Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Cell ; 177(3): 587-596.e9, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002795

RESUMO

Severe obesity is a rapidly growing global health threat. Although often attributed to unhealthy lifestyle choices or environmental factors, obesity is known to be heritable and highly polygenic; the majority of inherited susceptibility is related to the cumulative effect of many common DNA variants. Here we derive and validate a new polygenic predictor comprised of 2.1 million common variants to quantify this susceptibility and test this predictor in more than 300,000 individuals ranging from middle age to birth. Among middle-aged adults, we observe a 13-kg gradient in weight and a 25-fold gradient in risk of severe obesity across polygenic score deciles. In a longitudinal birth cohort, we note minimal differences in birthweight across score deciles, but a significant gradient emerged in early childhood and reached 12 kg by 18 years of age. This new approach to quantify inherited susceptibility to obesity affords new opportunities for clinical prevention and mechanistic assessment.


Assuntos
Peso Corporal , Herança Multifatorial/genética , Obesidade/patologia , Adolescente , Índice de Massa Corporal , Criança , Bases de Dados Factuais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Fatores de Risco , Índice de Gravidade de Doença
2.
FASEB J ; 37(5): e22920, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37078546

RESUMO

The locus coeruleus (LC), enriched in vesicular glutamate transporter 2 (VGlut2) neurons, is a potential homeostasis-regulating hub. However, the identity of melanocortin-4 receptor (MC4R) neurons in the paraventricular nucleus (PVN) of the hypothalamus, PVNVGlut2::MC4R and LCVGlut2::MC4R regulation of body weight, and axonal projections of LCVGlut2 neurons remain unclear. Conditional knockout of MC4R in chimeric mice was used to confirm the effects of VGlut2. Interscapular brown adipose tissue was injected with pseudorabies virus to study the central nervous system projections. We mapped the LCVGlut2 circuitry. Based on the Cre-LoxP recombination system, specific knockdown of MC4R in VGlut2 neurons resulted in weight gain in chimeric mice. Adeno-associated virus-mediated knockdown of MC4R expression in the PVN and LC had potential superimposed effects on weight gain, demonstrating the importance of VGlut2 neurons. Unlike these wide-ranging efferent projections, the PVN, hypothalamic arcuate nucleus, supraoptic nucleus of the lateral olfactory tegmental nuclei, and nucleus tractus solitarius send excitatory projections to LCVGlut2 neurons. The PVN → LC glutamatergic MC4R long-term neural circuit positively affected weight management and could help treat obesity.


Assuntos
Núcleo Hipotalâmico Paraventricular , Receptor Tipo 4 de Melanocortina , Camundongos , Animais , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Peso Corporal , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios/metabolismo , Aumento de Peso
3.
Diabetes Obes Metab ; 26 Suppl 2: 34-45, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450938

RESUMO

Hypothalamic obesity (HO) is a rare and complex disorder that confers substantial morbidity and excess mortality. HO is a unique subtype of obesity characterized by impairment in the key brain pathways that regulate energy intake and expenditure, autonomic nervous system function, and peripheral hormonal signalling. HO often occurs in the context of hypothalamic syndrome, a constellation of symptoms that follow from disruption of hypothalamic functions, for example, temperature regulation, sleep-wake circadian control, and energy balance. Genetic forms of HO, including the monogenic obesity syndromes, often impact central leptin-melanocortin pathways. Acquired forms of HO occur as a result of tumours impacting the hypothalamus, such as craniopharyngioma, surgery or radiation to treat those tumours, or other forms of hypothalamic damage, such as brain injury impacting the region. Risk for severe obesity following hypothalamic injury is increased with larger extent of hypothalamic damage or lesions that contain the medial and posterior hypothalamic nuclei that support melanocortin signalling pathways. Structural damage in these hypothalamic nuclei often leads to hyperphagia, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue, the collective effect of which is rapid weight gain. Individuals with hyperphagia are perpetually hungry. They do not experience fullness at the end of a meal, nor do they feel satiated after meals, leading them to consume larger and more frequent meals. To date, most efforts to treat HO have been disappointing and met with limited, if any, long-term success. However, new treatments based on the distinct pathophysiology of disturbed energy homeostasis in acquired HO may hold promise for the future.


Assuntos
Craniofaringioma , Doenças Hipotalâmicas , Neoplasias Hipofisárias , Humanos , Leptina/metabolismo , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/terapia , Doenças Hipotalâmicas/metabolismo , Obesidade/complicações , Obesidade/terapia , Obesidade/genética , Hipotálamo/metabolismo , Craniofaringioma/complicações , Craniofaringioma/terapia , Craniofaringioma/metabolismo , Hiperfagia , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Melanocortinas/metabolismo , Metabolismo Energético/fisiologia
4.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654741

RESUMO

Hypothalamic regulation of feeding and energy expenditure is a fundamental and evolutionarily conserved neurophysiological process critical for survival. Dysregulation of these processes, due to environmental or genetic causes, can lead to a variety of pathological conditions ranging from obesity to anorexia. Melanocortins and endogenous cannabinoids (eCBs) have been implicated in the regulation of feeding and energy homeostasis; however, the interaction between these signaling systems is poorly understood. Here, we show that the eCB 2-arachidonoylglycerol (2-AG) regulates the activity of melanocortin 4 receptor (MC4R) cells in the paraventricular nucleus of the hypothalamus (PVNMC4R) via inhibition of afferent GABAergic drive. Furthermore, the tonicity of eCBs signaling is inversely proportional to energy state, and mice with impaired 2-AG synthesis within MC4R neurons weigh less, are hypophagic, exhibit increased energy expenditure, and are resistant to diet-induced obesity. These mice also exhibit MC4R agonist insensitivity, suggesting that the energy state-dependent, 2-AG-mediated suppression of GABA input modulates PVNMC4R neuron activity to effectively respond to the MC4R natural ligands to regulate energy homeostasis. Furthermore, post-developmental disruption of PVN 2-AG synthesis results in hypophagia and death. These findings illustrate a functional interaction at the cellular level between two fundamental regulators of energy homeostasis, the melanocortin and eCB signaling pathways in the hypothalamic feeding circuitry.


Assuntos
Canabinoides/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Animais , Ácidos Araquidônicos/fisiologia , Peso Corporal , Endocanabinoides/fisiologia , Jejum , Comportamento Alimentar/fisiologia , Teste de Tolerância a Glucose , Glicerídeos/fisiologia , Resistência à Insulina , Camundongos , Obesidade/genética , Receptor Tipo 4 de Melanocortina/agonistas , Ácido gama-Aminobutírico/metabolismo
5.
J Cell Physiol ; 238(12): 2867-2878, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37850660

RESUMO

The melanocortin 4 receptor (MC4R) is a G protein-coupled transporter that mediates the regulation of thyroid hormones and leptin on energy balance and food intake. However, the mechanisms of transcriptional regulation of Mc4r by thyroid hormone and leptin in fish have been rarely reported. The messenger RNA expression of Mc4r gene was significantly higher in brain than those in other tissues of mandarin fish. We analyzed the structure and function of a 2029 bp sequence of Mc4r promoter. Meanwhile, overexpression of NKX2.1 and incubation with leptin significantly increased Mc4r promoter activity, but triiodothyronine showed the opposite effect. In addition, mutations in the NKX2.1 binding site abolished not only the activation of Mc4r promoter activity by leptin but also the inhibitory effect of thyroid hormones on Mc4r promoter activity. In summary, these results suggested that thyroid hormones and leptin might regulate the transcriptional expression of Mc4r through NKX2.1.


Assuntos
Peixes , Genes Homeobox , Leptina , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Leptina/genética , Leptina/farmacologia , Regiões Promotoras Genéticas/genética , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Hormônios Tireóideos , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo , Humanos , Células HEK293
6.
J Anim Breed Genet ; 140(2): 207-215, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36583444

