Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768774

RESUMO

Shape memory alloys, especially ferromagnetic shape memory alloys, are interesting new materials for the manufacturing of stents. Iron-palladium alloys in particular can be used to manufacture self-expanding temporary stents due to their optimum rate of degradation, which is between that of magnesium and pure iron, two metals commonly used in temporary stent research. In order to avoid blood clotting upon the introduction of the stent, they are often coated with anticoagulants. In this study, sulfated pectin, a heparin mimetic, was synthesized in different ways and used as coating on multiple iron-palladium alloys. The static and dynamic prothrombin time (PT) and activated partial thromboplastin time (APTT) of the prepared materials were compared to samples uncoated or coated with polyethylene glycol. While no large differences were observed in the prothrombin time measurements, the activated partial thromboplastin time increased significantly with all alloys coated with sulfated pectin. Aside from that, sulfated pectin synthesized by different methods also caused slight changes in the activated partial thromboplastin time. These findings show that iron-palladium alloys can be coated with anticoagulants to improve their utility as material for temporary stents. Sulfated pectin was characterized by nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy, and the coated alloys by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX).


Assuntos
Anticoagulantes , Ligas de Memória da Forma , Paládio , Propriedades de Superfície , Ligas/química , Ferro , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
2.
Molecules ; 27(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35744916

RESUMO

Textile scaffolds that are either 2D or 3D with tunable shapes and pore sizes can be made through textile processing (weaving, knitting, braiding, nonwovens) using microfilaments. However, these filaments lack nano-topographical features to improve bone cell adhesion and proliferation. Moreover, the diameter of such filaments should be higher than that used for classical textiles (10−30 µm) to enable adhesion and the efficient spreading of the osteoblast cell (>30 µm diameter). We report, for the first time, the fabrication of biodegradable nanostructured cylindrical PLLA (poly-L-Lactic acid) microfilaments of diameters 100 µm and 230 µm, using a single step melt-spinning process for straightforward integration of nano-scale ridge-like structures oriented in the fiber length direction. Appropriate drawing speed and temperature used during the filament spinning allowed for the creation of instabilities giving rise to nanofibrillar ridges, as observed by AFM (Atomic Force Microscopy). These micro-filaments were hydrophobic, and had reduced crystallinity and mechanical strength, but could still be processed into 2D/3D textile scaffolds of various shapes. Biological tests carried out on the woven scaffolds made from these nano-structured micro filaments showed excellent human bone cell MG 63 adhesion and proliferation, better than on smooth 30 µm- diameter fibers. Elongated filopodia of the osteoblast, intimately anchored to the nano-structured filaments, was observed. The filaments also induced in vitro osteogenic expression, as shown by the expression of osteocalcin and bone sialoprotein after 21 days of culture. This work deals with the fabrication of a new generation of nano-structured micro-filament for use as scaffolds of different shapes suited for bone cell engineering.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Adesão Celular , Proliferação de Células , Humanos , Poliésteres/farmacologia , Têxteis , Alicerces Teciduais/química
3.
Philos Trans A Math Phys Eng Sci ; 379(2209): 20200334, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510930

RESUMO

Upscaling lignin-based precursor fibre production is an essential step in developing bio-based carbon fibre from renewable feedstock. The main challenge in upscaling of lignin fibre production by melt spinning is its melt behaviour and rheological properties, which differ from common synthetic polymers used in melt spinning. Here, a new approach in melt spinning of lignin, using a spin carrier system for producing bicomponent fibres, has been introduced. An ethanol extracted lignin fraction from LignoBoost process of commercial softwood kraft black liquor was used as feedstock. After additional heat treatment, melt spinning was performed in a pilot-scale spinning unit. For the first time, biodegradable polyvinyl alcohol (PVA) was used as a spin carrier to enable the spinning of lignin by improving the required melt strength. PVA-sheath/lignin-core bicomponent fibres were manufactured. Afterwards, PVA was dissolved by washing with water. Pure lignin fibres were stabilized and carbonized, and tensile properties were measured. The measured properties, tensile modulus of 81.1 ± 3.1 GPa and tensile strength of 1039 ± 197 MPa, are higher than the majority of lignin-based carbon fibres reported in the literature. This new approach can significantly improve the melt spinning of lignin and solve problems related to poor spinnability of lignin and results in the production of high-quality lignin-based carbon fibres. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.

4.
Mikrochim Acta ; 187(4): 241, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32206895

RESUMO

Three-dimensional nanoporous PtSi (NP-PtSi) alloy was prepared by dealloying ternary PtSiAl alloy ribbons. By combining the nanoporous morphology of PtSi and graphene (GR), a new composite material was developed, which was used to modify the surface of a glassy carbon electrode (GCE). The resulting modified electrodes showed an excellent electrocatalytic activity towards the electro oxidation of bisphenol A. Based on differential pulse voltammetry measurements, NP-PtSi/GR/GCE showed linear response over the concentration range 0.30 to 85 µM bisphenol A, while the detection limit was found to be 0.11 µM (S/N = 3). NP-PtSi/GR/GCE showed also satisfactory stability and selectivity over various compounds present in real samples, and they were successfully applied to the determination of bisphenol A in inoculated milk samples. Graphical abstract Nanoporous PtSi (NP-PtSi) was fabricated by dealloying PtSiAl alloy ribbons. Based on the NP-PtSi alloy and graphene (GR) composites that modified glassy carbon electrode (GCE), a sensitive and stable electrochemical sensor was developed for the determination of bisphenol A by differential pulse voltammetric (DPV) method.


Assuntos
Compostos Benzidrílicos/análise , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Fenóis/análise , Eletrodos , Grafite , Limite de Detecção , Platina , Silício
5.
Molecules ; 24(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999658

RESUMO

The objective of this study is to assess the efficiency of biobased carbonization agent in intumescent formulations (IFRs) to examine the flame retardant properties of polylactic acid (PLA) composites and to investigate their melt-spinnability. We used phosphorous-based halogen free flame retardant (FR) and kraft lignin (KL) as bio-based carbonization agent. After melt compounding and molding into sheets by hot pressing various fire related characteristics of IFR composites were inspected and were characterized by different characterization methods. It was fascinating to discover that the introduction of 5-20 wt% FR increased the limiting oxygen index (LOI) of PLA composites from 20.1% to 23.2-33.5%. The addition of KL with content of 3-5 wt% further increased the LOI up to 36.6-37.8% and also endowed PLA/FR/KL composites with improved anti-dripping properties. Cone calorimetry revealed a 50% reduction in the peak heat release rate of the IFR composites in comparison to 100% PLA and confirmed the development of an intumescent char structure containing residue up to 40%. For comparative study, IFR composites containing pentaerythritol (PER) as a carbonization agent were also prepared and their FR properties were compared. IFR composites were melt spun and mechanical properties of multifilament yarns were tested. The analysis of char residues by energy dispersive X-ray spectrometry (EDS) and SEM images confirmed that PLA/FR/KL composites developed a thicker and more homogeneous char layer with better flame retardant properties confirming that the fire properties of PLA can be enhanced by using KL as a carbonization agent.


Assuntos
Retardadores de Chama/análise , Lignina/química , Poliésteres/química , Propilenoglicóis/química
6.
Microsc Microanal ; 23(2): 425-430, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28318460

RESUMO

We study the effects of Dy, Nb, and Ga additions on the microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposites. Dy, Nb, and Ga additions inhibit the growth of the soft magnetic α-Fe phase. Dy and Nb additions are able to refine the microstructure, whereas Ga addition plays only a minor role in prohibiting crystal growth. The magnetic properties are sensitive to Dy, Nb, and Ga additions. The Dy-containing alloy enhances the intrinsic coercivity of 872 kA/m because Dy partially replaces Nd, forming (Nd, Dy)2Fe14B. Nb addition refines the microstructure, and consequently increases the exchange coupling between magnetic grains. The Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy exhibits the highest remanence (0.92 T) due to Ga addition.

7.
Sci Technol Adv Mater ; 15(3): 035016, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27877692

RESUMO

High-speed melt spinning of a cyclo-olefin polymer (COP) and a copolyamide (CoPA) have been performed. Differential scanning calorimetry curves of the resulting monofilaments show that they remain in an amorphous state even after hot drawing. Wide angle x-ray diffraction patterns of undrawn and drawn COP filaments show that although the material remains in an amorphous state, a degree of orientation is induced in the polymer after drawing. The amorphous filaments show an enhanced bending recovery with respect to different semi-crystalline monofilaments commercially available. However, single fiber axial compressive testing indicates that the amorphous filaments exhibit a compressive modulus value which is 50% lower than what is observed for a reference semi-crystalline PET filament. Analysis of the compressive strains applied by the bending recovery test indicates that while the maximum applied strains remain well within the region of elastic deformation of the amorphous materials, the threshold between elastic and plastic deformation is reached for the semi-crystalline materials.

8.
Polymers (Basel) ; 16(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257027

RESUMO

Multi-leaf hollow-profiled fiber is a complex-shaped fiber with a hollow structure with at least three leaves arranged outside. In this work, spinning processes for the preparation of multi-leaf hollow-profiled fiber with complex cross-section patterns were proposed. Initially, the characteristics and preparation methods of multi-leaf hollow-profiled fibers were analyzed, and the key technologies for their preparation were studied. Further, micro-hole spinnerets were designed, and the numerical simulations of melt flow in the spinning channel were performed. Then, the preparation of six-leaf hollow profiled fibers was carried out to study the formation of the cross-sections. Finally, as an extension and application, an experimental verification of the melt spinning parameters' effects on eight-leaf hollow fiber preparation was conducted. From the results of the spinning experiments, it was found that when the volume flow rate of a single hole increased from 2.33 × 10-8 m3/s to 3.33 × 10-8 m3/s, the profile degree of the spun fiber increased from 30.93% to a maximum value of 40.99%. Furthermore, when the cooling speed increased from 0.6 m/s to 1 m/s, the profile degree increased from 29.56% to 41.63%. When the initial blowing height increased from 80 mm to 140 mm, the profile degree decreased from 40.99% to 27.13%. When the spinning temperature increased from 285 °C to 290 °C, the profile degree decreased from 40.99% to 38.56%. However, the winding speed had an insignificant effect on the cross-sectional shape of the spun fibers. Moreover, the spun fibers showed good performance and a natural three-dimensional crimp function.

9.
Materials (Basel) ; 17(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38399132

RESUMO

Mn-based magnets are known to be a candidate for use as rare-earth-free magnets. In this study, Mn-Ga bulk magnets were successfully produced by hot pressing using the spark plasma sintering method on Mn-Ga powder prepared from rapidly solidified Mn-Ga melt-spun ribbons. When consolidated at 773 K and 873 K, the Mn-Ga bulk magnets had fine grains and exhibited high coercivity values. The origin of the high coercivity of the Mn-Ga bulk magnets was the existence of the D022 phase. The Mn-Ga bulk magnet consolidated at 873 K exhibited the highest coercivity of 6.40 kOe.

10.
Polymers (Basel) ; 16(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38932000

RESUMO

Biodegradable biopolymers such as polylactic acid and polybutylene succinate are sustainable alternatives to traditional petroleum-based plastics. However, the factors affecting their degradation must be characterized in detail to enable successful utilization. Here we compared the extruder dwell time at three different melt-spinning scales and its influence on the degradation of both polymers. The melt temperature was the same for all three processes, but the shear stress and dwell time were key differences, with the latter being the easiest to measure. Accelerated degradation tests, including quick weathering and disintegration, were used to evaluate the influence of dwell time on the structural, mechanical, and thermal properties of the resulting fibers. We found that longer dwell times accelerated degradation. Quick weathering by UV pre-exposure before the disintegration trial, however, had a more significant effect than dwell time, indicating that degradation studies with virgin material in a laboratory-scale setting only show the theoretical behavior of a product in the laboratory. A weathered fiber from an industrial-scale spinning line more accurately predicts the behavior of a product placed on the market before ending up in the environment. This highlights the importance of optimizing process parameters such as the dwell time to adapt the degradability of biopolymers for specific applications and environmental requirements. By gaining a deeper insight into the relationship between manufacturing processes and fiber degradability, products can be adapted to meet suitable performance criteria for different applications.

11.
Materials (Basel) ; 16(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569925

RESUMO

The paper presents the results of tests of rapid solidification (RS) aluminum alloys with the addition of silicon (5%, 11%, and 20%). Casting by melt-spinning on the surface of an intensively cooled copper cylinder allowed to obtain a metallic material in the form of flakes, which were then consolidated in the process of pressing and direct extrusion. The effect of refinement on structural components after rapid solidification was determined. Rapidly solidified AlSi materials are characterized by a comparable size of Si particles, regardless of the silicon content, and the shape of these particles is close to spheroidal. Not only Si particles are fragmented, but also the Al-Si-Fe phase, which also changed its shape from irregular with sharp edges to regular and spherical. The melt-spinning process resulted in a fine-grained structure compared to materials obtained by gravity-casting and extrusion. The influence of the high-temperature compression test on the mechanical properties of rapidly solidified materials was analyzed, and the results were compared with those of gravity-cast materials. An increase in strength properties was found in the case of the AlSi5 RS alloy by 20%, in the case of AlSi11RS by 25%, and in the case of the alloy containing 20% Si by as much as 86% (tensile test). On the basis of the homogeneity of the particle distribution determined by the SEM method, it was found that rapid solidification is an effective method of increasing the strength properties and improving the plastic properties of Al-Si alloys.

12.
Polymers (Basel) ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36987153

RESUMO

Manufacturers of technical polymers must increasingly consider the degradability of their products due to the growing public interest in topics such as greenhouse gas emissions and microplastic pollution. Biobased polymers are part of the solution, but they are still more expensive and less well characterized than conventional petrochemical polymers. Therefore, few biobased polymers with technical applications have reached the market. Polylactic acid (PLA) is the most widely-used industrial thermoplastic biopolymer and is mainly found in the areas of packaging and single-use products. It is classed as biodegradable but only breaks down efficiently above the glass transition temperature of ~60 °C, so it persists in the environment. Some commercially available biobased polymers can break down under normal environmental conditions, including polybutylene succinate (PBS), polybutylene adipate terephthalate (PBAT) and thermoplastic starch (TPS), but they are used far less than PLA. This article compares polypropylene, a petrochemical polymer and benchmark for technical applications, with the commercially available biobased polymers PBS, PBAT and TPS, all of which are home-compostable. The comparison considers processing (using the same spinning equipment to generate comparable data) and utilization. Draw ratios ranged from 29 to 83, with take-up speeds from 450 to 1000 m/min. PP achieved benchmark tenacities over 50 cN/tex with these settings, while PBS and PBAT achieved over 10cN/tex. By comparing the performance of biopolymers to petrochemical polymers in the same melt-spinning setting, it is easier to decide which polymer to use in a particular application. This study shows the possibility that home-compostable biopolymers are suitable for products with lower mechanical properties. Only spinning the materials on the same machine with the same settings produces comparable data. This research, therefore, fills the niche and provides comparable data. To our knowledge, this report is the first direct comparison of polypropylene and biobased polymers in the same spinning process with the same parameter settings.

13.
Polymers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38231930

RESUMO

Fibers made from biopolymers are one solution for conserving both resources and the environment. However, these fibers currently have limited strengths, which limit their use for textile applications. In this paper, a biopolymer stereocomplex poly(-lactide) (scPLA) formation on a technical scale of high-molecular-weight poly(D-lactide) (PDLA) and poly(L-lactide) (PLLA) is presented. This scPLA material is the basis for further research to develop scPLA yarns in melt spinning with technical strengths for technical application. scPLA is compared with standard and commercially available semi-crystalline PLA for the production of fibers in melt spinning (msPLA) with textile strengths. Differential scanning calorimetry (DSC) gives a degree of crystallization of 59.7% for scPLA and 47.0% for msPLA. X-ray diffraction (XRD) confirms the pure stereocomplex crystal structure for scPLA and semi-crystallinity for msPLA. scPLA and msPLA are also compared regarding their processing properties (rheology) in melt spinning. While complex viscosity of scPLA is much lower compared to msPLA, both materials show similar viscoelastic behavior. Thermal gravimetric analysis (TGA) shows the influence of the molecular weight on the thermal stability, whereas essentially the crystallinity influences the biodegradability of the PLA materials.

14.
Materials (Basel) ; 16(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687530

RESUMO

The textile market is a vast industry that utilizes antimicrobial polymeric materials, including various types of fabrics, for medical and personal protection applications. Therefore, this study focused on examining four types of antimicrobial fillers, namely, metal oxides (zinc, titanium, copper) and nanosilver, as fillers in Polyamide 12 fibers. These fillers can be applied in the knitting or weaving processes to obtain woven polymeric fabrics for medical applications. The production of the fibers in this study involved a two-step approach: twin-screw extrusion and melt spinning. The resulting fibers were then characterized for their thermal properties (TGA, DSC), mechanical performance (tensile test, DMA), and antifungal activity. The findings of the study indicated that all of the fibers modified with fillers kill Candida albicans. However, the fibers containing a combination of metal oxides and silver showed significantly higher antifungal activity (reduction rate % R = 86) compared to the fibers with only a mixture of metal oxides (% R = 21). Furthermore, the inclusion of metal oxides and nanosilver in the Polyamide 12 matrix hindered the formation of the crystal phase and decreased slightly the thermal stability and mechanical properties, especially for the composites with nanosilver. It was attributed to their worse dispersion and the presence of agglomerates.

15.
Carbohydr Polym ; 302: 120387, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604065

RESUMO

Biodegradable fibers have been widely developed for advanced textile fields, but their practical applications are limited by large plastic deformation. To solve this problem, we developed a solvent-free melt spinning method to prepare poly(butylene succinate)/microcrystalline cellulose (PBS/MCC) composite monofilaments. The high modulus and rigidity of MCC limit PBS plastic deformation and the in-situ formed hydrogen bonds between MCC and amorphous PBS improved MCC dispersion and led to the formation of rigid MCC physical crosslink points. The composite monofilaments with 10-25 wt% of MCC after multi-stage and high-ratio hot stretching showed a double yielding behavior and microelastic response, indicating the permanent deformation resistance of the composite monofilaments under small deformation. Moreover, the addition of MCC improved the biodegradability of the composite monofilaments after 60 days buried in soil. Therefore, our study provides a design strategy of microelastic composite monofilaments for maintaining dimensional stability during use and accelerating degradation during waste.


Assuntos
Celulose , Polímeros , Polímeros/química , Celulose/química , Butileno Glicóis/química , Plásticos
16.
Polymers (Basel) ; 15(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36904424

RESUMO

Preparing flame-retardant polyamide 66 (PA66) fibers through melt spinning remains one of the biggest challenges nowadays. In this work, dipentaerythritol (Di-PE), an eco-friendly flame retardant, was blended into PA66 to prepare PA66/Di-PE composites and fibers. It was confirmed that Di-PE could significantly improve the flame-retardant properties of PA66 by blocking the terminal carboxyl groups, which was conducive to the formation of a continuous and compact char layer and the reduced production of combustible gas. The combustion results of the composites showed that the limiting oxygen index (LOI) increased from 23.5% to 29.4%, and underwriter laboratories 94 (UL-94) passed the V-0 grade. The peak of heat release rate (PHRR), total heat release (THR), and total smoke production (TSP) decreased by 47.3%, 47.8%, and 44.8%, respectively, for the PA66/6 wt% Di-PE composite compared to those recorded for pure PA66. More importantly, the PA66/Di-PE composites possessed excellent spinnability. The prepared fibers still had good mechanical properties (tensile strength: 5.7 ± 0.2 cN/dtex), while maintaining good flame-retardant properties (LOI: 28.6%). This study provides an outstanding industrial production strategy for fabricating flame-retardant PA66 plastics and fibers.

17.
Nanomaterials (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37947673

RESUMO

The structure of a material is an important factor in determining its physical properties. Here, we adjust the structure of the Ni50Mn37Ga13 spun ribbons by changing the wheel speed to regulate the exchange bias effect of the material. The characterization results of micromorphology and structure show that as the wheel speed increases, the martensite lath decreases from 200 nm to 50 nm, the structure changed from the NM to a NM and 10M mixed martensitic structure containing mainly NM, then changed to NM and 10M where 10M and NM are approaching. Meanwhile, HE first increased and then decreased as the wheel speed increased. The optimum exchange bias effect (HE = 7.2 kOe) occurs when the wheel speed is 25 m∙s-1, mainly attributed to the enhanced ferromagnetism caused by part of 10M in NM martensite, which enhanced the exchange coupling of ferromagnetism and antiferromagnetism. This work reveals the structural dependence of exchange bias and provides a way to tune the magnitude of the exchange bias of Heusler alloys.

18.
Polymers (Basel) ; 15(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38006089

RESUMO

Polyester/cotton fabrics with different proportions of Tetron Cotton, TC (35% Cotton/65% PET), and Chief Value Cotton, CVC (60% Cotton/40% PET), were investigated by removing the cotton component under various phosphoric acidic conditions including the use of cellulase enzymes. The remaining polyethylene terephthalate (PET) component was spun using the melt spinning method. Only 85% H3PO4-Enz_TC could be spun into consistent filament fibers. The effects of Acid-Enz TC (obtained from a powder preparation of 85% H3PO4-Enz_TC) at different weight amounts (1, 2, 5, and 10 %wt) blending with WF-rPET powder prepared by white recycled polyester fabric were evaluated for fiber spinnability at different winding speeds of 1000 and 1500 m/min. The results revealed that recycled PET fiber spun by adding Acid-Enz_TC up to 10 %wt gave uniformly distributed filament fibers. A comparative study of the physical, thermal, and mechanical properties also investigated the relationship between the effect of Acid-Enz_TC and the structure of the obtained fibers. Acid-Enz_TC:WF-rPET (5:95) was the optimal ratio. The thermal values were analyzed by DSC and TGA and crystallinity was analyzed by XRD, with mechanical strength closed to 100% WF-rPET. The FTIR analysis of the functional groups showed the removal of cotton from the blended fabrics. Other factors such as the Acid-Enz_TC component in WF-rPET, extraction conditions, purity, thermal, chemical, and exposure experiences also affected the formability and properties of recycled PET made from non-single-component raw materials. This study advanced the understanding of recycling PET from TC fabrics by strategically removing cotton from polyester-cotton blends and then recycling using controlled conditions and processes via the melt spinning method.

19.
Polymers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242906

RESUMO

PET knitted fabric was melted and cooled by hot pressing at 250 °C to obtain a compacted sheet. Only white PET fabric (WF_PET) was used to study the recycling process by compression and grinding to powder and then melt spinning at different take-up speeds compared to PET bottle grade (BO_PET). PET knitted fabric had good fiber formability and was better suited for melt spinning of recycled PET (r-PET) fibers than the bottle grade. Thermal and mechanical properties of r-PET fibers improved in terms of crystallinity and tensile strength with increasing take-up speed (500 to 1500 m/min). Fading and color changes from the original fabric were relatively small compared with PET bottle grade. Results indicated that fiber structure and properties can be used as a guideline for improving and developing r-PET fibers from textile waste.

20.
Materials (Basel) ; 17(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38204014

RESUMO

Porous fibers have gained significant attention for their lightweight and high porosity properties in applications such as insulation and filtration. However, the challenge remains in the development of cost-effective, high-performance, and industrially viable porous fibers. In this paper, porous fibers were fabricated through the melt spinning of an alkali soluble polyester (COPET)- CaCO3 masterbatch and PET slice. Controlled alkali and acid post-treatment techniques were employed to create porous structures within the fibers. The effects on the morphology, mechanical, thermodynamic, crystallinity, pore size, and thermal stability were investigated. The results indicate that the uniform dispersion of CaCO3 particles within the fiber matrix acts as nucleating agents during the granulation process, improving the thermal resistance and strength of the porous fiber. In addition, the porous fiber prepared by COPET/CaCO3 to PET with an 85/15 ratio and post-treated on 4% NaOH and 3% HCl exhibits a "spongy body" with uniformly small pores, favorable strength (2.71 cN/dtex), and elongation at break (47%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA