RESUMO
Effector Th17 cells, including IFN-γ-IL-17+ (eTh17) and IFN-γ+IL-17+ (eTh17/1) subsets, play critical pathogenic functions in the induction of autoimmunity. As acute inflammation subsides, a small proportion of the effectors survive and convert to memory Th17 cells (mTh17), which sustain chronic inflammation in autoimmune diseases. Herein, we investigated the differential contributions of eTh17 versus eTh17/1 to the memory pool using an experimental model of ocular autoimmune disease. Our results show that adoptive transfer of Tbx21-/- CD4+ T cells or conditional deletion of Tbx21 in Th17 cells leads to diminished eTh17/1 in acute phase and functionally compromised mTh17 in chronic phase. Further, adoptive transfer of disease-specific eTh17/1, but not eTh17, leads to generation of mTh17 and sustained ocular inflammation. Collectively, our data demonstrate that T-bet-dependent eTh17/1 cells generated during the acute inflammation are the principal effector precursors of pathogenic mTh17 cells that sustain the chronicity of autoimmune inflammation.
Assuntos
Doenças Autoimunes , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Doenças Autoimunes/patologia , Humanos , Inflamação/patologia , Interferon gama , Interleucina-17/genética , Células Th1 , Células Th17RESUMO
Th17 cells are principal mediators of many autoimmune conditions. Recently, memory Th17 cells have been revealed as crucial in mediating the chronicity of various refractory autoimmune disorders; however, the underlying mechanisms maintaining memory Th17 cells have remained elusive. Here, using a preclinical model of ocular autoimmune disease we show that both IL-7 and IL-15 are critical for maintaining pathogenic memory Th17 cells. Neutralization of these cytokines leads to substantial reduction of memory Th17 cells; both IL-7 and IL-15 provide survival signals via activating STAT5, and IL-15 provides additional proliferation signals via activating both STAT5 and Akt. Topical neutralization of ocular IL-7 or IL-15 effectively reduces memory Th17 cells at the inflammatory site and draining lymphoid tissues, while topical neutralization of IL-17 alone, the major pathogenic cytokine secreted by Th17 cells, does not diminish memory Th17 cells at the draining lymphoid tissues. Our results suggest that the effective removal of pathogenic memory Th17 cells via abolishing environmental IL-7 or IL-15 is likely to be a novel strategy in the treatment of autoimmune diseases.
Assuntos
Autoimunidade , Interleucina-15/metabolismo , Interleucina-7/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Animais , Apoptose , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Biomarcadores , Modelos Animais de Doenças , Síndromes do Olho Seco/imunologia , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Feminino , Memória Imunológica , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/metabolismo , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
Lipopolysaccharide (LPS)-induced acute lung injury (ALI) is known as a mouse model of acute respiratory distress syndrome; however, the function of T-cell-derived cytokines in ALI has not yet been established. We found that LPS challenge in one lung resulted in a rapid induction of innate-type pro-inflammatory cytokines such as IL-6 and TNF-α, followed by the expression of T-cell-type cytokines, including IL-17, IL-22 and IFN-γ. We discovered that IL-23 is important for ALI, since blockage of IL-23 by gene disruption or anti-IL-12/23p40 antibody treatment reduced neutrophil infiltration and inflammatory cytokine secretion into the bronchoalveolar lavage fluid (BALF). IL-23 was mostly produced from F4/80(+)CD11c(+) alveolar macrophages, and IL-23 expression was markedly reduced by the pre-treatment of mice with antibiotics, suggesting that the development of IL-23-producing macrophages required commensal bacteria. Unexpectedly, among T-cell-derived cytokines, IL-22 rather than IL-17 or IFN-γ played a major role in LPS-induced ALI. IL-22 protein levels were higher than IL-17 in the BALF after LPS instillation, and the major source of IL-22 was memory Th17 cells. Lung memory CD4(+) T cells had a potential to produce IL-22 at higher levels than IL-17 in response to IL-1ß plus IL-23 without TCR stimulation. Our study revealed an innate-like function of the lung memory Th17 cells that produce IL-22 in response to IL-23 and are involved in exaggeration of ALI.
Assuntos
Lesão Pulmonar Aguda/imunologia , Citocinas/imunologia , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Pulmão/imunologia , Células Th17/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Lavagem Broncoalveolar , Citocinas/genética , Imunidade Inata/genética , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Células Th17/patologiaRESUMO
We studied effects of early and late apoptotic (necroptotic) cell products, related damage associated alarmins and TLR agonists, on hematopoietic stem and progenitor cells (HSPC). Surprisingly, normal HSPC themselves produced IL-17 and IL-21 after 1½days of stimulation, and the best stimulators were TLR 7/8 agonist; HMGB1-DNA; TLR 9 agonist, and necroptotic B cells. The stimulated HSPC expressed additional cytokines/mediators, directly causing rapid expansion of IL-17(+) memory CD4 T (Th17), and CD8 T (Tc17) cells, and antigen-experienced IL-17(+) T cells with "naïve" phenotype. In lupus marrow, HSPC were spontaneously pre-stimulated by endogenous signals to produce IL-17 and IL-21. In contrast to HSPC, megakaryocyte progenitors (MKP) did not produce IL-17, and unlike HSPC, they could process and present particulate apoptotic autoantigens to augment autoimmune memory Th17 response. Thus abnormally stimulated primitive hematopoietic progenitors augment expansion of IL-17 producing immune and autoimmune memory T cells in the bone marrow, which may affect central tolerance.
Assuntos
Medula Óssea/imunologia , Citocinas/imunologia , Células-Tronco Hematopoéticas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Células-Tronco Multipotentes/imunologia , Células Th17/imunologia , Animais , Apoptose/imunologia , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Citometria de Fluxo , Humanos , Interleucina-17/imunologia , Interleucinas/imunologia , Lúpus Eritematoso Sistêmico/sangue , Camundongos , Receptores Toll-LikeRESUMO
The SARS-CoV-2 and influenza viruses are the main causes of human respiratory tract infections with similar disease manifestation but distinct mechanisms of immunopathology and host response to the infection. In this study, we investigated the SARS-CoV-2-specific CD4+ T cell phenotype in comparison with H1N1 influenza-specific CD4+ T cells. We determined the levels of SARS-CoV-2- and H1N1-specific CD4+ T cell responses in subjects recovered from COVID-19 one to 15 months ago by stimulating PBMCs with live SARS-CoV-2 or H1N1 influenza viruses. We investigated phenotypes and frequencies of main CD4+ T cell subsets specific for SARS-CoV-2 using an activation induced cell marker assay and multicolor flow cytometry, and compared the magnitude of SARS-CoV-2- and H1N1-specific CD4+ T cells. SARS-CoV-2-specific CD4+ T cells were detected 1-15 months post infection and the frequency of SARS-CoV-2-specific central memory CD4+ T cells was increased with the time post-symptom onset. Next, SARS-CoV-2-specific CD4+ T cells predominantly expressed the Th17 phenotype, but the level of Th17 cells in this group was lower than in H1N1-specific CD4+ T cells. Finally, we found that the lower level of total Th17 subset within total SARS-CoV-2-specific CD4+ T cells was linked with the low level of CCR4+CXCR3- 'classical' Th17 cells if compared with H1N1-specific Th17 cells. Taken together, our data suggest the involvement of Th17 cells and their separate subsets in the pathogenesis of SARS-CoV-2- and influenza-induced pneumonia; and a better understanding of Th17 mediated antiviral immune responses may lead to the development of new therapeutic strategies.