RESUMO

The missense mutation Asp298Asn in the melanocortin 4 receptor (MC4R) is associated with daily gain or fatness in pigs (Sus scrofa domesticus). However, to the best of our knowledge, no study has directly compared the effects of the polymorphism between different feeding levels, even though diet plays a vital role in the swine industry. To explore possible differences, data from 439 mostly commercial hybrids fattened ad libitum and 119 commercial hybrids fattened with restricted feed ration were collected. The recorded traits were average daily gain (ADG), feed conversion ratio (FCR), carcass weight (CW), dressing percentage (DP), lean meat content (LM), backfat thickness (BFT), lean cuts weight, and meat quality parameters such as pH, temperature, drip loss, and CIELAB colour space. The general linear model revealed that the overall effect of MC4R was not statistically significant, but significant differences (p < 0.05) were found in ADG, FCR, CW, DP, LM, and BFT. In the ad libitum category, the AA genotype (298Asn/298Asn) tended to be the most favourable for growth-related traits, with the lowest LM, which is consistent with previous findings. In the restricted category, on the other hand, GA heterozygotes (298Asp/298Asn) achieved the best performance in terms of growth, whereas AA homozygotes showed the worst performance. Therefore, these results raise the possibility of an interaction between MC4R and the feeding level.


Assuntos
Dieta , Carne , Animais , Fenótipo , Homozigoto , Composição Corporal/genética
7.
BMC Endocr Disord ; 22(1): 121, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538513

RESUMO

BACKGROUND: Recent studies have shown that dietary carbohydrate quantity and quality as well as genetic variants may contribute to determining the metabolic rate and general and central obesity. This study aimed to examine interactions between melanocortin 4 receptor gene (MC4R) rs17782313 and dietary carbohydrate intake, glycemic index (GI), and glycemic load (GL) on body mass index (BMI), waist circumferences (WC), basal metabolic rate (BMR), and BMR/kg in overweight/obese women. METHODS: A total of 282 Iranian women (BMI ≥ 25) aged 18-56 years were enrolled in this cross-sectional study. All participants were assessed for blood parameters, body composition, BMR, and dietary intake. Dietary carbohydrate intake, GI, and GL were determined using a valid, reliable 147-item food frequency questionnaire. MC4R rs17782313 was genotyped by the restriction fragment length polymorphism (PCR-RFLP) method. RESULTS: After adjustment for age and energy intake, significant interactions were observed between carbohydrate intake and MC4R rs17782313 in terms of BMI (P Interaction = 0.007), WC (P Interaction = 0.02), and BMR/kg (P Interaction = 0.003) in this way that higher carbohydrate intake, compared with lower intake, was associated with an increase in BMI and WC for individuals with C allele carriers (TC + CC genotypes), while related to an increase in BMR/kg for those carrying the TT genotype. No significant interaction was found between MC4R rs17782313 and GI and GL on BMI, WC, BMR/kg, and BMR. CONCLUSIONS: Interactions between the MC4R rs17782313 and carbohydrate intake probably can have an effect on BMI, WC, and BMR/kg in overweight/obese women.


Assuntos
Sobrepeso , Receptor Tipo 4 de Melanocortina , Metabolismo Basal/genética , Índice de Massa Corporal , Estudos Transversais , Carboidratos da Dieta , Feminino , Predisposição Genética para Doença , Humanos , Irã (Geográfico)/epidemiologia , Obesidade/complicações , Obesidade Abdominal/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
8.
Eat Weight Disord ; 27(8): 3609-3625, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36565379

RESUMO

PURPOSE: Mental health and sleep quality are associated with genetics and nutrient and energy intake. The present study examined the association between ultra-processed food (UPF) intake and genetic risk score (GRS) and their interactions on mental health and sleep quality in Iranian women. METHODS: A cross-sectional study was conducted on 278 overweight and obese females aged between 18 and 56 years. According to the NOVA classification system, 37 food groups and beverages were collected using a 147-item semi-quantitative food frequency questionnaire (FFQ). The blood parameters of all participants were assessed. Mini-column kit (type G; Genall; Exgene) and the PCR-RFLP method were used to extract DNA and determine gene polymorphism, respectively. Three single nucleotide polymorphisms (SNPs), including Caveolin_1 (Cav_1), Melanocortin4 receptor (MC4R), and cryptochrome circadian regulator 1 (CRY1), were used to calculate GRS. The individual risk allele (0, 1, 2) for each SNP was calculated using the incremental genetic model. RESULTS: After controlling for confounders, a significant interaction was found for depression (ß = 0.026, 95% CI 0.003, 0.049, P = 0.028) and depression anxiety stress scales (DASS) score (ß = 0.059, 95% CI 0.001, 0.117, P = 0.046) on the NOVA classification system and GRS. CONCLUSIONS: The findings of this study showed a significant interaction between GRS and the NOVA classification system on mental disorders, including depression, DASS score and stress. There was also a significant relationship between the NOVA classification system and anxiety, DASS score, sleep quality and depression. Furthermore, a partially significant association was observed between GRS and stress. LEVEL OF EVIDENCE: Level V, cross-sectional descriptive study.


Assuntos
Alimento Processado , Qualidade do Sono , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Saúde Mental , Irã (Geográfico) , Fast Foods , Fatores de Risco , Dieta
9.
Diabetologia ; 64(1): 181-194, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052459

RESUMO

AIMS/HYPOTHESIS: Melanocortin 4 receptor (MC4R) mutation is the most common cause of known monogenic obesity in humans. Unexpectedly, humans and rodents with MC4R deficiency do not develop hyperglycaemia despite chronic obesity and insulin resistance. To explain the underlying mechanisms for this phenotype, we determined the role of MC4R in glucose homeostasis in the presence and absence of obesity in mice. METHODS: We used global and hypothalamus-specific MC4R-deficient mice to investigate the brain regions that contribute to glucose homeostasis via MC4R. We performed oral, intraperitoneal and intravenous glucose tolerance tests in MC4R-deficient mice that were either obese or weight-matched to their littermate controls to define the role of MC4R in glucose regulation independently of changes in body weight. To identify the integrative pathways through which MC4R regulates glucose homeostasis, we measured renal and adrenal sympathetic nerve activity. We also evaluated glucose homeostasis in adrenaline (epinephrine)-deficient mice to investigate the role of adrenaline in mediating the effects of MC4R in glucose homeostasis. We employed a graded [13C6]glucose infusion procedure to quantify renal glucose reabsorption in MC4R-deficient mice. Finally, we measured the levels of renal glucose transporters in hypothalamus-specific MC4R-deficient mice and adrenaline-deficient mice using western blotting to ascertain the molecular mechanisms underlying MC4R control of glucose homeostasis. RESULTS: We found that obese and weight-matched MC4R-deficient mice exhibited improved glucose tolerance due to elevated glucosuria, not enhanced beta cell function. Moreover, MC4R deficiency selectively in the paraventricular nucleus of the hypothalamus (PVH) is responsible for reducing the renal threshold for glucose as measured by graded [13C6]glucose infusion technique. The MC4R deficiency suppressed renal sympathetic nerve activity by 50% in addition to decreasing circulating adrenaline and renal GLUT2 levels in mice, which contributed to the elevated glucosuria. We further report that adrenaline-deficient mice recapitulated the increased excretion of glucose in urine observed in the MC4R-deficient mice. Restoration of circulating adrenaline in both the MC4R- and adrenaline-deficient mice reversed their phenotype of improved glucose tolerance and elevated glucosuria, demonstrating the role of adrenaline in mediating the effects of MC4R on glucose reabsorption. CONCLUSIONS/INTERPRETATION: These findings define a previously unrecognised function of hypothalamic MC4R in glucose reabsorption mediated by adrenaline and renal GLUT2. Taken together, our findings indicate that elevated glucosuria due to low sympathetic tone explains why MC4R deficiency does not cause hyperglycaemia despite inducing obesity and insulin resistance. Graphical abstract.


Assuntos
Hexoses/metabolismo , Homeostase/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Bases de Schiff/metabolismo , Animais , Glicemia/metabolismo , Cruzamentos Genéticos , Epinefrina/deficiência , Epinefrina/fisiologia , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 2/fisiologia , Glicosúria/fisiopatologia , Hipotálamo/química , Insulina/sangue , Resistência à Insulina/fisiologia , Rim/inervação , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia , Receptor Tipo 4 de Melanocortina/deficiência , Sistema Nervoso Simpático/fisiopatologia
10.
Biochem Biophys Res Commun ; 566: 36-44, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34116355

RESUMO

The number of patients with non-alcoholic steatohepatitis (NASH) and inflammatory bowel disease (IBD) is increasing. This study elucidates the effect of both NASH and IBD on hepatocellular carcinoma (HCC) using a mouse model combining NASH and IBD. The melanocortin 4 receptor-deficient (Mc4r-KO) mice were divided into four groups with or without a high-fat diet (HFD) and with or without dextran sulfate sodium (DSS) to induce colitis, and the differences in liver damage and occurrence of HCC were analyzed. In the HFD + DSS group, the body weight, liver weight/body weight ratio, and serum levels of albumin and alanine aminotransferase were significantly lower than those in the HFD group. We further found that steatosis was significantly lower and lobular inflammation was significantly higher in the HFD + DSS group than those in the HFD group, and that individual steatosis and lobular inflammation state in the HFD + DSS mice varied. We detected HCC only in the HFD + DSS group, and mice with severe steatosis and mild colitis were found to be at high risk of HCC. Presently, the prediction of HCC is very difficult. In some cases, severe colitis reverses the fat accumulation due to appetite loss. Our findings clearly showed that severe steatohepatitis and mild colitis are simultaneously essential for the occurrence of HCC in patients with NASH and IBD.


Assuntos
Carcinoma Hepatocelular/etiologia , Colite/complicações , Neoplasias Hepáticas/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Carcinoma Hepatocelular/patologia , Colite/patologia , Modelos Animais de Doenças , Humanos , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia
11.
Skin Pharmacol Physiol ; 34(6): 307-316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34058738

RESUMO

BACKGROUND AND OBJECTIVES: Gene mutations within the leptin-melanocortin signaling pathway lead to severe early-onset obesity. Recently, a phase 2 trial evaluated new pharmacological treatment options with the MC4R agonist setmelanotide in patients with mutations in the genes encoding proopiomelanocortin (POMC) and leptin receptor (LEPR). During treatment with setmelanotide, changes in skin pigmentation were observed, probably due to off-target effects on the closely related melanocortin 1 receptor (MC1R). Here, we describe in detail the findings of dermatological examinations and measurements of skin pigmentation during this treatment over time and discuss the impact of these changes on patient safety. METHODS: In an investigator-initiated, phase 2, open-label pilot study, 2 patients with loss-of-function POMC gene mutations and 3 patients with loss-of-function variants in LEPR were treated with the MC4R agonist setmelanotide. Dermatological examination, dermoscopy, whole body photographic documentation, and spectrophotometric measurements were performed at screening visit and approximately every 3 months during the course of the study. RESULTS: We report the results of a maximum treatment duration of 46 months. Skin pigmentation increased in all treated patients, as confirmed by spectrophotometry. During continuous treatment, the current results indicate that elevated tanning intensity levels may stabilize over time. Lips and nevi also darkened. In red-haired study participants, hair color changed to brown after initiation of setmelanotide treatment. DISCUSSION: Setmelanotide treatment leads to skin tanning and occasionally hair color darkening in both POMC- and LEPR-deficient patients. No malignant skin changes were observed in the patients of this study. However, the results highlight the importance of regular skin examinations before and during MC4R agonist treatment.


Assuntos
Melanocortinas , Receptor Tipo 4 de Melanocortina , Humanos , Leptina/genética , Mutação , Obesidade , Projetos Piloto , Receptor Tipo 4 de Melanocortina/genética , Pigmentação da Pele/genética
12.
J Neurochem ; 153(3): 346-361, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31792980

RESUMO

Melanocortin-4 receptors (MC4 R) are unique among G-protein-coupled receptors (GPCRs) as they have endogenous ligands that can exhibit inverse agonistic properties in the case of elevated basal activity. It is known that the constitutive activity of GPCRs strongly affects the ligand-dependent physiological responses, but little is known about these regulatory mechanisms. Since several metal ions have been shown to be important modulators of the signal transduction of GPCRs, we hypothesized that metal ions regulate the basal activity of MC4 Rs. Implementation of a fluorescence anisotropy assay and novel redshifted fluorescent peptides enabled kinetic characterization of ligand binding to MC4 R expressed on budded baculoviruses. We show that Ca2+ is required for high-affinity ligand binding, but Zn2+ and Cu2+ in the presence of Ca2+ behave as negative allosteric modulators of ligand binding to MC4 R. FRET-based cAMP biosensor was used to measure the activation of MC4 R stably expressed in CHO-K1 cells. At low micromolar concentrations, Zn2+ caused MC4 R-dependent activation of the cAMP pathway, whereas Cu2+ reduced the activity of MC4 R even below the basal level. These findings indicate that at physiologically relevant concentrations can Zn2+ and Cu2+ function as MC4 R agonists or inverse agonists, respectively. This means that depending on the level of constitutive activity induced by Zn2+ ions, the pharmacological effect of orthosteric ligands of MC4 R can be switched from a partial to an inverse agonist. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Science badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Cobre/metabolismo , AMP Cíclico/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/fisiologia , Zinco/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células CHO , Cobre/farmacologia , Cricetinae , Cricetulus , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptor Tipo 4 de Melanocortina/química , Células Sf9 , Transdução de Sinais/efeitos dos fármacos , Zinco/farmacologia
13.
Mol Med ; 26(1): 77, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770936

RESUMO

BACKGROUND: Little is known about the correlation between the melanocortin 4 receptor gene (MC4R) single nucleotide polymorphisms (SNPs) and the risk of obesity. This research sought to test the MC4R rs17782313, rs476828 and rs12970134 SNPs, their haplotypes and gene-environment interactions on the risk of obesity in the Maonan ethnic group, an isolated minority in China. METHODS: A case-control study comprised of 1836 participants (obesity group, 858; and control group, 978) was conducted. Genotypes of the three SNPs were determined by the next-generation sequencing (NGS) technology. RESULTS: The genotypic frequencies of the three SNPs were different between the obesity and control groups (P <  0.05 for all). The minor allelic frequency of the MC4R rs17782313C, rs476828C and rs12970134A was higher in obesity than in control groups (13.8% vs. 8.3%, P <  0.001, 17.1% vs. 10.9%, P <  0.001; and 15.5% vs. 11.5%, P <  0.001; respectively). Additionally, the dominant model of rs17782313 and rs476828 SNPs revealed an increased morbidity function on the risk of obesity (P <  0.05). A correlation between SNP-environment and the risk of obesity was also observed. The rs17782313C-rs476828C-rs12970134A haplotype was associated with high risk of obesity (OR = 1.796, 95% CI = 1.447-2.229), whereas the rs17782313T-rs476828T-rs12970134G and rs17782313T-rs476828T-rs12970134A haplotypes were associated with low risk of obesity (OR = 0.699, 95% CI = 0.586-0.834 and OR = 0.620, 95% CI = 0.416-0.925; respectively). The interactions between haplotype and waist circumference on the risk of obesity were also noted. CONCLUSIONS: We discovered that the MC4R rs17782313, rs476828 and rs12970134 SNPs and their haplotypes were associated with the risk of obesity in the Chinese Maonan population.


Assuntos
Suscetibilidade a Doenças , Interação Gene-Ambiente , Haplótipos , Obesidade/etiologia , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Melanocortina/genética , Alelos , Biomarcadores , Estudos de Casos e Controles , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Desequilíbrio de Ligação , Obesidade/epidemiologia , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo
14.
Biochem Biophys Res Commun ; 530(4): 665-672, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768187

RESUMO

The role of sphingosine 1-phosphate (S1P) and its sphingosine-1-phosphate receptors (S1PRs) in non-alcoholic steatohepatitis (NASH) is unclear. We aimed to analyze the role of S1P/S1PRs in a Melanocortin-4 receptor (Mc4r)-deficient NASH murine model using FTY720, the functional antagonist of S1PR1, S1PR3, S1PR4, and S1PR5, and JTE-013, the antagonist of S1PR2. We observed that, compared to that in the control, the mRNA of S1pr1 tended to decrease, whereas those of S1pr2 and S1pr3 significantly increased in Mc4r-knockout (KO) mice subjected to a Western diet (WD). While the fat area did not differ, fibrosis progression differed significantly between control mice and mice in which liver S1PRs were blocked. Lipidomic and metabolomic analysis of liver tissues showed that JTE-013-administered mice showed elevation of S-adenosyl-l-methionine level, which can induce aberrant methylation due to reduction in glycine N-methyltransferase (GNMT) and elevation in diacylglycerol (DG) and triacylglycerol (TG) levels, leading to increased susceptibility to hepatocellular carcinoma (HCC). These phenotypes are similar to those of Gnmt-KO mice, suggesting that blocking the S1P/S1PR2 axis triggers aberrant methylation, which may increase DG and TG, and hepatocarcinogenesis. Our observations that the S1P/S1PR2 axis averts HCC occurrence may assist in HCC prevention in NASH.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/genética
15.
Ann Pharmacother ; 54(7): 684-690, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31893927

RESUMO

Objective: To review data regarding bremelanotide, a recently approved therapy for hypoactive sexual desire disorder (HSDD). Data Sources: Literature search of Medline, SCOPUS, and EMBASE was performed using the search terms bremelanotide, bremelanotide injection, Vyleesi, and melanocortin 4 receptor agonist between January 1, 1996, and December 15, 2019. Reference lists from included articles were also reviewed for pertinent citations. Study Selection/Data Extraction: We included phase 2 and 3 trials of bremelanotide. There were 2 reports of phase 3 trials and 2 reports of phase 2 trials. Additional information from supplementary analyses was also referenced. Data Synthesis: Bremelanotide demonstrates significant improvement in desire and a significant decrease in distress related to lack of desire. The most common adverse effects include nausea (39.9%), facial flushing (20.4%), and headache (11%). Relevance to Patient Care and Clinical Practice: Bremelanotide is the second Food and Drug Administration-approved medication for the treatment of HSDD. Bremelanotide's place in therapy is unknown, as the HSDD guidelines were last updated in 2017. Although the trials met statistical significance for change in sexual desire elements and distress related to sexual desire, the clinical benefit may only be modest. Conclusion: Bremelanotide is a subcutaneous injection that can be administered as needed approximately 45 minutes prior to sexual activity. Bremelanotide is safe and has limited drug-drug interactions, including no clinically significant interactions with ethanol. Prescribing guidelines recommend no more than 1 dose in 24 hours and no more than 8 doses per month. Individuals should discontinue use after 8 weeks without benefit.


Assuntos
Libido/efeitos dos fármacos , Peptídeos Cíclicos/uso terapêutico , Disfunções Sexuais Psicogênicas/tratamento farmacológico , alfa-MSH/uso terapêutico , Ensaios Clínicos como Assunto , Interações Medicamentosas , Feminino , Humanos , Injeções Subcutâneas , Náusea/induzido quimicamente , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/efeitos adversos , Peptídeos Cíclicos/farmacocinética , Receptor Tipo 3 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/agonistas , Resultado do Tratamento , alfa-MSH/administração & dosagem , alfa-MSH/efeitos adversos , alfa-MSH/farmacocinética
16.
Nutr Neurosci ; 23(10): 824-837, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32558632

RESUMO

Background: In the current study, we aimed to evaluate the interaction between dietary Non-Enzymatic Antioxidant Capacity (NEAC) and rs17782313 polymorphism on hypothalamic hormones and cardio-metabolic risk factors. Methods: A total of 287 subjects (aged 20-50 years, 147 males and 140 females) enrolled in the cross-sectional study. Dietary NEAC was assessed using databases of NEAC measurements compiled from outcomes for three different analyses: oxygen radical absorbance capacity (ORAC), ferric reducing-antioxidant power (FRAP), and total radical-trapping antioxidant parameter (TRAP) and genotyping for the near MC4R rs17782313 was carried out by Polymerase chain reaction-restriction fragments length polymorphism (PCR-RFLP) method. Results: The significant interactions were found between adherence to the dietary NEAC and MC4R rs17782313 in relation to high-density lipoprotein-cholesterol (HDL-C), glucose, α-melanocyte stimulating hormone (α-MSH), insulin and quantitative insulin sensitivity check index (QUICKI) (P Interaction = 0.03, 0.01, 0.04, 0.04 and 0.04, respectively). In homozygous subjects for the minor allele, the serum insulin level and QUICKI in participants with the highest adherence to TRAP were significantly higher than those with the lowest adherence (p < 0.001). There was a significant inverse association between high ORAC score and risk of metabolic syndrome even after adjusting for potential confounders (OR: 0.33; 95%CI:0.13-0.81) and also a significant inverse association between high NEAC (ORAC, FRAP and TRAP assays) score and high triglyceride (TG) level was found in obese adults. Conclusion: In conclusion, our study found for the first time that the NEAC significantly interacts with the rs17782313 genotypes to influence several metabolic risk factors in obesity.


Assuntos
Fatores de Risco Cardiometabólico , Hormônios Hipotalâmicos/metabolismo , Obesidade/metabolismo , Capacidade de Absorbância de Radicais de Oxigênio , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Adulto , Estudos Transversais , Feminino , Genótipo , Humanos , Hormônios Hipotalâmicos/genética , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Adulto Jovem
17.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785054

RESUMO

The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.


Assuntos
Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/genética , Proteína Relacionada com Agouti/química , Proteína Relacionada com Agouti/farmacologia , Sequência de Aminoácidos , Animais , Arrestinas/metabolismo , Sítios de Ligação , Humanos , Ligantes , Mutação com Perda de Função , Obesidade/genética , Ligação Proteica , Conformação Proteica , Proteínas Modificadoras da Atividade de Receptores/química , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/genética , alfa-MSH/química , alfa-MSH/farmacologia
18.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076233

RESUMO

The melanocortin-4 receptor (MC4R) is a member of the G-protein-coupled receptor (GPCR) superfamily, which has been extensively studied in obesity pathogenesis due to its critical role in regulating energy homeostasis. Both the Gs-cAMP and ERK1/2 cascades are known as important intracellular signaling pathways initiated by the MC4R. The DRYxxI motif at the end of transmembrane domain 3 and the intracellular loop 2 (ICL2) are thought to be crucial for receptor function in several GPCRs. To study the functions of this domain in MC4R, we performed alanine-scanning mutagenesis on seventeen residues. We showed that one residue was critical for receptor cell surface expression. Eight residues were important for ligand binding. Mutations of three residues impaired Gs-cAMP signaling without changing the binding properties. Investigation on constitutive activities of all the mutants in the cAMP pathway revealed that six residues were involved in constraining the receptor in inactive states and five residues were important for receptor activation in the absence of an agonist. In addition, mutations of four residues impaired the ligand-stimulated ERK1/2 signaling pathway without affecting the binding properties. We also showed that some mutants were biased to the Gs-cAMP or ERK1/2 signaling pathway. In summary, we demonstrated that the DRYxxI motif and ICL2 were important for MC4R function.


Assuntos
Receptor Tipo 4 de Melanocortina/química , Alanina/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases , Ligação Proteica , Transporte Proteico , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
19.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059383

RESUMO

The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin-melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via GS-dependent cyclic adenosine-monophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a GS loss-of-function (S127L) and a GS gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and ß-arrestin2 recruitment, using the two endogenous agonists, α- and ß-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the Gq/11 pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations.


Assuntos
Mutação , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Leptina/metabolismo , Ligantes , Melanocortinas/metabolismo , Modelos Teóricos , Obesidade/genética , Fosforilação , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/metabolismo , alfa-MSH/metabolismo
20.
Biochem Biophys Res Commun ; 520(3): 651-656, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31629472

RESUMO

Melanocortin 4 receptor (MC4R)-deficient mice had been used for several years to study human nonalcoholic steatohepatitis (NASH). However, although liver pathologic and biochemical indicators have been examined, mice models do not always faithfully display the phenotype of the human disease. In this study, we investigated the MC4R knockout phenotype in miniature pigs. We found that pigs lacking MC4R exhibited hyperorexia, insulin resistance, hyperinsulinemia, disordered lipid metabolism and their livers accumulated significant amounts of fat. We have shown that deletion of MC4R results in hyperphagia and increased body fat, ultimately leading to hepatic steatosis without atherogenic diet.


Assuntos
Hiperfagia/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Receptor Tipo 4 de Melanocortina/deficiência , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Animais Geneticamente Modificados , Crescimento Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Técnicas de Inativação de Genes , Humanos , Hiperfagia/genética , Hiperfagia/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Gravidez , Receptor Tipo 4 de Melanocortina/genética , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA