Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
New Phytol ; 243(1): 23-28, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600045

RESUMO

The temperature sensitivity (e.g. Q10) of night-time leaf respiratory CO2 efflux (RCO2) is a fundamental aspect of leaf physiology. The Q10 typically exhibits a dependence on measurement temperature, and it is speculated that this is due to temperature-dependent shifts in the relative control of leaf RCO2. Two decades ago, a review hypothesized that this mechanistically caused change in values of Q10 is predictable across plant taxa and biomes. Here, we discuss the most appropriate measuring protocol among existing data and for future data collection, to form the foundation of a future mechanistic understanding of Q10 of leaf RCO2 at different temperature ranges. We do this primarily via a review of existing literature on Q10 of night-time RCO2 and only supplement this to a lesser degree with our own original data. Based on mechanistic considerations, we encourage that instantaneous Q10 of leaf RCO2 to represent night-time should be measured: only at night-time; only in response to short-term narrow temperature variation (e.g. max. 10°C) to represent a given midpoint temperature at a time; in response to as many temperatures as possible within the chosen temperature range; and on still attached leaves.


Assuntos
Dióxido de Carbono , Folhas de Planta , Temperatura , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Respiração Celular , Escuridão
2.
Chemistry ; 30(20): e202303848, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38312108

RESUMO

A tridentate ligand L with a P,NH,N donor motif was synthesized in few steps from commercially available precursors. Upon reaction with [MnBr(CO)5], an octahedral 18-electron complex [Mn(CO)3(L)]Br (1) is obtained in which L adopts a facial arrangement. After deprotonation of the NH group in the cationic complex unit, a neutral Mn(I) amido complex [Mn(CO)2(L-H)] (2) is formed under loss of CO. Rearrangement of L-H leads to a trigonal bipyramidal structure in which the P and N donor centers are in trans position. Further deprotonation of 2 results in a dep-blue anionic complex fragment [Mn(CO)2(L-2H)]- (3). DFT calculations and a QTAIM analysis show that the amido complex 2 contains a Mn-N bond with partial double bond character and 3 an aromatic MnN2C2 ring. The anion [Mn(CO)2(L-2H)]- reacts with Ph2PH to give a phosphido complex, which serves as phosphide transfer reagent to activated olefins. But the catalytic activity is low. However, the neutral amido complex 2 is an excellent catalyst and with loadings as low as 0.04 mol %, turn over frequencies of >40'000 h-1 can be achieved. Furthermore, secondary and primary alkyl phosphines as well as PH3 can be added in a catalytic hydrophosphination reaction to a wide range of activated olefins such as α,ß-unsaturated aldehydes, ketones, esters, and nitriles. But also, vinyl pyridine and some styrene derivatives are converted into the corresponding phosphanes.

3.
Chemistry ; 30(47): e202401698, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38899378

RESUMO

An air-stable, inexpensive, and isolable cobalt(II) complex (C1) of N-((1-methyl-1H-imidazol-2-yl)methyl)-2-(phenylselanyl)ethan amine (L1) was synthesized and characterized. The complex was used to catalyze a one-pot cascade reaction between 2-(2-aminophenyl)ethanols and benzyl alcohol derivatives. Interestingly, 2-aryl-3-formylindole derivatives were formed instead of N-alkylated or C-3 alkylated indoles. A broad substrate scope can be activated using this protocol with only 5.0 mol % catalyst loading to achieve up to 87 % yield of 2-aryl-3-formylindole derivatives. The mechanistic studies suggested that the reaction proceeds through tandem imine formation followed by cyclization.

4.
Molecules ; 29(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39125089

RESUMO

Nerve agents are organophosphates (OPs) that act as potent inhibitors of acetylcholinesterase (AChE), the enzyme responsible for the hydrolysis of acetylcholine. After inhibition, a dealkylation reaction of the phosphorylated serine, known as the aging of AChE, can occur. When aged, reactivators of OP-inhibited AChE are no longer effective. Therefore, the realkylation of aged AChE may offer a pathway to reverse AChE aging. In this study, molecular modeling was conducted to propose new ligands as realkylators of aged AChE. We applied a methodology involving docking and quantum mechanics/molecular mechanics (QM/MM) calculations to evaluate the resurrection kinetic constants and ligand interactions with OP-aged AChE, comparing them to data found in the literature. The results obtained confirm that this method is suitable for predicting kinetic and thermodynamic parameters of ligands, which can be useful in the design and selection of new and more effective ligands for AChE realkylation.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Indolquinonas , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Cinética , Indolquinonas/química , Simulação de Acoplamento Molecular , Ligantes , Termodinâmica , Modelos Moleculares , Humanos , Simulação de Dinâmica Molecular
5.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474597

RESUMO

Rhodium-catalyzed cycloaddition reactions are a powerful tool for the construction of polycyclic compounds. Combined experimental and DFT studies were used to investigate the temperature-controlled chemoselectivity of cationic rhodium-catalyzed intramolecular cycloaddition reactions of ene-vinylidenecyclopropanes. After a series of mechanistic studies, it was found that trace amounts of water in the reaction system play an important role in generating the product with endo double bond located on a five-membered ring and revealed that trace amounts of water in the reaction system, including the rhodium catalyst, substrate and solvent, were sufficient to promote the formation of the product with endo double bond located on a five-membered ring, and additional water could not further accelerate the reaction. DFT calculation results show that the addition of water indeed significantly lowers the energy barrier of the proton transfer step, making the formation of the product with endo double bond located on a five-membered ring more likely to occur and confirming the rationality of water-assisted proton transfer occurring in the selective access to the product with endo double bond located on a five-membered ring.

6.
Chimia (Aarau) ; 78(3): 123-128, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38547013

RESUMO

Two applications of a radical trap based on a homolytic substitution reaction (SH2') are presented for the trapping of short-lived radical intermediates in organic reactions. The first example is a photochemical cyanomethylation catalyzed by a Ru complex. Two intermediate radicals in the radical chain propagation have been trapped and detected using mass spectrometry (MS), along with the starting materials, products and catalyst degradation fragments. Although qualitative, these results helped to elucidate the reaction mechanism. In the second example, the trapping method was applied to study the radical initiation catalyzed by a triethylboronoxygen mixture. In this case, the concentration of trapped radicals was sufficiently high to enable their detection by nuclear magnetic resonance (NMR). Quantitative measurements made it possible to characterize the radical flux in the system under different reaction conditions (including variations of solvent, temperature and concentration) where modelling was complicated by chain reactions and heterogeneous mass transfer.

7.
Angew Chem Int Ed Engl ; 63(32): e202404319, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785101

RESUMO

We report an unprecedented iron-catalyzed C-H annulation using readily available 2-vinylbenzofurans as the reaction pattern. The redox-neutral strategy, based on cheap, non-toxic, and earth-abundant iron catalysts, exploits triazole assistance to promote a cascade C-H alkylation, benzofuran ring-opening and insertion into a Fe-N bond, to form highly functionalized isoquinolones. Detailed mechanistic studies supported by DFT calculations fully disclosed the manifold of the iron catalysis.

8.
Chemistry ; 29(24): e202204066, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36607705

RESUMO

The fluorine atom is a powerful, yet enigmatic influence on chemical reactions. True to form, fluorine was recently discovered to effect diastereodivergence in an enantioselective aza-Henry reaction, resulting in a very rare case of syn-ß-amino nitroalkane products. More bewildering was the observation of an apparent hierarchy of substituents within this substrate-controlled behavior: Ph>F>alkyl. These cases have now been examined comprehensively by computational methods, including both non-fluorinated and α-fluoro nitronate additions to aldimines catalyzed by a chiral bis(amidine) [BAM] proton complex. This study revealed the network of non-covalent interactions that dictate anti- (α-aryl) versus syn-selectivity (α-alkyl) using α-fluoronitronate nucleophiles, and an underlying secondary orbital interaction between fluorine and the activated azomethine.

9.
Molecules ; 28(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770800

RESUMO

Ornithine aminotransferase (OAT) is overexpressed in hepatocellular carcinoma (HCC), and we previously showed that inactivation of OAT inhibits the growth of HCC. Recently, we found that (3S,4S)-3-amino-4-fluorocyclopentenecarboxylic acid (5) was a potent inactivator of γ-aminobutyric acid aminotransferase (GABA-AT), proceeding by an enamine mechanism. Here we describe our investigations into the activity and mechanism of 5 as an inactivator of human OAT. We have found that 5 exhibits 10-fold less inactivation efficiency (kinact/KI) against hOAT than GABA-AT. A comprehensive mechanistic study was carried out to understand its inactivation mechanism with hOAT. pKa and electrostatic potential calculations were performed to further support the notion that the α,ß-unsaturated alkene of 5 is critical for enhancing acidity and nucleophilicity of the corresponding intermediates and ultimately responsible for the improved inactivation efficiency of 5 over the corresponding saturated analogue (4). Intact protein mass spectrometry and the crystal structure complex with hOAT provide evidence to conclude that 5 mainly inactivates hOAT through noncovalent interactions, and that, unlike with GABA-AT, covalent binding with hOAT is a minor component of the total inhibition which is unique relative to other monofluoro-substituted derivatives. Furthermore, based on the results of transient-state measurements and free energy calculations, it is suggested that the α,ß-unsaturated carboxylate group of PLP-bound 5 may be directly involved in the inactivation cascade by forming an enolate intermediate. Overall, compound 5 exhibits unusual structural conversions which are catalyzed by specific residues within hOAT, ultimately leading to an enamine mechanism-based inactivation of hOAT through noncovalent interactions and covalent modification.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Aminoácidos/farmacologia , Inibidores Enzimáticos/farmacologia , Ornitina-Oxo-Ácido Transaminase/química , Ornitina-Oxo-Ácido Transaminase/metabolismo , Ácido gama-Aminobutírico , Ácidos Carboxílicos/farmacologia , Ácidos Carboxílicos/química , Ornitina
10.
Chimia (Aarau) ; 77(4): 246-249, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38047805

RESUMO

Transition metal-catalyzed reactions have attracted much attention in synthetic organic chemistry due to their important role in the formation of C-heteroatom bonds. Ullmann coupling has risen in prominence in recent decades owing to its utilization in the synthesis of biaryl ethers found in a wide range of natural products together with biologically essential molecules, including antibiotics and major industrial polymers. In this article we provide the current understanding of the theoretical aspects of the underlying mechanism of the Ullmann-type O-arylation reaction.

11.
Angew Chem Int Ed Engl ; 62(29): e202303869, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37188643

RESUMO

Dual nucleophilic phosphine photoredox catalysis is yet to be developed due to facile oxidation of the phosphine organocatalyst to the phosphoranyl radical cation. Herein, we report a reaction design that avoids this event and exploits traditional nucleophilic phosphine organocatalysis with photoredox catalysis to allow the Giese coupling with ynoates. The approach has good generality, while its mechanism is supported by cyclic voltametric, Stern-Volmer quenching, and interception studies.

12.
Chemistry ; 28(47): e202201522, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35652608

RESUMO

We report here a mechanistic, DFT and catalytic study on a series of Mn(I) complexes 1, 2(a-d), 3, 4. The studies apprehended the requirements for Mn(I) complexes to be active in both asymmetric direct (AH) and transfer hydrogenations (ATH). The investigations disclosed 6 vital factors accelerating the formation of a resting species, which plays a significant role in lowering the activities of the Mn(I) complex 1 in ATH and AH, respectively. In addition, we also report here a base free Mn(I) catalyzed ATH of aryl alkyl ketones with high enantioselectivity (up to 98 % ee) and improved activity. More significantly, a novel and simple single-step process for recycling the resting species from the catalytic leftover has been discovered. Notably, the studies provide evidence for the existence of two different temperature dependent mechanisms for AH and ATH, in contrast to previous studies on related systems.


Assuntos
Cetonas , Catálise , Hidrogenação
13.
Bioorg Med Chem Lett ; 58: 128525, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998904

RESUMO

With the widespread use of azole antifungals in the clinic, the drug resistance has been emerging continuously. In this work, we focus on boron trifluoride etherate catalyzed condensation of indole and salicylaldehydes to form bis(indolyl)methanes (BIMs) in high yields, and in vitro antifungal activity against Candida albicans were evaluated. The results showed that most phenol-derived BIMs combined with fluconazole (FLC) exhibited good antifungal activity against sensitive and drug-resistant C. albicans. Further mechanism study demonstrated that BI-10 combined with FLC could inhibit hyphal growth, result in ROS accumulation, and decrease mitochondrial membrane potential (MMP) as well as altering membrane permeability.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Indóis/farmacologia , Metano/farmacologia , Fenóis/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Relação Dose-Resposta a Droga , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/química , Indóis/química , Metano/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Fenóis/química , Relação Estrutura-Atividade
14.
Eur Arch Otorhinolaryngol ; 279(6): 2743-2752, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34860271

RESUMO

PURPOSE: Laryngopharyngeal reflux disease (LPRD) is a general term for the reflux of gastroduodenal contents into the laryngopharynx, oropharynx and even the nasopharynx, causing a series of symptoms and signs. Currently, little is known regarding the physiopathology of LPRD, and proton pump inhibitors (PPIs) are the drugs of choice for treatment. Although acid reflux plays a critical role in LPRD, PPIs fail to relieve symptoms in up to 40% of patients with LPRD. The influence of other reflux substances on LPRD, including pepsin, bile acid, and trypsin, has received increasing attention. Clarification of the substances involved in LPRD is the basis for LPRD treatment. METHODS: A review of the effects of acids, pepsin, bile acids, and trypsin on laryngopharyngeal reflux diseases was conducted in PubMed. RESULTS: Different reflux substances have different effects on LPRD, which will cause various symptoms, inflammatory diseases and neoplastic diseases of the laryngopharynx. For LPRD caused by different reflux substances, 24-h multichannel intraluminal impedance combined with pH-metry (MII-pH), salivary pepsin, bile acid and other tests should be established so that different drugs and treatment courses can be used to provide patients with more personalized treatment plans. CONCLUSION: This article summarizes the research progress of different reflux substances on the pathogenesis, detection index and treatment of LPRD and lays a theoretical foundation to develop target drugs and clinical diagnosis and treatment.


Assuntos
Refluxo Laringofaríngeo , Ácidos e Sais Biliares/uso terapêutico , Monitoramento do pH Esofágico , Humanos , Refluxo Laringofaríngeo/diagnóstico , Refluxo Laringofaríngeo/tratamento farmacológico , Pepsina A , Inibidores da Bomba de Prótons/uso terapêutico , Tripsina/uso terapêutico
15.
Molecules ; 27(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630526

RESUMO

For applications related to the photocatalytic degradation of environmental contaminants, engineered nanomaterials (ENMs) must demonstrate not only a high photocatalytic potential, but also a low tendency to agglomeration, along with the ability to be easily collected after use. In this manuscript, a two-step process was implemented for the synthesis of ZnO, ZnO/Bentonite and the magnetic ZnO/γ-Fe2O3/Bentonite nanocomposite. The synthesized materials were characterized using various techniques, and their performance in the degradation of pharmaceutical active compounds (PhACs), including ciprofloxacin (CIP), sulfamethoxazole (SMX), and carbamazepine (CBZ) was evaluated under various operating conditions, namely the type and dosage of the applied materials, pH, concentration of pollutants, and their appearance form in the medium (i.e., as a single pollutant or as a mixture of PhACs). Among the materials studied, ZnO/Bentonite presented the best performance and resulted in the removal of ~95% of CIP (5 mg/L) in 30 min, at room temperature, near-neutral pH (6.5), ZnO/Bentonite dosage of 0.5 g/L, and under solar light irradiation. The composite also showed a high degree of efficiency for the simultaneous removal of CIP (~98%, 5 mg/L) and SMX (~97%, 5 mg/L) within 30 min, while a low degradation of ~5% was observed for CBZ (5 mg/L) in a mixture of the three PhACs. Furthermore, mechanistic studies using different types of scavengers revealed the formation of active oxidative species responsible for the degradation of CIP in the photocatalytic system studied with the contribution of h+ (67%), OH (18%), and ·O2- (10%), and in which holes (h+) were found to be the dominant oxidative species.


Assuntos
Bentonita , Óxido de Zinco , Carbamazepina , Catálise , Preparações Farmacêuticas , Sulfametoxazol , Luz Solar , Óxido de Zinco/química
16.
J Comput Chem ; 42(24): 1728-1735, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34196021

RESUMO

The current study dwells upon the efforts to computationally probe a phosphine-free pincer-nickel complex that would demonstrate an efficiency better than the reported phosphine-based pincer-nickel complex (iPr2 POCNEt2 )Ni(CH2 CN) for cyanomethylation reaction. For this purpose, the mechanism of cyanomethylation of benzaldehyde was studied quantum mechanically for a series of 11 pincer-nickel complexes. The energetics of various intermediates and transition states involved in the catalytic cycle for each catalyst was compared with the corresponding energetics of the Miller's catalyst (iPr2 POCNEt2 )Ni(CH2 CN) that is reported to accomplish the cyanomethylation at room temperature. While pincer complexes (iPr4 NNN)Ni(CH2 CN) and (iPr4 NCN)Ni(CH2 CN) containing strong σ-donating amines were found to fare poorly, pincer-nickel complexes (iPr2 NCN)Ni(CH2 CN) and (dm PheboxNCN)Ni(CH2 CN) based on weaker σ-donating imines had energetics more favorable than the reported efficient catalyst (iPr2 POCNEt2 )Ni(CH2 CN). While strong trans-influencing C as the pincer central atom was found to be pivotal for lowering the cyanomethylation kinetics, presence of a poor trans-influencing N proved to be detrimental on the overall energetics.

17.
Molecules ; 26(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834055

RESUMO

Prolinamides are well-known organocatalysts for the HSiCl3 reduction of imines; however, custom design of catalysts is based on trial-and-error experiments. In this work, we have used a combination of computational calculations and experimental work, including kinetic analyses, to properly understand this process and to design optimized catalysts for the benchmark (E)-N-(1-phenylethylidene)aniline. The best results have been obtained with the amide derived from 4-methoxyaniline and the N-pivaloyl protected proline, for which the catalyzed process is almost 600 times faster than the uncatalyzed one. Mechanistic studies reveal that the formation of the component supramolecular complex catalyst-HSiCl3-substrate, involving hydrogen bonding breaking and costly conformational changes in the prolinamide, is an important step in the overall process.

18.
Angew Chem Int Ed Engl ; 60(20): 11133-11137, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33660382

RESUMO

High roughness has been proved to be an effective design strategy for electrocatalyst in many systems. Especially, high selectivity of carbon monoxide reduction (CORR) in competition with the hydrogen evolution reaction has been observed on high roughness electrocatalysts. However, the two well-known mechanisms, i.e., decreasing the energy barrier of CORR and increasing local pH, failed to understand the roughness-enhanced selectivity in a recent experiment. Herein we unravel the hidden mechanism by establishing a comprehensive kinetic model for CORR on catalysts with different roughness factors. We conclude that the roughness-enhanced CORR selectivity is actually kinetic controlled by local-electric-field-directed mass transfer of adsorbed species on the electrode surface. Several ways to optimize CORR selectivity are predicted. Our work highlights the kinetics in electrocatalysis on nanocatalysts, and provides a conceptually new principle for future catalyst design.

19.
Angew Chem Int Ed Engl ; 60(33): 18194-18200, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34117691

RESUMO

Directed C-H functionalization has been realized as a complimentary technique to achieve borylation at a distal position of aliphatic amines. Here, we demonstrated the oxidative borylation at the distal δ-position of aliphatic amines using various borylating agents, a palladium catalyst, and a rightly tuned ligand in the presence of a cheap oxidant. Moreover, an organopalladium δ-C(sp3 )-H-activated intermediate has been isolated and crystallographically characterized to get mechanistic insight.

20.
Angew Chem Int Ed Engl ; 60(21): 11892-11900, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33646631

RESUMO

The synthesis of α-aryl-ß2 -amino esters through enantioselective aminomethylation of an arylacetic acid ester in high yields and enantioselectivity via cooperative isothiourea and Brønsted acid catalysis is demonstrated. The scope and limitations of this process are explored (25 examples, up to 94 % yield and 96:4 er), with applications to the synthesis of (S)-Venlafaxine⋅HCl and (S)-Nakinadine B. Mechanistic studies are consistent with a C(1)-ammonium enolate pathway being followed rather than an alternative dynamic kinetic resolution process. Control studies indicate that (i) a linear effect between catalyst and product er is observed; (ii) an acyl ammonium ion can be used as a precatalyst; (iii) reversible isothiourea addition to an in situ generated iminium ion leads to an off-cycle intermediate that can be used as a productive precatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA