) caused abrupt and extensive plasmalemma outgrowths but was safe for cells as neither cell proliferation rate nor viability was affected. Cells took about 1 hr to revert to quasi-naïve morphology through plasma membrane remodeling. In turn, this eventually triggered the mechano-activated clathrin-mediated endocytic pathway and made cells more apt to internalize polyplexes, resulting in transfection efficiencies increased from 10-to-100-fold. Noteworthy, these results were obtained transfecting three cell lines and hard-to-transfect primary cells. CONCLUSIONS: In this work, we focus on a new technology to enhance the intracellular delivery of NAs and improve the transfection efficiency of non-viral vectors through priming adherent cells with a short vibrational stimulation. This study paves the way for capitalizing on physical cell stimulation(s) to significantly raise the effectiveness of gene delivery vectors in vitro and ex vivo.


Assuntos
COVID-19 , Polímeros , Vacinas contra COVID-19 , Técnicas de Transferência de Genes , Humanos , Polietilenoimina , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA