Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Plant J ; 118(6): 2219-2232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602250

RESUMO

Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.


Assuntos
Beta vulgaris , Glucose , Proteínas de Plantas , Raízes de Plantas , Sacarose , Animais , Beta vulgaris/citologia , Beta vulgaris/genética , Beta vulgaris/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Glucose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Oócitos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Prótons , Sacarose/metabolismo , Xenopus laevis
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526670

RESUMO

KRAS interacts with the inner leaflet of the plasma membrane (PM) using a hybrid anchor that comprises a lysine-rich polybasic domain (PBD) and a C-terminal farnesyl chain. Electrostatic interactions have been envisaged as the primary determinant of interactions between KRAS and membranes. Here, we integrated molecular dynamics (MD) simulations and superresolution spatial analysis in mammalian cells and systematically compared four equally charged KRAS anchors: the wild-type farnesyl hexa-lysine and engineered mutants comprising farnesyl hexa-arginine, geranylgeranyl hexa-lysine, and geranylgeranyl hexa-arginine. MD simulations show that these equally charged KRAS mutant anchors exhibit distinct interactions and packing patterns with different phosphatidylserine (PtdSer) species, indicating that prenylated PBD-bilayer interactions extend beyond electrostatics. Similar observations were apparent in intact cells, where each anchor exhibited binding specificities for PtdSer species with distinct acyl chain compositions. Acyl chain composition determined responsiveness of the spatial organization of different PtdSer species to diverse PM perturbations, including transmembrane potential, cholesterol depletion, and PM curvature. In consequence, the spatial organization and PM binding of each KRAS anchor precisely reflected the behavior of its preferred PtdSer ligand to these same PM perturbations. Taken together these results show that small GTPase PBD-prenyl anchors, such as that of KRAS, have the capacity to encode binding specificity for specific acyl chains as well as lipid headgroups, which allow differential responses to biophysical perturbations that may have biological and signaling consequences for the anchored GTPase.


Assuntos
Fosfatidilserinas/química , Prenilação , Proteínas ras/química , Proteínas ras/metabolismo , Animais , Linhagem Celular , Colesterol/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Proteínas Mutantes/metabolismo , Nanopartículas/química , Eletricidade Estática
3.
J Biol Chem ; 298(9): 102278, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863435

RESUMO

Immediate early genes (IEGs) are transcribed in response to neuronal activity from sensory stimulation during multiple adaptive processes in the brain. The transcriptional profile of IEGs is indicative of the duration of neuronal activity, but its sensitivity to the strength of depolarization remains unknown. Also unknown is whether activity history of graded potential changes influence future neuronal activity. In this work with dissociated rat cortical neurons, we found that mild depolarization-mediated by elevated extracellular potassium (K+)-induces a wide array of rapid IEGs and transiently depresses transcriptional and signaling responses to a successive stimulus. This latter effect was independent of de novo transcription, translation, and signaling via calcineurin or mitogen-activated protein kinase. Furthermore, as measured by multiple electrode arrays and calcium imaging, mild depolarization acutely subdues subsequent spontaneous and bicuculline-evoked activity via calcium- and N-methyl-d-aspartate receptor-dependent mechanisms. Collectively, this work suggests that a recent history of graded potential changes acutely depress neuronal intrinsic properties and subsequent responses. Such effects may have several potential downstream implications, including reducing signal-to-noise ratio during synaptic plasticity processes.


Assuntos
Potenciais de Ação , Calcineurina , Genes Precoces , Neurônios , Transcrição Gênica , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bicuculina/farmacologia , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/metabolismo , Antagonistas de Receptores de GABA-A/farmacologia , Genes Precoces/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Potássio/metabolismo , Potássio/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Appl Microbiol Biotechnol ; 107(13): 4381-4393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37204449

RESUMO

The purpose of this study was to provide new ideas for the antibacterial mechanism of monolauroyl-galactosylglycerol (MLGG) from the perspective of cell membranes. The changes in cell membrane properties of Bacillus cereus (B. cereus) CMCC 66,301 exposed to different concentrations (1 × MIC (minimum inhibitory concentration), 2 × MIC, 1 × MBC (minimum bacterial concentration)) of MLGG were evaluated. It was found that the lag phase of B. cereus cells was prolonged at low concentration MLGG (1 × MIC and 2 × MIC), while about 2 log CFU/mL reduction in B. cereus populations were observed when exposed to high concentration MLGG (1 × MBC). MLGG treated B. cereus displayed obvious membrane depolarization, while membrane permeability had no change using PI (propidium iodide) staining. Significant increase in the membrane fluidity in response to MLGG exposure occurred, which was consistent with the modification of membrane fatty acids compositions, where the relative content of straight-chain fatty acids (SCFAs) and unsaturated fatty acids (UFAs) increased, while branched-chain fatty acids (BCFAs) decreased significantly. The decreased transition Tm value and cell surface hydrophobicity was also observed. Additionally, effect of MLGG on bacterial membrane compositions were explored at the submolecular level by infrared spectroscopy. Resistance tests of B. cereus to MLGG had demonstrated the advantages of MLGG as a bacteriostatic agent. Collectively, these studies indicate that modifying the fatty acid composition and properties of cellular membranes through MLGG exposure is crucial for inhibiting bacteria growth, providing new insights into the antimicrobial mechanisms of MLGG. KEY POINTS: • Monolauroyl-galactosylglycerol inserted into B. cereus lipid bilayer membrane • Monolauroyl-galactosylglycerol treatment caused B. cereus membrane depolarization • Monolauroyl-galactosylglycerol resulted in B. cereus membrane fatty acids alteration.


Assuntos
Bacillus cereus , Ácidos Graxos , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Membrana Celular , Fluidez de Membrana
5.
Pharm Res ; 39(11): 2859-2870, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35246758

RESUMO

Lung cancer is the leading cause of cancer deaths globally with most of the reported cases (> 85%) associated with non-small cell lung cancer (NSCLC). Current therapies have enhanced the overall survival rate of patients but treatment-related adverse effects and increase in drug-resistance limit the success of these treatment options. Antimicrobial peptides (AMPs) have gained interest as anticancer agents as they selectively target cancer cells and decrease the possibility of resistance. Nisin ZP is a polycyclic antimicrobial peptide produced by the Gram-positive bacterium, Lactococcus lactis and is commonly used as a food preservative. Nisin ZP has recently demonstrated anticancer activity in melanoma, head and neck squamous cell carcinoma, hepatic, colon, and blood cancer. In this study, we evaluated the anticancer potential of nisin ZP and assessed the underlying mechanisms in NSCLC cells. The results revealed that nisin ZP induced selective toxicity in cancer (A549 and H1299) cells compared to healthy (HEK293) cells after 48 h of treatment. Nisin ZP exposure induced apoptosis and cell cycle arrest (G0/G1 phase) in NSCLC cells irrespective of tumor protein p53 expression. The cancer cell proliferation was inhibited via non-membranolytic pathways by mitochondrial membrane depolarization and elevation in reactive oxygen species (ROS) generation. Furthermore, nisin ZP decreased cancer cells' clonal expansion and migration, demonstrating potential use against highly metastatic NSCLC. The 3D spheroid growth and cell viability of the A549 cells were significantly inhibited by nisin ZP compared to control. Overall, the results suggest an excellent antitumor potential in vitro and, thus, can further be developed as a novel therapeutic for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nisina , Humanos , Peptídeos Antimicrobianos , Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células em Três Dimensões , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Neoplasias Pulmonares/patologia , Nisina/farmacologia , Espécies Reativas de Oxigênio/metabolismo
6.
J Appl Microbiol ; 133(4): 2583-2598, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35870145

RESUMO

AIMS: To determine the antimicrobial potency of a surface-anchored quaternary ammonium salt (SAQAS)-based biocide during in vitro wet and dry fomite assays and to determine the mechanism of killing bacteria on the surface. METHODS AND RESULTS: Wet and dry fomite assays were established in vitro for a commercially available biocide (SAQAS-A) applied to glass and low-density polyethylene (LDPE) surfaces. Both wet and dry fomite tests showed the active killing of Gram-positive and Gram-negative bacteria but not endospores. Assays measuring membrane permeability (ATP and DNA release), bacterial membrane potential and bacterial ROS production were correlated with the time-to-kill profiles to show SAQAS-A activity in suspension and applied to a surface. CONCLUSIONS: SAQAS-A is an effective biocide against model strains of vegetative bacteria. The killing mechanism for SAQAS-A observed minimal membrane depolarization, a surge in ROS production and assessment of membrane permeability supported the puncture of cells in both suspension and surface attachment, leading to cell death. SIGNIFICANCE AND IMPACT OF THE STUDY: SAQAS represents effective surface biocides against single challenges with bacteria through a mechanical killing ability that supports real-world application if their durability can be demonstrated to maintain residual activity.


Assuntos
Anti-Infecciosos , Desinfetantes , Trifosfato de Adenosina , Antibacterianos/farmacologia , Bactérias , Desinfetantes/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Polietileno/farmacologia , Compostos de Amônio Quaternário/farmacologia , Espécies Reativas de Oxigênio
7.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743300

RESUMO

Nurr1 and brain-derived neurotrophic factor (BDNF) play major roles in cognition. Nurr1 regulates BDNF in midbrain dopaminergic neurons and cerebellar granule cells. Nurr1 and BDNF are also highly expressed in the cerebral cortex, a brain area important in cognition. Due to Nurr1 and BDNF tissue specificity, the regulatory effect of Nurr1 on BDNF in different brain areas cannot be generalized. The relationship between Nurr1 and BDNF in the cortex has not been investigated previously. Therefore, we examined Nurr1-mediated BDNF regulation in cortical neurons in activity-dependent and activity-independent states. Mouse primary cortical neurons were treated with the Nurr1 agonist, amodiaquine (AQ). Membrane depolarization was induced by KCl or veratridine and reversed by nimodipine. AQ and membrane depolarization significantly increased Nurr1 (p < 0.001) and BDNF (pAQ < 0.001, pKCl < 0.01) as assessed by real-time qRT-PCR. However, Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized neurons. Accordingly, the positive correlation between Nurr1 and BDNF expression in AQ and membrane depolarization experiments does not imply co-regulation because Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized cortical neurons. Therefore, in contrast to midbrain dopaminergic neurons and cerebellar granule cells, Nurr1 does not regulate BDNF in cortical neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Mesencéfalo/metabolismo , Camundongos , Neurônios/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética
8.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328733

RESUMO

Voltage-gated Kv1.3 potassium channels are essential for maintaining negative membrane potential during T-cell activation. They interact with membrane-associated guanylate kinases (MAGUK-s) via their C-terminus and with TCR/CD3, leading to enrichment at the immunological synapse (IS). Molecular interactions and mobility may impact each other and the function of these proteins. We aimed to identify molecular determinants of Kv1.3 mobility, applying fluorescence correlation spectroscopy on human Jurkat T-cells expressing WT, C-terminally truncated (ΔC), and non-conducting mutants of mGFP-Kv1.3. ΔC cannot interact with MAGUK-s and is not enriched at the IS, whereas cells expressing the non-conducting mutant are depolarized. Here, we found that in standalone cells, mobility of ΔC increased relative to the WT, likely due to abrogation of interactions, whereas mobility of the non-conducting mutant decreased, similar to our previous observations on other membrane proteins in depolarized cells. At the IS formed with Raji B-cells, mobility of WT and non-conducting channels, unlike ΔC, was lower than outside the IS. The Kv1.3 variants possessing an intact C-terminus had lower mobility in standalone cells than in IS-engaged cells. This may be related to the observed segregation of F-actin into a ring-like structure at the periphery of the IS, leaving much of the cell almost void of F-actin. Upon depolarizing treatment, mobility of WT and ΔC channels decreased both in standalone and IS-engaged cells, contrary to non-conducting channels, which themselves caused depolarization. Our results support that Kv1.3 is enriched at the IS via its C-terminal region regardless of conductivity, and that depolarization decreases channel mobility.


Assuntos
Canal de Potássio Kv1.3/metabolismo , Linfócitos T , Actinas/metabolismo , Humanos , Canal de Potássio Kv1.3/genética , Potenciais da Membrana , Sinapses/metabolismo , Linfócitos T/metabolismo
9.
Am J Physiol Cell Physiol ; 320(3): C448-C461, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471620

RESUMO

Gram-negative bacterial lipopolysaccharide (LPS) increases the susceptibility of cells to pathogenic diseases, including inflammatory diseases and septic syndrome. In our experiments, we examined whether LPS induces epithelial barrier disruption in secretory epithelia and further investigated its underlying mechanism. The activities of Ca2+-activated Cl- channels (CACC) and epithelial Na+ channels (ENaC) were monitored with a short-circuit current using an Ussing chamber. Epithelial membrane integrity was estimated via transepithelial electrical resistance and paracellular permeability assays. We found that the apical application of LPS evoked short-circuit current (Isc) through the activation of CACC and ENaC. Although LPS disrupted epithelial barrier integrity, this was restored with the inhibition of CACC and ENaC, indicating the role of CACC and ENaC in the regulation of paracellular pathways. We confirmed that LPS, CACC, or ENaC activation evoked apical membrane depolarization. The exposure to a high-K+ buffer increased paracellular permeability. LPS induced the rapid redistribution of zonula occludens-1 (ZO-1) and reduced the expression levels of ZO-1 in tight junctions through apical membrane depolarization and tyrosine phosphorylation. However, the LPS-induced epithelial barrier disruption and degradation of ZO-1 were largely recovered by blocking CACC and ENaC. Furthermore, although LPS-impaired epithelial barrier became vulnerable to secondary bacterial infections, this vulnerability was prevented by inhibiting CACC and ENaC. We concluded that LPS induces the disruption of epithelial barrier integrity through the activation of CACC and ENaC, resulting in apical membrane depolarization and the subsequent tyrosine phosphorylation of ZO-1.


Assuntos
Canais de Cloreto/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Lipopolissacarídeos/farmacologia , Canais de Sódio/metabolismo , Animais , Células Cultivadas , Masculino , Potenciais da Membrana/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
10.
New Phytol ; 232(4): 1692-1702, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482538

RESUMO

Plant stress signalling involves bursts of reactive oxygen species (ROS), which can be mimicked by the application of acute pulses of ozone. Such ozone-pulses inhibit photosynthesis and trigger stomatal closure in a few minutes, but the signalling that underlies these responses remains largely unknown. We measured changes in Arabidopsis thaliana gas exchange after treatment with acute pulses of ozone and set up a system for simultaneous measurement of membrane potential and cytosolic calcium with the fluorescent reporter R-GECO1. We show that within 1 min, prior to stomatal closure, O3 triggered a drop in whole-plant CO2 uptake. Within this early phase, O3 pulses (200-1000 ppb) elicited simultaneous membrane depolarization and cytosolic calcium increase, whereas these pulses had no long-term effect on either stomatal conductance or photosynthesis. In contrast, pulses of 5000 ppb O3 induced cell death, systemic Ca2+ signals and an irreversible drop in stomatal conductance and photosynthetic capacity. We conclude that mesophyll cells respond to ozone in a few seconds by distinct pattern of plasma membrane depolarizations accompanied by an increase in the cytosolic calcium ion (Ca2+ ) level. These responses became systemic only at very high ozone concentrations. Thus, plants have rapid mechanism to sense and discriminate the strength of ozone signals.


Assuntos
Ozônio , Cálcio , Células do Mesofilo , Ozônio/farmacologia , Fotossíntese , Folhas de Planta , Estômatos de Plantas
11.
Biosci Biotechnol Biochem ; 85(9): 2003-2010, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34191003

RESUMO

Cytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1. Extracellular calcium induced stomatal closure in the wild-type plants but not in the anion channel mutant plants whereas extracellular calcium induced [Ca2+]cyt elevation both in the wild-type guard cells and in the mutant guard cells. The peak height and the number of the [Ca2+]cyt spike were lower and larger in the slac1-4 slah3-3 than in the wild type and the height and the number in the slac1-4 almt12-1 were much lower and much larger than in the wild type. These results suggest that the anion channels are involved in the regulation of [Ca2+]cyt elevation in guard cells.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Canais Iônicos/metabolismo , Ânions , Arabidopsis/genética , Arabidopsis/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Técnicas de Silenciamento de Genes , Genes de Plantas , Mutação
12.
Pestic Biochem Physiol ; 173: 104801, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33771250

RESUMO

Rotenone, a selective inhibitor of mitochondrial complex I, has been extensively studied on kinds of neuron and neuroblast in Parkinson's disease. However, little is known about the potential mechanism of this promising botanical insecticide upon insect cells. In the article, cell proliferation of two Lepidoptera cell lines, Spodoptera litura SL-1 cells and Spodoptera frugiperda Sf9 cells, were all inhibited by rotenone in a time- and dose-dependent manner. Typical necrotic characteristics of cell morphology and ultrastructure, such as plasma membrane collapses and organelle lyses, were all observed by transmission electron microscope and scanning electron microscope. Moreover, irregular DNA degradation was also detected by DNA gel electrophoresis and Hoechst 33258 staining, while the typical apoptotic feature, DNA ladder, hadn't been observed. Flow cytometric analysis showed that rotenone-induced cell death of Sf9 and SL-1 cells accompanied with the plasma membrane potential depolarization and mitochondrial membrane potential reduction. Furthermore, the activity of Na+-K+-ATPase was detected in our study. In conclusion, rotenone could cause necrosis but not apoptosis in insect cells through a mitochondrial- and plasmic membrane-dependent pattern, which shed a light on the rotenone-induced cytotoxicity on insects.


Assuntos
Apoptose , Rotenona , Animais , Membrana Celular , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Necrose/induzido quimicamente , Rotenona/toxicidade
13.
Molecules ; 26(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504098

RESUMO

Recent findings revealed that 2-ethyl-17-oxoestra-1,3,5(10)-trien-3-yl sulfamate (ESE-one) induces antiproliferative activity and cell rounding dependent on the generation of superoxide anion, hydrogen peroxide and peroxyl radical. In the current study, the role of these reactive oxygen species was assessed in the activity exerted by ESE-one on cell cycle progression, mitochondrial membrane potential and cell death induction in breast tumorigenic cells. The influence of ESE-one was also investigated on superoxide dismutase and catalase activity. ESE-one induced a time-dependent accumulation of cells in the G1 phase and G2/M phase that is partially impaired by tiron and trolox and N,N'-dimethylthiourea suggesting that superoxide anion, hydrogen peroxide and peroxyl radical are required for these effects exerted by ESE-one. Flow cytometry data in MCF-7 cells demonstrated that tiron decreased depolarization of the membrane potential in ESE-one exposed cells, indicating that superoxide anion plays a role in the depolarization effects induced by ESE-one. Spectrophotometry data showed that ESE-one decreased catalase activity in both cell lines. This study contributes towards pertinent information regarding the effects of an in silico-designed sulfamoylated compound on antioxidant enzymes leading to aberrant quantities of specific reactive oxygen species resulting in antimitotic activity culminating in the induction of cell death in breast cancer cell lines.


Assuntos
Antimitóticos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Catalase/metabolismo , Morte Celular/efeitos dos fármacos , Estradiol/farmacologia , Sulfonamidas/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
14.
J Cell Physiol ; 235(3): 2947-2962, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31535377

RESUMO

In previous work, we reported that plasma membrane potential depolarization (PMPD) provokes cortical F-actin remodeling in bovine corneal endothelial (BCE) cells in culture, which eventually leads to the appearance of intercellular gaps. In kidney epithelial cells it has been shown that PMPD determines an extracellular-signal-regulated kinase (ERK)/Rho-dependent increase in diphosphorylated myosin light chain (ppMLC). The present study investigated the signaling pathways involved in the response of BCE cells to PMPD. Differently to renal epithelial cells, we observed that PMPD leads to a decrease in monophosphorylated MLC (pMLC) without affecting diphosphorylated MLC. Also, that the pMLC reduction is a consequence of cyclic adenosine 3',5'-monophosphate (cAMP)/protein kinase A (PKA) activation. In addition, we found evidence that the cAMP increase mostly depends on soluble adenylyl cyclase activity. Inhibition of this enzyme reduces the effect of PMPD on the cAMP rise, F-actin remodeling, and pMLC decrease. No changes in phosho-ERK were observed, although we could determine that RhoA undergoes activation. Our results suggested that active RhoA is not involved in the intercellular gap formation. Overall, the findings of this study support the view that, differently to renal epithelial cells, in BCE cells PMPD determines cytoskeletal reorganization via activation of the cAMP/PKA pathway.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais/fisiologia , Actinas/metabolismo , Adenosina/metabolismo , Animais , Bovinos , Células Cultivadas , AMP Cíclico/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
15.
Cell Commun Signal ; 18(1): 150, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933538

RESUMO

Target therapies based on BRAF and MEK inhibitors (MAPKi) have changed the therapeutic landscape for metastatic melanoma patients bearing mutations in the BRAF kinase. However, the emergence of drug resistance imposes the necessity to conceive novel therapeutic strategies capable to achieve a more durable disease control. In the last years, retrotransposons laying in human genome have been shown to undergo activation during tumorigenesis, where they contribute to genomic instability. Their activation can be efficiently controlled with reverse transcriptase inhibitors (RTIs) frequently used in the treatment of AIDS. These drugs have demonstrated anti-proliferative effects in several cancer models, including also metastatic melanoma. However, to our knowledge no previous study investigated the capability of RTIs to mitigate drug resistance to target therapy in BRAF-mutant melanomas. In this short report we show that the non-nucleoside RTI, SPV122 in combination with MAPKi strongly inhibits BRAF-mutant melanoma cell growth, induces apoptosis, and delays the emergence of resistance to target therapy in vitro. Mechanistically, this combination strongly induces DNA double-strand breaks, mitochondrial membrane depolarization and increased ROS levels. Our results shed further light on the molecular activity of RTI in melanoma and pave the way to their use as a novel therapeutic option to improve the efficacy of target therapy. Video Abstract.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Pirimidinonas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Terapia de Alvo Molecular , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Bioorg Med Chem ; 28(19): 115682, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32912428

RESUMO

RIWVIWRR-NH2 (Bac8c) is a natural antimicrobial peptide (AMP) exhibiting great antibacterial activity against Gram-negative and Gram-positive bacteria. In this work, lipoic acid was used as a fatty acid hydrophobic ligand to modify Bac8c (LA-Bac8c) to further improve its antimicrobial properties. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) assays showed that LA-Bac8c exhibited lower MIC (MBC) values against Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA) than Bac8c. Similar results were reflected in the antibiofilm activity towards S. aureus and MRSA, and LA-Bac8c showed better activity to the biofilm which has been formed or is being formed. In addition to this, the obvious interaction between bacteria/biofilm and LA-Bac8c was observed by microscopy. LA-Bac8c displayed strong membrane depolarization and outer membrane permeabilizing ability, and the cell membrane treated with LA-Bac8c was destroyed to the leakage of bacteria cellular components. All these data indicated LA-Bac8c could be used as a useful antimicrobial peptide with wide application prospect.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Ácido Tióctico/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Ácido Tióctico/química
17.
J Biomed Sci ; 26(1): 79, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31629407

RESUMO

BACKGROUND: Neuronal activity-induced changes in gene expression patterns are important mediators of neuronal plasticity. Many neuronal genes can be activated or inactivated in response to neuronal depolarization. Mechanisms that activate gene transcription are well established, but activity-dependent mechanisms that silence transcription are less understood. It is also not clear what is the significance of inhibiting these genes during neuronal activity. METHODS: Quantitative Real Time-PCR, western blot and immunofluorescence staining were performed to examine the expression of Senp1 and GluR1 in mouse cortical neurons. The alterations of Yy1 phosphorylation upon neuronal depolarization and the interaction of Yy1 with Brd4 were studied by protein co-immunoprecipitation. The regulators of Yy1 phosphorylation were identified by phosphatase inhibitors. Chromatin immunoprecipitation, in vitro DNA binding assay, luciferase assay and gene knockdown experiments were used to validate the roles of Yy1 and its phosphorylation as well as Brd4 in regulating Senp1 expression. RESULTS: We report that neuronal depolarization deactivates the transcription of the SUMO protease Senp1, an important component regulating synaptic transmission, scaling, and plasticity, through Yy1. In un-stimulated neurons, Senp1 transcription is activated by a Yy1-Brd4 transcription factor protein complex assembled on the Senp1 promoter. Upon membrane depolarization, however, Yy1 is dephosphorylated and the Yy1-Brd4 complex is evicted from the Senp1 promoter, reducing Senp1 transcription levels. Both Yy1 and Senp1 promote the expression of AMPA receptor subunit GluR1, a pivotal component in learning and memory. CONCLUSIONS: These results reveal an axis of Yy1/Brd4-Senp1 which regulates the expression of GluR1 during neuronal depolarization. This implicates a regulation mechanism in silencing gene expression upon neuronal activity.


Assuntos
Cisteína Endopeptidases/genética , Regulação da Expressão Gênica/genética , Neurônios/fisiologia , Receptores de AMPA/genética , Fator de Transcrição YY1/genética , Animais , Cisteína Endopeptidases/metabolismo , Embrião de Mamíferos/fisiologia , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores de AMPA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Transcrição YY1/metabolismo
18.
Am J Respir Crit Care Med ; 198(7): 868-879, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29672123

RESUMO

RATIONALE: Cough hypersensitivity syndrome is often triggered by a viral infection. The viral infection might trigger cough hypersensitivity via increasing the release of IFN-γ from T lymphocytes in the lung. OBJECTIVES: To investigate effects of IFN-γ on the vagal sensory neurons and the cough reflex. METHODS: Effects of IFN-γ on the cough reflex were investigated in guinea pigs. Cellular immunofluorescence imaging, calcium imaging, and patch clamp techniques were used to study effects of IFN-γ in primary cultured rat vagal sensory neurons. MEASUREMENTS AND MAIN RESULTS: Intratracheal instillation of IFN-γ enhanced the cough response to citric acid in vivo. IFN-γ significantly increased levels of phosphorylated signal transducer and activator of transcription-1 but not phosphorylated transient receptor potential vanilloid 1 in vitro. Not only did IFN-γ enhance the response of neurons to capsaicin and electric stimulation, but also it directly induced Ca2+ influx, membrane depolarization, and action potentials in neurons via the Janus kinase, protein kinase A, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid pathways. However, IFN-γ did not elicit Ca2+ release from the endoplasmic reticulum via the phospholipase C pathway. Although IFN-γ-induced action potentials were suppressed by Ca2+ influx inhibitors, IFN-γ-induced Ca2+ influx was not altered by an inhibitor of rapid sodium channels. CONCLUSIONS: The membrane potential in vagal sensory neurons may be depolarized by IFN-γ-induced Ca2+ influx. The depolarization of membrane potentials may enhance the cough reflex sensitivity and cause action potentials. IFN-γ may be a new target for treating cough hypersensitivity syndrome and postviral cough.


Assuntos
Cálcio/metabolismo , Capsaicina/farmacologia , Tosse/tratamento farmacológico , Interleucina-18/farmacologia , Animais , Tosse/fisiopatologia , Cobaias , Instilação de Medicamentos , Potenciais da Membrana , Modelos Animais , Ratos , Reflexo/efeitos dos fármacos , Sensibilidade e Especificidade , Células Receptoras Sensoriais/efeitos dos fármacos , Traqueia/efeitos dos fármacos
19.
Nano Lett ; 18(7): 4487-4492, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894630

RESUMO

Engineered silicon-based materials can display photoelectric and photothermal responses under light illumination, which may lead to further innovations at the silicon-biology interfaces. Silicon nanowires have small radial dimensions, promising as highly localized cellular modulators, however the single crystalline form typically has limited photothermal efficacy due to the poor light absorption and fast heat dissipation. In this work, we report strategies to improve the photothermal response from silicon nanowires by introducing nanoscale textures on the surface and in the bulk. We next demonstrate high-resolution extracellular modulation of calcium dynamics in a number of mammalian cells including glial cells, neurons, and cancer cells. The new materials may be broadly used in probing and modulating electrical and chemical signals at the subcellular length scale, which is currently a challenge in the field of electrophysiology or cellular engineering.

20.
Anal Biochem ; 561-562: 1-10, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30219672

RESUMO

One of the most interesting fields of research in cancer diagnosis is tracing the relation between extracellular media and cancer progression. Detecting the secreting contents of the cells and translating these molecular identifications into label-free recognizable patterns would open new opportunities in cancer research. Electrochemical responses are in the range of most attractive sensing mechanisms especially in biochemical approaches. Perturbed ionic exchanges as a known biochemical function of cancer cells presented a strong correlation with the pH of the tumor microenvironment. Different ionic activities detected by an electrochemical bio-sensing system in the malignant and normal cells in the presence of acidic ambient were our main results presented in this research. Herein, silicon Nano-roughened substrate as a well-known electrochemical interface was applied in the construction of the biosensor. Viability rate as well as apoptotic factors involving in cancer progression were assessed by biochemical assays in normal (MCF10A) and cancer (MCF7 and MDA-MB468) breast cells. Our findings demonstrated that pH-based electrochemical responses were matched with the results obtained from the biological analyses of both normal and malignant cells. Induction of acidosis in the cells followed by monitoring their electrochemical responses would be a new trend in microenvironment based cancer investigation.


Assuntos
Acidose/diagnóstico , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro/química , Nanopartículas/química , Silício/química , Microambiente Tumoral , Sobrevivência Celular , Células Cultivadas , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Potencial da Membrana Mitocondrial , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA