RESUMO
Myristoylation is a posttranslational modification that plays diverse functional roles in many protein species. The myristate moiety is considered insufficient for protein-membrane associations unless additional membrane-affinity motifs, such as a stretch of positively charged residues, are present. Here, we report that the electrically neutral N-terminal fragment of the protein kinase A catalytic subunit (PKA-C), in which myristoylation is the only functional motif, is sufficient for membrane association. This myristoylation can associate a fraction of PKA-C molecules or fluorescent proteins (FPs) to the plasma membrane in neuronal dendrites. The net neutral charge of the PKA-C N terminus is evolutionally conserved, even though its membrane affinity can be readily tuned by changing charges near the myristoylation site. The observed membrane association, while moderate, is sufficient to concentrate PKA activity at the membrane by nearly 20-fold and is required for PKA regulation of AMPA receptors at neuronal synapses. Our results indicate that myristoylation may be sufficient to drive functionally significant membrane association in the absence of canonical assisting motifs. This provides a revised conceptual base for the understanding of how myristoylation regulates protein functions.
Assuntos
Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácidos Mirísticos/metabolismo , Neurônios/metabolismo , Potenciais de Ação , Motivos de Aminoácidos , Animais , Membrana Celular/fisiologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/química , Neurônios/fisiologia , Processamento de Proteína Pós-Traducional , RatosRESUMO
The virulence factor PlaB promotes lung colonization, tissue destruction, and intracellular replication of Legionella pneumophila, the causative agent of Legionnaires' disease. It is a highly active phospholipase exposed at the bacterial surface and shows an extraordinary activation mechanism by tetramer deoligomerization. To unravel the molecular basis for enzyme activation and localization, we determined the crystal structure of PlaB in its tetrameric form. We found that the tetramer is a dimer of identical dimers, and a monomer consists of an N-terminal α/ß-hydrolase domain expanded by two noncanonical two-stranded ß-sheets, ß-6/ß-7 and ß-9/ß-10. The C-terminal domain reveals a fold displaying a bilobed ß-sandwich with a hook structure required for dimer formation and structural complementation of the enzymatic domain in the neighboring monomer. This highlights the dimer as the active form. Δß-9/ß-10 mutants showed a decrease in the tetrameric fraction and altered activity profiles. The variant also revealed restricted binding to membranes resulting in mislocalization and bacterial lysis. Unexpectedly, we observed eight NAD(H) molecules at the dimer/dimer interface, suggesting that these molecules stabilize the tetramer and hence lead to enzyme inactivation. Indeed, addition of NAD(H) increased the fraction of the tetramer and concomitantly reduced activity. Together, these data reveal structural elements and an unprecedented NAD(H)-mediated tetramerization mechanism required for spatial and enzymatic control of a phospholipase virulence factor. The allosteric regulatory process identified here is suited to fine tune PlaB in a way that protects Legionella pneumophila from self-inflicted lysis while ensuring its activity at the pathogen-host interface.
Assuntos
Proteínas de Bactérias/química , Legionella pneumophila/enzimologia , NAD/química , Fosfolipases/química , Multimerização Proteica , Proteínas de Bactérias/genética , Cristalografia por Raios X , Legionella pneumophila/genética , NAD/genética , Fosfolipases/genética , Conformação Proteica em Folha beta , Estrutura Quaternária de ProteínaRESUMO
The visual cycle is a complex biological process that involves the sequential action of proteins in the retinal pigment epithelial (RPE) cells and photoreceptors to modify and shuttle visual retinoids. A majority of the visual cycle proteins are membrane proteins, either integral or peripheral membrane proteins. Despite significant progress in understanding their physiological function, very limited structural information is available for the visual cycle proteins. Moreover, the mechanism of membrane interaction is not yet clear in all cases. Here, we demonstrate the presence of an amphipathic helix in selected RPE visual cycle proteins, using in silico tools, and highlight their role in membrane association and function.
Assuntos
Epitélio Pigmentado da Retina , Retinoides , Proteínas de Transporte/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , cis-trans-IsomerasesRESUMO
Non-specific phospholipase C (NPC) is involved in plant growth, development and stress responses. To elucidate the mechanism by which NPCs mediate cellular functions, here we show that NPC4 is S-acylated at the C terminus and that acylation determines its plasma membrane (PM) association and function. The acylation of NPC4 was detected using NPC4 isolated from Arabidopsis and reconstituted in vitro. The C-terminal Cys-533 was identified as the S-acylation residue, and the mutation of Cys-533 to Ala-533 in NPC4 (NPC4C533A ) led to the loss of S-acylation and membrane association of NPC4. The knockout of NPC4 impeded the phosphate deficiency-induced decrease of the phosphosphingolipid glycosyl inositol phosphoryl ceramide (GIPC), but introducing NPC4C533A to npc4-1 failed to complement this defect, thereby supporting the hypothesis that the non-acylated NPC4C533A fails to hydrolyze GIPC during phosphate deprivation. Moreover, NPC4C533A failed to complement the primary root growth in npc4-1 under stress. In addition, NPC4 in Brassica napus was S-acylated and mutation of the S-acylating cysteine residue of BnaC01.NPC4 led to the loss of S-acylation and its membrane association. Together, our results reveal that S-acylation of NPC4 in the C terminus is conserved and required for its membrane association, phosphosphingolipid hydrolysis and function in plant stress responses.
Assuntos
Brassica napus/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fosfatos/farmacologia , Proteínas de Plantas/metabolismo , Fosfolipases Tipo C/metabolismo , Acilação , Membrana Celular/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Fosfatos/administração & dosagem , Proteínas de Plantas/genética , Fosfolipases Tipo C/genéticaRESUMO
Serving as a source of glutathione and up-taking and metabolizing glutamate are the primary supportive role of astrocytes for the adjacent neurons. Despite the clear physical association between astrocytes and α-synuclein, the effect of extracellular α-synuclein on these astrocytic functions has not yet been elucidated. Hence, we aim to assess the effect of various forms of α-synuclein on antioxidant mechanism and glutamate metabolism. Wild-type and A53T/A30P double-mutant α-synuclein, both in monomeric and aggregated forms, were added extracellularly to media of midbrain rat astrocyte culture, with their survival, oxidative, and nitrative stress, glutathione and glutamate content, expression of enzymes associated with oxidative stress and glutamate metabolism, glutamate and glutathione transporters being assessed along with the association/engulfment of these peptides by astrocytes. A30P/A53T peptide associated more with astrocytes, and low-extracellular K+ concentration showed prominent reduction in the engulfment of the monomeric forms, suggesting that the association of the aggregated forms was greater with the membrane. The peptide-associated astrocytes showed lower survival and increased oxidative stress generation, owing to the decrease in nuclear localization of Nrf2 and increase in iNOS, and further aggravated by the decrease in glutathione content and related enzymes like glutathione synthetase, glutathione peroxidase, and glutathione reductase. Glutamate uptake increased in aggregate-treated cells due to the increase in GLAST1 expression, de novo synthesis of glutamate by pyruvate carboxylase, and/or glutamine synthase, bolstered by the differential glutamate dehydrogenase enzyme activity. We thus show for the first time that extracellular α-synuclein exposure leads to astrocytic dysfunction with respect to the antioxidant mechanism and glutamate metabolic profile. The impact was higher in the case of the aggregated and mutated peptide, with the highest dysfunction for the mutant aggregated α-synuclein treatment.
Assuntos
Astrócitos , alfa-Sinucleína , Animais , Antioxidantes/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Ácido Glutâmico/metabolismo , Metaboloma , Ratos , alfa-Sinucleína/metabolismoRESUMO
The canine distemper virus (CDV) matrix (M) protein is multifunctional; it orchestrates viral assembly and budding, drives the formation of virus-like particles (VLPs), regulates viral RNA synthesis, and may support additional functions. CDV M may assemble into dimers, where each protomer is constituted by N-terminal and C-terminal domains (NTD and CTD, respectively). Here, to investigate whether electrostatic interactions between CDV M and the plasma membrane (PM) may contribute to budding activity, selected surface-exposed positively charged lysine residues, which are located within a large basic patch of CTD, were replaced by amino acids with selected properties. We found that some M mutants harboring amino acids with neutral and positive charge (methionine and arginine, respectively) maintained full functionality, including proper interaction and localization with the PM as well as intact VLP and progeny virus production as demonstrated by employing a cell exit-complementation system. Conversely, while the overall structural integrity remained mostly unaltered, most of the nonconservative M variants (carrying a glutamic acid; negatively charged) exhibited a cytosolic phenotype secondary to the lack of interaction with the PM. Consequently, such M variants were entirely defective in VLP production and viral particle formation. Furthermore, the proteasome inhibitor bortezomib significantly reduced wild-type M-mediated VLP production. Nevertheless, in the absence of the compound, all engineered M lysine variants exhibited unaffected ubiquitination profiles, consistent with other residues likely involved in this functionally essential posttranslational modification. Altogether, our data identified multiple surface-exposed lysine residues located within a basic patch of CDV M-CTD, critically contributing to PM association and ensuing membrane budding activity.IMPORTANCE Although vaccines against some morbilliviruses exist, infections still occur, which can result in dramatic brain disease or fatal outcome. Postexposure prophylaxis with antivirals would support global vaccination campaigns. Unfortunately, there is no efficient antiviral drug currently approved. The matrix (M) protein of morbilliviruses coordinates viral assembly and egress through interaction with multiple cellular and viral components. However, molecular mechanisms supporting these functions remain poorly understood, which preclude the rationale design of inhibitors. Here, to investigate potential interactions between canine distemper virus (CDV) M and the plasma membrane (PM), we combined structure-guided mutagenesis of selected surface-exposed lysine residues with biochemical, cellular, and virological assays. We identified several lysines clustering in a basic patch microdomain of the CDV M C-terminal domain, which contributed to PM association and budding activity. Our findings provide novel mechanistic information of how morbilliviruses assemble and egress from infected cells, thereby delivering bases for future antiviral drug development.
Assuntos
Membrana Celular/virologia , Vírus da Cinomose Canina/fisiologia , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus , Animais , Membrana Celular/metabolismo , Citosol/metabolismo , Citosol/virologia , Cães , Células HEK293 , Humanos , Lisina/genética , Lisina/metabolismo , Células Madin Darby de Rim Canino , Mutação , Inibidores de Proteassoma/farmacologia , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Ubiquitinação , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Vírion/metabolismo , Montagem de Vírus/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacosRESUMO
The association of Zika virus (ZIKV) infections with microcephaly and neurological diseases has highlighted an emerging public health concern. Here, we report the crystal structure of the full-length ZIKV nonstructural protein 1 (NS1), a major host-interaction molecule that functions in flaviviral replication, pathogenesis, and immune evasion. Of note, a long intertwined loop is observed in the wing domain of ZIKV NS1, and forms a hydrophobic "spike", which can contribute to cellular membrane association. For different flaviviruses, the amino acid sequences of the "spike" are variable but their common characteristic is either hydrophobic or positively charged, which is a beneficial feature for membrane binding. Comparative studies with West Nile and Dengue virus NS1 structures reveal conserved features, but diversified electrostatic characteristics on both inner and outer faces. Our results suggest different mechanisms of flavivirus pathogenesis and should be considered during the development of diagnostic tools.
Assuntos
Proteínas não Estruturais Virais/química , Zika virus , Cristalização , Conformação Proteica , Proteínas não Estruturais Virais/genéticaRESUMO
The plastid terminal oxidase (PTOX) is a plastohydroquinone:oxygen oxidoreductase that shares structural similarities with alternative oxidases (AOXs). Multiple roles have been attributed to PTOX, such as involvement in carotene desaturation, a safety valve function, participation in the processes of chlororespiration, and setting the redox poise for cyclic electron transport. PTOX activity has been previously shown to depend on its localization at the thylakoid membrane. Here we investigate the dynamics of PTOX localization dependent on the proton motive force. Infiltrating illuminated leaves with uncouplers led to a partial dissociation of PTOX from the thylakoid membrane. In vitro reconstitution experiments showed that the attachment of purified recombinant maltose-binding protein (MBP)-OsPTOX to liposomes and isolated thylakoid membranes was strongest at slightly alkaline pH values in the presence of lower millimolar concentrations of KCl or MgCl2. In Arabidopsis thaliana overexpressing green fluorescent protein (GFP)-PTOX, confocal microscopy images showed that PTOX formed distinct spots in chloroplasts of dark-adapted or uncoupler-treated leaves, while the protein was more equally distributed in a network-like structure in the light. We propose a dynamic PTOX association with the thylakoid membrane depending on the presence of a proton motive force.
Assuntos
Arabidopsis/enzimologia , Cloroplastos , Fotossíntese , Cloroplastos/enzimologia , Transporte de Elétrons , Oxirredutases/metabolismoRESUMO
Human T-cell leukemia virus type 1 is an oncovirus that causes aggressive adult T-cell leukemia but is also responsible for severe neurodegenerative and endocrine disorders. Combatting HTLV-1 infections requires a detailed understanding of the viral mechanisms in the host. Therefore, in vitro studies of important virus-encoded proteins would be critical. Our focus herein is on the HTLV-1-encoded regulatory protein p13II, which interacts with the inner mitochondrial membrane, increasing its permeability to cations (predominantly potassium, K+). Thereby, this protein affects mitochondrial homeostasis. We report on our progress in developing specific protocols for heterologous expression of p13II in E. coli, and methods for its purification and characterization. We succeeded in producing large quantities of highly-pure full-length p13II, deemed to be its fully functional form. Importantly, our particular approach based on the fusion of ubiquitin to the p13II C-terminus was instrumental in increasing the persistently low expression of soluble p13II in its native form. We subsequently developed approaches for protein spin labeling and a conformation study using double electron-electron resonance (DEER) spectroscopy and a fluorescence-based cation uptake assay for p13II in liposomes. Our DEER results point to large protein conformation changes occurring upon transition from the soluble to the membrane-bound state. The functional assay on p13II-assisted transport of thallium (Tl+) through the membrane, wherein Tl+ substituted for K+, suggests transmembrane potential involvement in p13II function. Our study lays the foundation for expansion of in vitro functional and structural investigations on p13II and would aid in the development of structure-based protein inhibitors and markers.
Assuntos
Escherichia coli , Vírus Linfotrópico T Tipo 1 Humano/genética , Proteínas dos Retroviridae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas dos Retroviridae/biossíntese , Proteínas dos Retroviridae/química , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/isolamento & purificaçãoRESUMO
Calmodulin (CaM) is a Ca2+-sensor that regulates a wide variety of target proteins, many of which interact through short basic helical motifs bearing two hydrophobic 'anchor' residues. CaM comprises two globular lobes, each containing a pair of EF-hand Ca2+-binding motifs that form a Ca2+-induced hydrophobic pocket that binds an anchor residue. A central flexible linker allows CaM to accommodate diverse targets. Several reported CaM interactors lack these anchors but contain Lys/Arg-rich polybasic sequences adjacent to a lipidated N- or C-terminus. Ca2+-CaM binds the myristoylated N-terminus of CAP23/NAP22 with intimate interactions between the lipid and a surface comprised of the hydrophobic pockets of both lobes, while the basic residues make electrostatic interactions with the negatively charged surface of CaM. Ca2+-CaM binds farnesylcysteine, derived from the farnesylated polybasic C-terminus of KRAS4b, with the lipid inserted into the C-terminal lobe hydrophobic pocket. CaM sequestration of the KRAS4b farnesyl moiety disrupts KRAS4b membrane association and downstream signaling. Phosphorylation of basic regions of N-/C-terminal lipidated CaM targets can reduce affinity for both CaM and the membrane. Since both N-terminal myristoylated and C-terminal prenylated proteins use a Singly Lipidated Polybasic Terminus (SLIPT) for CaM binding, we propose these polybasic lipopeptide elements comprise a non-canonical CaM-binding motif.
Assuntos
Sinalização do Cálcio/genética , Calmodulina/química , Calmodulina/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Motivos de Aminoácidos , Cálcio/metabolismo , Calmodulina/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fosforilação , Plantas/química , Plantas/genética , Plantas/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Conformação Proteica , Isoformas de Proteínas , Prenilação de Proteína , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Eletricidade EstáticaRESUMO
The Bcl-2 proteins Bax and Bak can permeabilize the outer mitochondrial membrane and commit cells to apoptosis. Pro-survival Bcl-2 proteins control Bax by constant retrotranslocation into the cytosol of healthy cells. The stabilization of cytosolic Bax raises the question whether the functionally redundant but largely mitochondrial Bak shares this level of regulation. Here we report that Bak is retrotranslocated from the mitochondria by pro-survival Bcl-2 proteins. Bak is present in the cytosol of human cells and tissues, but low shuttling rates cause predominant mitochondrial Bak localization. Interchanging the membrane anchors of Bax and Bak reverses their subcellular localization compared to the wild-type proteins. Strikingly, the reduction of Bax shuttling to the level of Bak retrotranslocation results in full Bax toxicity even in absence of apoptosis induction. Thus, fast Bax retrotranslocation is required to protect cells from commitment to programmed death.
Assuntos
Apoptose/fisiologia , Citosol/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Linhagem Celular , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Transporte Proteico/fisiologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genéticaRESUMO
RPE65, the retinal pigment epithelium (RPE) smooth endoplasmic reticulum (sER) membrane-associated retinoid isomerase, plays an indispensable role in sustaining visual function in vertebrates. An important aspect which has attracted considerable attention is the posttranslational modification by S-palmitoylation of RPE65. Some studies show that RPE65 is a palmitoylated protein, but others deny that conclusion. While it is considered to be mainly responsible for RPE65's membrane association, we still lack conclusive evidence about RPE65 palmitoylation. In this review, we provide an overview of the history and current understanding of RPE65 palmitoylation.
Assuntos
Proteínas do Olho/química , Lipídeos/química , Lipoilação , Processamento de Proteína Pós-Traducional , Epitélio Pigmentado da Retina/enzimologia , cis-trans-Isomerases/química , Animais , Retículo Endoplasmático , HumanosRESUMO
Antimicrobial peptides (AMPs) attack bacterial membranes selectively, killing microbes at concentrations that cause no toxicity to the host cells. This selectivity is not due to interaction with specific receptors but is determined by the different lipid compositions of the membranes of the two cell types and by the peculiar physicochemical properties of AMPs, particularly their cationic and amphipathic character. However, the available data, including recent studies of peptide-cell association, indicate that this picture is excessively simplistic, because selectivity is modulated by a complex interplay of several interconnected phenomena. For instance, conformational transitions and self-assembly equilibria modulate the effective peptide hydrophobicity, the electrostatic and hydrophobic contributions to the membrane-binding driving force are nonadditive, and kinetic processes can play an important role in selective bacterial killing in the presence of host cells. All these phenomena and their bearing on the final activity and toxicity of AMPs must be considered in the definition of design principles to optimize peptide selectivity.
Assuntos
Peptídeos Catiônicos Antimicrobianos/fisiologia , Bactérias , Membrana Celular/química , Lipídeos de Membrana/química , Testes de Sensibilidade MicrobianaRESUMO
MAIN CONCLUSION: The close association between membranes and organelles, and the intense chloroplast remodeling in parenchyma cells of extrafloral nectaries occurred only at the secretion time and suggest a relationship with the nectar secretion. Associations between membranes and organelles have been well documented in different tissues and cells of plants, but poorly explored in secretory cells. Here, we described the close physical juxtaposition between membranes and organelles, mainly with chloroplasts, in parenchyma cells of Citharexylum myrianthum (Verbenaeceae) extrafloral nectaries under transmission electron microscopy, using conventional and microwave fixation. At the time of nectar secretion, nectary parenchyma cells exhibit a multitude of different organelle and membrane associations as mitochondria-mitochondria, mitochondria-endoplasmic reticulum, mitochondria-chloroplast, chloroplast-nuclear envelope, mitochondria-nuclear envelope, chloroplast-plasmalemma, chloroplast-chloroplast, chloroplast-tonoplast, chloroplast-peroxisome, and mitochondria-peroxisome. These associations were visualized as amorphous electron-dense material, a network of dense fibrillar material and/or dense bridges. Chloroplasts exhibited protrusions variable in shape and extension, which bring them closer to each other and to plasmalemma, tonoplast, and nuclear envelope. Parenchyma cells in the pre- and post-secretory stages did not exhibit any association or juxtaposition of membranes and organelles, and chloroplast protrusions were absent. Chloroplasts had peripheral reticulum that was more developed in the secretory stage. We propose that such subcellular phenomena during the time of nectar secretion optimize the movement of signaling molecules and the exchange of metabolites. Our results open new avenues on the potential mechanisms of organelle contact in parenchyma nectary cells, and reveal new attributes of the secretory cells on the subcellular level.
Assuntos
Membranas Intracelulares/ultraestrutura , Organelas/ultraestrutura , Tecido Parenquimatoso/citologia , Estruturas Vegetais/ultraestrutura , Verbenaceae/ultraestrutura , Cloroplastos/ultraestrutura , Microscopia Eletrônica de Transmissão , Tecido Parenquimatoso/ultraestrutura , Néctar de Plantas/metabolismo , Estruturas Vegetais/citologia , Fixação de Tecidos/métodosRESUMO
The phospholipid environment of the mitochondrial inner membrane, which contains large amounts of cardiolipin, could play a key role in transport of the long chain fatty acids. In the present study, the pre-incubation of cardiolipin with the wild type carnitine palmitoyltransferase (CPT) II led to a more than 1.5-fold increase of enzyme activity at physiological temperatures. At higher temperatures, however, there was a pronounced loss of activity. The most frequent variant S113L showed even at 37 °C a great activity loss. Pre-incubation of the wild type with both malonyl-CoA and cardiolipin counteracted the positive effect of cardiolipin. Malonyl-CoA, however, showed no inhibition effect on the variant in presence of cardiolipin. The activity loss in presence of cardiolipin at fever simulating situations was more pronounced for the variant comparing to the wild type. The reason might be a disturbed membrane association or a blockage of the active center of the mutated enzyme.
Assuntos
Cardiolipinas/química , Carnitina O-Palmitoiltransferase/química , Cardiolipinas/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Ativação Enzimática , Humanos , Malonil Coenzima A/química , Malonil Coenzima A/metabolismoRESUMO
Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in silico analyses and mutational studies we found that the C-terminal sequences of Gap1, Bap2, Hip1, Tat1, Tat2, Mmp1, Sam3, Agp1, and Gnp1 are about 50 residues long, associate with the PM, and have features that discriminate them from the termini of organellar amino acid transporters. We show that this sequence (named PMasseq) contains an amphipathic α-helix and the FWC signature, which is palmitoylated by palmitoyltransferase Pfa4. Variations of PMasseq, found in different AAPs, lead to different mobilities and localization patterns, whereas the disruption of the sequence has an adverse effect on cell viability. We propose that PMasseq modulates the function and localization of AAPs along the PM. PMasseq is one of the most complex protein signals for plasma membrane association across species and can be used as a delivery vehicle for the PM.
Assuntos
Sistemas de Transporte de Aminoácidos/genética , Membrana Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Membrana Celular/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de ProteínaRESUMO
Eukaryotic membranes contain small amounts of lipids with regulatory roles. An important class of such regulatory lipids are phosphoinositides (PIs). Within membranes, PIs serve as recruitment signals, as regulators of membrane protein function or as precursors for second messenger production, thereby influencing a multitude of cellular processes with key importance for plant function and development. Plant PIs occur locally and transiently within membrane microdomains, and their abundance is strictly controlled. To understand the functions of the plant PI-network it is important to understand not only downstream PI-effects, but also to identify and characterize factors contributing to dynamic PI formation. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Assuntos
Lipídeos/genética , Proteínas de Membrana/genética , Fosfatidilinositóis/genética , Plantas/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Plantas/metabolismo , Sistemas do Segundo Mensageiro/genética , Transdução de SinaisRESUMO
Cell-penetrating peptides constitute efficient delivery vectors, and studies of their uptake and mechanism of translocation typically involve fluorophore-labeled conjugates. In the present study, the influence of a number of specific fluorophores on the physico-chemical properties and uptake-related characteristics of penetratin were studied. An array of seven fluorophores belonging to distinct structural classes was examined, and the impact of fluorophore labeling on intracellular distribution and cytotoxicity was correlated to the physico-chemical properties of the conjugates. Exposure of several mammalian cell types to fluorophore-penetratin conjugates revealed a strong structure-dependent reduction in viability (1.5- to 20-fold lower IC50 values as compared to those of non-labeled penetratin). Also, the degree of less severe effects on membrane integrity, as well as intracellular distribution patterns differed among the conjugates. Overall, neutral hydrophobic fluorophores or negatively charged fluorophores conferred less cytotoxicity as compared to the effect exerted by positively charged, hydrophobic fluorophores. The latter conjugates, however, exhibited less membrane association and more clearly defined intracellular distribution patterns. Thus, selection of the appropriate flurophore is critical.
Assuntos
Proteínas de Transporte/farmacologia , Peptídeos Penetradores de Células/farmacologia , Corantes Fluorescentes/química , Animais , Células CACO-2 , Proteínas de Transporte/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Drosophila/química , Imunofluorescência/métodos , Corantes Fluorescentes/classificação , Células HeLa , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Ratos , Coloração e Rotulagem/métodos , Eletricidade Estática , Relação Estrutura-AtividadeRESUMO
The Ebola virus matrix protein VP40 is a major structural protein that provides the scaffolding for new Ebola virus particles. For this, VP40 is first trafficked to the lower leaflet of the plasma membrane (PM) in its dimeric form. Once associated with the PM, the VP40 dimers undergo structural rearrangements and oligomerize into hexamers and filaments that make up the virus matrix. Therefore, association of the VP40 dimers and their stabilization at the PM is a crucial step in the Ebola life-cycle. To understand the molecular details of the VP40 dimer-PM interactions, we investigated the dimer association with the inner leaflet of the PM using detailed all-atom molecular dynamics (MD) simulations. The formation of the dimer-PM complex is facilitated by the interactions of the VP40 lysine residues and the anionic lipids POPS, POPI, and PIP2 in the PM. In contrast, the dimer fails to associate with a membrane without POPS, POPI, or PIP2 lipids. We explored the mechanisms of the association and identified important residues and lipids involved in localization and stabilization of VP40 dimers at the PM. MD simulations elucidate the role of a C-terminal α-helix alignment parallel to the lipid bilayer surface as well as the creation of membrane defects that allow partial insertion of the hydrophobic residue V276 into the membrane to further stabilize the VP40 dimer-PM complex. Understanding the mechanisms of the VP40 dimer-PM association that facilitate oligomerization can be important for potentially targeting the VP40 for small molecules that can interfere with the virus life-cycle.
Assuntos
Membrana Celular/metabolismo , Ebolavirus/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos/fisiologia , Nucleoproteínas/metabolismo , Proteínas do Core Viral/metabolismo , Ânions/metabolismo , Doença pelo Vírus Ebola/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Fosfatidilserinas/metabolismo , Conformação Proteica em alfa-Hélice , Multimerização Proteica/fisiologia , Liberação de Vírus/fisiologiaRESUMO
The fundamental cellular role and molecular interactions of annexins in vesicle trafficking and membrane remodeling remain to be further clarified in order to better understand and exploit their contributions to health and disease. We focused on distinctive features of atypical annexins from all domains of life using phylogenomic, molecular systematic and experimental approaches, to extend the current paradigm and better account for annexin diversity of structure, function and mechanistic role in membrane homeostasis. The analysis of gene duplications, organization of domain architectures and profile hidden Markov models of subfamily orthologs defined conserved structural features relevant to molecular interactions and functional divergence of seven family clades ANXA-G. Single domain annexins of bacteria, including cyanobacteria, were frequently coupled to enzymatic units conceivably related to membrane metabolism and remodeling. Multiple ANX domains (up to 20) and various distinct functional domains were observed in unique annexins. Canonical type 2 calcium binding ligands were well-preserved in roughly half of all ANX domains, but alternative structural motifs comprised of 'KGD', cysteine or tryptophan residues were prominently conserved in the same strategic interhelical loops. Selective evolutionary constraint, site-specific location and co-occurrence in all kingdoms identify alternative modes of fundamental binding interactions for annexins.